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Abstract: We present a novel numerical scheme to solve the QCD Boltzmann equation in the soft
scattering approximation, for the quenched limit of QCD. Using this we can readily investigate
the evolution of spatially homogeneous systems of gluons distributed isotropically in momentum
space. We numerically confirm that for so-called “overpopulated” initial conditions, a (transient)
Bose-Einstein condensate could emerge in a finite time. Going beyond existing results, we analyze
the formation dynamics of this condensate. The scheme is extended to systems with cylindrically
symmetric momentum distributions, in order to investigate the effects of anisotropy. In particular, we
compare the rates at which isotropization and equilibration occur. We also compare our results from
the soft scattering scheme to the relaxation time approximation.
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1. Introduction

The study of quark-gluon plasma (QGP), the phase of strongly interacting matter formed in
relativistic nuclear collisions and consisting of quasi-free quarks and gluons, is of increasing relevance
in modern physics [1]. It represents a testing ground for the Standard Model, as well as for finite
temperature field theory and possible grand unification theories. It is also of cosmological significance,
as the early universe was dominated by this phase of matter.

Experiments at the Super Proton Synchrotron (SPS), Relativistic Heavy Ion Collider (RHIC) and
Large Hadron Collider (LHC) allow us to probe the energy scales at which the QGP is produced.
Inferring its properties and phenomenological behaviour is a central goal of the heavy ion programs
at these facilities. The theoretical tools that have been developed to describe it are manifold, as the
various stages of a heavy ion collision represent very different physical regimes that demand similarly
diverse mathematical formalisms to describe (see Figure 1).

Prior to the collision, the nuclei are accelerated to near-light speed, with a Lorentz factor on the order
of 100. They are therefore subject to strong Lorentz contraction along the beam axis. At these energies,
the lifetime of gluons emitted from the valence quarks or other gluons is long enough to allow additional
emissions of soft gluons from themselves. This process keeps increasing the number density of gluons
until saturation occurs as recombination of gluons becomes non-negligible, forming the state of matter
called the Color Glass Condensate (CGC) [2–4]. This regime of large gluon number can be approximated by
classical dynamics.

In the first stage of a collision, a large number of gluons are liberated from the CGC. These gluons
form a dense, off-equilibrium state called the glasma. Extensive hydrodynamic analyses of HIC
indicate that as the medium expands, rapid thermalization occurs (characteristic time on the order of
1 fm) and a QGP in local equilibrium forms [5–8]. This rapid thermalization is indicative of strong
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interactions. As the medium continues to expand and decrease in temperature, it eventually drops
below the deconfinement temperature (Tc ≈ 170 MeV) and hadronization occurs.

Despite longstanding efforts and various approaches to describe the dynamics of heavy ion
collisions (see e.g., [9,10]), the rapid equilibration of the QGP remains to be thoroughly understood.
Another question that has received a lot of recent attention is the possible formation of a gluon
condensate in heavy ion collisions [11,12]. We will address these two questions by adapting and
numerically solving the QCD Boltzmann equation assuming the dominance of soft gluon exchange
in binary collisions. In this framework we can describe the evolution of the QGP from the early
pre-equilibrium stages through thermalization towards freeze-out.

z 

t

strong fields classical dynamics

gluons & quarks out of eq. viscous hydro

gluons & quarks in eq. ideal hydro

hadrons kinetic theory

freeze out

Figure 1. The stages of a heavy ion collision (from [1]).

2. The Boltzmann Transport Equation

The fundamental equation of kinetic theory is the Boltzmann transport equation. It is a non-linear
integro-differential equation describing the evolution of a distribution function of particles, for our
purposes a dilute gas of gluons “in a box”. (Quarks are omitted for conceptual simplicity and also
motivated for systems which are gluon-dominated). For a spatially homogeneous system under the
assumption that 2→ 2 processes dominate, it can be written as

∂t f =
1
2

∫ d3 p2

(2π)32E2

d3 p3

(2π)32E3

d3 p4

(2π)32E4

|M12→34|2
2E1

(2π)4δ(p1 + p2 − p3 − p4)( f3 f4 f̄1 f̄2 − f1 f2 f̄3 f̄4) . (1)

Here fi is the distribution function of particle i with 4-momentum pi = (Ei, pi). As shorthand,
we write f̄i ≡ 1 + fi.

