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Abstract: The fruitfulness of the method of a non-equilibrium statistical operator (NSO) and generalized
linear response theory is demonstrated calculating the permittivity, dynamical conductivity, absorption
coefficient, and dynamical collision frequency of plasmas in the degenerate, metallic state as well as
classical plasmas. A wide range of plasma parameters is considered, and a wide range of frequencies of
laser radiation acting on such plasmas is treated. New analytical expressions for the plasma response are
obtained by this method, and several limiting cases are discussed.
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1. Introduction

The non-equilibrium quantum statistical operator (NSO) was proposed by D.N. Zubarev [1], and its
100-year anniversary was celebrated recently. The NSO method is an important step in working out
a unified, general approach to nonequilibrium phenomena such as transport and relaxation processes.
Different approaches to describe nonequilibrium processes, such as kinetic theory, linear response theory,
and quantum master equations, are obtained within a very general approach, after specifying the relevant
degrees of freedom that characterize the non-equilibrium state of the system. Recent reviews of the NSO
method and its applications can be found, e.g., in [2–6].

The NSO method has been successfully applied to many problems related to the transport and optical
properties of charged particle systems, such as warm dense matter (WDM). Reviews of the calculations of
dynamical response of dense plasmas are found, e.g., in [7,8]. A main advantage of the approach is that
special approaches, valid in limiting cases, can be generalized to describe more complex situations. For
instance, kinetic theory has been worked out for low-density systems where the single-particle distribution
function is relevant to describing the non-equilibrium state of the system, and correlations can be neglected.
In contrast, linear response theory has been worked out to describe systems at arbitrary densities, but
near thermodynamical equilibrium. A unified theory that covers both limiting cases has been worked out
using the NSO method, see [9]. In particular, the correct frequency dependence of the response functions
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has been found, in contrast to conventional kinetic theory. A further advantage of the approach is that
non-equilibrium properties of quantum as well as classical plasmas can be considered consistently on
the same footing. Altogether, the NSO method allows one to study the transport and optical properties
of plasmas at arbitrary densities and temperatures, including the region of WDM where correlations are
strong, in particular between ions, and where the electrons become degenerate. The response to classical
Maxwell fields, represented by a time-dependent external field in the Hamiltonian, can be investigated in
a wide range of frequencies of the external field. This refers also to the response of WDM that is irradiated
by laser fields, in particular the frequency-dependent absorption coefficient. To include a spontaneous
emission of photons, a quantum description of the Maxwell fields is necessary.

In this paper, we present briefly the NSO method and its application to the permittivity of metallic
plasmas, which is described by a Hamiltonian accounting for electron–phonon interactions and Umklapp
processes, as well as the application to the permittivity of plasmas without a long-range order of ions,
which is described by a Hamiltonian accounting for electron–ion and electron–electron interactions.
We continue our previous investigations to work out a systematic quantum statistical approach to the
response properties of WDM [10–14] with an application to aluminum, considering additional processes
of interaction in the strongly coupled Coulomb system. We derive analytical expressions for the dynamical
collision frequency and related quantities, in particular the absorption coefficient. The behavior of these
response properties, such as temperature dependence and frequency dependence, is discussed in special
limiting cases.

These results are of interest for the investigation of material at extremal conditions, e.g., high-particle
and high-energy densities. If a solid metallic target is irradiated by powerful laser pulses, the electron
component of such a target undergoes modifications of its properties, changing from the state of a
metallic “plasma” to a state of a classical non-degenerate plasma. This transition of the electron system
from a degenerate state to a classical behavior is consistently described in our approach. In addition,
the ion system may change from a solid state, where the ion positions are strongly correlated forming
a lattice, to a liquid or a plasma state, where the long-range order of ion positions is destructed. In
the present work, we neglect the short-range order of the ion system in the liquid or plasma state, so
that the electron–ion interaction is considered as independent scattering at the individual ions. For the
electron–ion interaction in the solid state of matter, the coherent part of multiple scattering by the ionic
lattice leads to the formation of electron band (Bloch) states. The deviation of ions from the lattice position
is described as phonon excitation, and the electron–phonon interaction together with Umklapp processes
is considered in this work as responsible for the dynamical conductivity of the solid metal, in addition to
electron–electron collisions. Such transitions from collective electron–phonon interactions in a solid to
individual electron–ion interactions in the disordered ion configuration directly opens up the question
about the switching between the respective Hamiltonians. A more general approach is possible using the
concept of the dynamical structure factor which reflects not only the configuration of the ions but also the
dynamical behavior, including collective excitations, of the ion system. This problem, however, requires a
separate investigation and is not considered in the present work.

With respect to the application to aluminum