The transition amplitudeM of binary gluon scattering reads at tree level

|M12→34|2 = 72g4
[
3− tu

s2 − su
t2 − st

u2

]
, (2)

where s, t and u are the familiar Mandelstam variables and g is related to the QCD coupling constant α

by g2 = 4πα.
For small scattering angles, |t| � s and expression (2) simplifies to

|M12→34|2 ≈ 144g4 s2

t2 , (3)

which is to be regulated, e.g., by making the substitution

1
t2 →

1

(t− µ2)
2 , (4)

where µ is the screening mass.
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While this equation is a challenge to solve, Boltzmann’s H-Theorem guarantees that regardless of
the initial condition, the equilibrium distribution function will be a Bose-Jüttner function [13],

feq(x, p) =
[

e
pαuα(x)−µ(x)

T(x) − 1
]−1

. (5)

Here T, u and µ parameterize the temperature, collective flow velocity and chemical potential,
respectively.

There is one caveat; there exist “overpopulated” initial distributions (see Figure 2) which
contain more gluons than can be “accommodated” in a Bose-Jüttner distribution while maintaining
particle number and energy conservation. It has been argued [11] that under the assumption of
approximate gluon number conservation, a transient state close to equilibrium may form with a
Bose-Einstein condensate.

Figure 2. Contours of constant particle number and energy density at equilibrium. The values of the
equilibrium parameters T and µ are found where the lines intersect. In the critically populated case,
the intersection occurs at the maximum possible value of µ = 0. In the overpopulated case, no real
solution for µ < 0 exists and a condensate is necessary to contain the excess particles.

3. The Fokker-Planck and Relaxation Time Approximations

Under the assumption that small-angle scattering dominates, the RHS of Equation (1) can be
approximated as the divergence of a current in momentum space [11],

Dt f = −∇p ·J (p) , (6)

which is a Fokker-Planck type equation. Here the components of the current J read

J i(p) = 9
4π g4L

∫
k Vij(p, k)

{
fp f̄p∇j

k fk − fk f̄k∇
j
p fp

}
, (7)

where
V ij = (1− v ·w) δij +

(
viwj + vjwi) , (8)

and we define p ≡ p1, k ≡ p2 and denote the corresponding unit vectors by w ≡ p/p and v ≡ k/k.
In Equation (7), L is the so-called Coulomb logarithm emerging for screened interactions with

vector boson exchange, L =
∫ qmax

qmin

dq
q = ln qmax

qmin
where qmax and qmin are cutoffs of the order of the

equilibrium temperature T and the screening mass µ introduced in expression (4), respectively [11].
We take L to be a constant of order 1 in our analysis.

It is convenient to rescale the time variable in Equation (6) as τ = 9
4π g4L t to eliminate the constant

factor in Equation (7). The integral in (7) can then be performed (see Appendix A), yielding

J (p) = Ia∇p f + Ib f f̄ p̂ + (∇p f · p̂)I + (∇p f × p̂)× I , (9)
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where Ia =
∫

f f̄ , Ib =
∫ 2 f

p and I ≡ (Ix, Iy, Iz) =
∫

w f f̄ are functionals of the distribution function f .
It will be interesting to compare the Fokker-Planck approximation of the Boltzmann equation to

the well-known Relaxation Time Approximation (RTA),

∂t f =
pµuµ

p0

f∞− f
τ . (10)

The RTA is easily solvable (and convergences to the same equilibrium distribution); however
it lacks QCD-specific features and, as we will see, yields qualitatively different behavior to the
Fokker-Planck approximation, which we argue is more physically motivated.

4. The Method of ’B-Lines’

We have developed a flux-conservative numerical scheme that allows us to readily solve the
Boltzmann equation in the Fokker-Planck approximation, (6) + (9), which we call the method of ‘B-lines’.
The name is given in analogy to splines, with the ’B’ referring to an efficient parameterization of the
distribution function in terms of piecewise Bose functions. We have implemented it for distribution
functions spherically and cylindrically symmetric in momentum space; here we will discuss the scheme
for the simpler isotropic case.

For spherically symmetric distribution functions, we discretize the momentum grid into bins of
width ∆ and construct a piecewise Bose interpolation of f ,

f (i)(p) =
1

eai p+bi − 1
. (11)

The domain of f (i) is p ∈ [i, (i + 1)]∆ for 0 ≤ i < M− 1 and [∆(M− 1), ∞) for i = M− 1.
A couple of points are in order. Firstly, it should be noted that this approach is equivalent to a linear

interpolation of an expedient transformation of the distribution function, g ≡ ln( f̄ / f ), i.e., g(i)(p) = ai p+ bi.
One of the reasons that we choose to make this transformation is that a piecewise linear interpolation directly
in terms of f would not allow us to describe the formation of the Bose-Einstein condensate. Secondly,
for equilibrium distribution functions approaching equilibrium our interpolation scheme becomes exact,
which is a nice property. An equilibrium distribution in g-space of course is simply a straight line.

Physically, the ai correspond to local (in momentum space) inverse temperature parameters, and the
bi correspond to the chemical potential. We determine them by sampling the distribution function at
the gridpoints,

f0 ≡ f (δ) ,

fi ≡ f (∆i), 0 < i < M .
(12)

Here δ is small relative to ∆ but non-zero in order to avoid singularities at the origin.
Having established the details of the initial interpolation, we now consider the process by which

we evolve the distribution function in time. We separate our M + 1 cells on the p-axis at the momenta

p0 = δ ,

pi =

(
i +

1
2

)
∆, 0 < i < M ,

(13)

such that cell 0 is [0, δ], cell M is [(M − 1
2 )∆, ∞) and intermediate cells with index 0 < i < M are

[pi−1, pi]. These cell boundaries are “staggered” with respect to the grid used for the interpolation,
with the distribution function in each cell being interpolated by two B-lines. This is because as we
will see shortly, the first derivative of our interpolation of the distribution function is required to be
continuous at our cell boundaries, which is not in general the case at B-line boundaries.
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From the B-lines we can easily calculate the particle number (per volume) in each cell,

n0 =
4π

(2π)3

∫ δ

0
dp p2 f (0)(p) ,

ni =
4π

(2π)3

∫ ∆i

pi−1

dp p2 f (i−1)(p) +
4π

(2π)3

∫ pi

∆i
dp p2 f (i)(p), 0 < i < M ,

nM =
4π

(2π)3

∫ ∞

pM−1

dp p2 f (M−1)(p) .

(14)

These integrals are combinations of polylogarithm functions depending on the B-line parameters
ai, bi. For convenience we have set the gluon degeneracy to 1; dg = 16 can be reinstated as needed.

Now, recall that the Fokker-Planck equation (6) can be written as a continuity equation (conserving
both particle number and energy). Thus the rate of change of particle number in cell i,

∂τni =
4π

(2π)3

∫ pi+1
pi

dpp2∂τ f (p, τ) = 4π
(2π)3 p2J (p)

∣∣∣∣pi+1

pi

, (15)

is given by φi+1 − φi, the net radial flux into cell i, where

φi ≡ 4π
(2π)3 p2J (pi) =

4π
(2π)3 p2(Ia∂p f + Ib f (1 + f ))

∣∣∣∣
p=pi

. (16)

For the zeroth cell, the flux φ0 at p = 0 is zero by definition. Similarly, the last cell’s rightmost
boundary is at infinity, with zero flux through it.

We thus arrive at the following non-linear system of ODEs,

ṅ0 = φ(δ) ,

ṅi = φi+1 − φi, 0 < i < M ,

ṅM = −φM .

(17)

Note that the integrals Ia and Ib (I vanishes in the spherically symmetric case), which determine
the flux (16) depend non-linearly on all of the fi and must be updated at each time step. We can readily
solve these ODEs using the forward Euler method. Having updated the particle number in each cell, it
is straightforward to find the evolved set of B-line parameters.

One advantage of the modified scheme is that it allows us to compute the number of particles in
the condensate. Analysis shows that the flux into the zeroth cell becomes non-zero after finite time
for overpopulated systems approaching the equilibrium Bose-Einstein distribution. Note that this
flux remains well-defined as we take the limit δ → 0. For large t, the flux becomes proportional to
Ib − Ia/T, which vanishes for an equilibrium distribution. The particle number in cell 0 has a “regular”
contribution, which vanishes for δ→ 0, as well as the condensate contribution.

5. Results

Figures 3–6 show the evolution in the special case of spherically symmetric, CGC-inspired initial
conditions of the form

f (p) = f0
1

e(p−Q)/C+1
, (18)

where f0 and C are constants and Q sets the overall momentum scale. For these figures, we have
chosen f0 = 0.225 and C = 0.05Q (and Q→ 1), which is a moderately overpopulated initial condition
where some 8% of the particles asymptotically condense. We point out the qualitative difference
between the Fokker-Planck and Relaxation Time Approximations; in the latter the condensate begins
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to form immediately, whereas the Fokker-Planck scheme exhibits a characteristic “lag”. The onset time
tc is fairly short, assuming L ≈ 1, α ≈ 0.4 and Q ≈ 2 GeV we find tc ≈ 0.2 fm/c.

fin

feq
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0.5

0.6

f(p)

Figure 3. Evolution of the initial condition according to the Fokker-Planck scheme. The intermediate
distribution functions shown are for times τ ∈ {1, 3, 5, 7.5, 11, 15.5, 25.5, 50, 70, 100}.
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Figure 4. Corresponding evolution of the condensate for the system in Figure 3.
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Figure 5. Evolution of the initial condition using the Relaxation Time Approximation. The relaxation
time parameter is taken to be 40 in order to match the Fokker-Planck timescale; the intermediate
distribution functions shown are for times t ∈ {0.5, 2, 4, 7, 12, 20, 32, 52, 80} .
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Figure 6. Corresponding evolution of the condensate for the system in Figure 5.
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Generalizing from spherically symmetric to cylindrically symmetric initial conditions, we are
able to explore the effects on anisotropy on the evolution of the distribution function. It is important
to differentiate between isotropic distribution functions just boosted out of their rest frame and
distribution functions that are “genuinely” anisotropic, i.e., even in their rest frame.

“Genuinely” anisotropic distributions are often parameterized in the form [14,15]

fiso

(√
ω2 + ξ p2

z

)
, (19)

where ξ > −1 specifies the anisotropy. Similarly, we consider as a generalization of (18) initial
conditions of the form

f (ω, pz) = f0

√
1+ξ

e

(√
ω2+ξ p2

z+bpz−Q
)

/C
+1

, (20)

where ω = |p|, b is a boost parameter and the numerator is a normalization that is convenient with
regard to the particle number density.

We extract the equilibration time by studying the entropy, evaluated towards final equilibrium.
In particular we would like to compare it to the time taken for the initially anisotropic distribution
function to isotropize. To this end, as a measure of the anisotropy of a distribution function, we define
the “anisotropy parameter”

α =
T22

LRF
T33

LRF
, (21)

where Tµν
LRF is the energy-momentum tensor in the local rest frame. In the rest frame, for a cylindrically

symmetric distribution function with some anisotropy, T11 = T22 = P⊥ is the transverse pressure of
the fluid, while T33 = Pz is the longitudinal pressure. For an isotropic distribution they are equal; thus
the ratio α must also approach 1 as the system isotropizes.

In Figure 7 we plot the evolution of the normalized entropy and anisotropy parameters associated
with an initial condition of form (20), with parameters f0 = 0.1, C = 0.05, ξ = b = 0.2 and Q = 1.
Figure 8 shows a log plot of this evolution.

From a fit, the gradients of the lines in Figure 7 are identical within the uncertainties, which
corroborates that the rates of isotropization and equilibration are strongly correlated.

6. Discussion

In summary, we have developed an efficient numerical scheme to solve the relativistic
Boltzmann equation for gluons in the small-scattering approximation under the assumption of
spherically/cylindrically symmetric initial conditions and spatial homogeneity. Among our findings,
we have reproduced results from [11] regarding the formation of a transient Bose-Einstein condensate
state for overpopulated, spherically symmetric initial conditions. We have investigated the rate
at which an anisotropic distribution function becomes isotropic and compared it to the rate of
thermalization. Further, we have compared these results to the relaxation-time approximation to
the Boltzmann equation.

Figure 7. .Evolution of the normalized entropy and anisotropy parameters.
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Figure 8. Linearized evolution of the normalized entropy and anisotropy parameters.

Possible directions for future work might include investigating the timescale of
hydrodynamization (i.e., the time at which hydrodynamics becomes applicable). Following [16], it
would be interesting to explore the relation between Bose-Einstein condensation and Kolmogorov
turbulence in the relativistic case. Another follow-up would be to study the non-equilibrium attractor
described by [17] for the relaxation-time approximation, and see if a similar phenomenon can be
observed in the Fokker-Planck approximation.

Scope for further extension of our scheme exists, and such an extension is planned. In particular,
it is desirable to extend the scheme to remove the assumption of spatial homogeneity and describe
systems without symmetry assumptions in which the above scheme would essentially represent a
single spatial cell. A challenge is the fact that the computational complexity scales geometrically with
each additional degree of freedom - the so-called “curse of dimensionality”. (Boltzmann equation
solvers as well as hydro-codes typically rely on assumptions of symmetry, and for good reason).
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Appendix A. Derivation of the Current

Here we present a derivation of the Fokker-Planck current J given in Equation (9). Recall
expression (7) for the current, where the constant prefactor is absorbed into τ,

J i(p) = fp f̄p
∫
Vij∇

j
k fk −∇

j
p fp
∫
Vij fk f̄k . (A1)

These two integrals correspond to a vector quantity

Ji ≡
∫
Vij∇

j
k fk (A2)

and a tensor quantity
Jij =

∫
Vij fk f̄k , (A3)

each being a functional of the distribution function f . The current (A1) is defined for a specific
momentum p. For this p we then integrate over all possible values of k. We can represent the Vij tensor
(8) as a matrix,

Vij =

 1 + vxwx − vywy − vzwz vywx + vxwy vzwx + vxwz

vywx + vxwy 1− vxwx + vywy − vzwz vzwy + vywz

vzwx + vxwz vzwy + vywz 1− vxwx − vywy + vzwz

 . (A4)
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Thus we find for the components of the first integral in (A1),

V1j∇
j
k fk =

(
1 + vxwx − vywy − vzwz, vywx + vxwy, vzwx + vxwz

)
∂ fk
∂kx
∂ fk
∂ky
∂ fk
∂kz


= (1 + vxwx − vywy − vzwz)

∂ fk
∂kx

+ (vywx + vxwy)
∂ fk
∂ky

+ (vzwx + vxwz)
∂ fk
∂kz

,

V2j∇
j
k fk =

(
vywx + vxwy, 1− vxwx + vywy − vzwz, vzwy + vywz

)
∂ fk
∂kx
∂ fk
∂ky
∂ fk
∂kz


= (vywx + vxwy)

∂ fk
∂kx

+ (1− vxwx + vywy − vzwz)
∂ fk
∂ky

+ (vzwy + vywz)
∂ fk
∂kz

,

V3j∇
j
k fk =

(
vzwx + vxwz, vzwy + vywz, 1− vxwx − vywy + vzwz

)
∂ fk
∂kx
∂ fk
∂ky
∂ fk
∂kz


= (vzwx + vxwz)

∂ fk
∂kx

+ (vzwy + vywz)
∂ fk
∂ky

+ (1− vxwx − vywy + vzwz)
∂ fk
∂kz

(A5)

Note that
∫ ∞
−∞ dki

∂ fk
∂ki

= fk|∞−∞ = 0 since the distribution function vanishes for large momenta.

Thus only terms of
∫ ki

k
∂ fk
∂ki

survive. Integrating by parts we have

∫ ∞

−∞
dkx

kx√
k2

x + k2
y + k2

z

∂ fk
∂kx

=
kx

k
fk|∞−∞ −

∫ ∞

−∞
dkx

(
− k2

x
k3 +

1
k

)
fk

=
∫ ∞

−∞
dkx

(
k2

x
k3 −

1
k

)
fk ,

(A6)

with corresponding expressions for ky and kz.
Altogether, the non-vanishing terms of Jx are

Jx = wx

∫
vx

∂ fk
∂kx

+ vy
∂ fk
∂ky

+ vz
∂ fk
∂kz

= wx

∫ ( k2
x + k2

y + k2
z

k3 − 3
k

)
fk

= −wx

∫ 2
k

fk .

(A7)

Similarly

Jy = −wy

∫ 2
k

fk ,

Jz = −wz

∫ 2
k

fk .
(A8)

Defining

Ib ≡
∫ 2

k
fk , (A9)

we can simply write
J =

p
p

Ib . (A10)
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Now consider the tensor term Jij (A3). Expanding Jij∇
j
p fp we have

J1j∇
j
p fp =

∫ (
1 + vxwx − vywy − vzwz, vywx + vxwy, vzwx + vxwz

)
∂ fp
∂px
∂ fp
∂py
∂ fp
∂pz

 fk f̄k

=
∂ fp

∂px

∫
(1 + vxwx − vywy − vzwz) fk f̄k +

∂ fp

∂py

∫
(vywx + vxwy) fk f̄k

=+
∂ fp

∂pz

∫
(vzwx + vxwz) fk f̄k .

(A11)

We can tidy this expression by defining

Ia ≡
∫

fk f̄k ,

Ii ≡
∫

vi fk f̄k ,
(A12)

and writing wi = pi/p. As it is no longer necessary to differentiate between fp and fk, we drop the
subscript. Then

J1j∇
j
p fp =

∂ fp

∂px

(
Ia +

px

p
Ix −

py

p
Iy −

pz

p
Iz

)
+

∂ fp

∂py

(
px

p
Iy +

py

p
Ix

)
+

∂ fp

∂pz

(
pz

p
Ix +

px

p
Iz

)
=

∂ fp

∂px
Ia +

(
px

p
∂ fp

∂px
+

py

p
∂ fp

∂py
+

pz

p
∂ fp

∂pz

)
Ix +

(
px

p
∂ fp

∂py
−

py

p
∂ fp

∂px

)
Iy

+

(
px

p
∂ fp

∂pz
− pz

p
∂ fp

∂px

)
Iz ,

(A13)

and similarly

J2j∇
j
p fp =

∂ fp

∂py
Ia +

(
py

p
∂ fp

∂px
− px

p
∂ fp

∂py

)
Ix +

(
px

p
∂ fp

∂px
+

py

p
∂ fp

∂py
+

pz

p
∂ fp

∂pz

)
Iy

+

(
py

p
∂ fp

∂pz
− pz

p
∂ fp

∂py

)
Iz ,

(A14)

and
J3j∇

j
p fp =

∂ fp

∂pz
Ia +

(
pz

p
∂ fp

∂px
− px

p
∂ fp

∂pz

)
Ix +

(
pz

p
∂ fp

∂py
−

py

p
∂ fp

∂pz

)
Iy

+

(
px

p
∂ fp

∂px
+

py

p
∂ fp

∂py
+

pz

p
∂ fp

∂pz

)
Iz .

(A15)

We can write down a vector expression for Jij∇
j
p fp by inspection as Ia∇p f + (∇p f · p̂)I + (∇p f ×

p̂)×I.
Altogether we have the complete expression for the current,

J (p) = Ia∇p f + Ib f f̄ p̂ + (∇p f · p̂)I + (∇p f × p̂)× I . (A16)
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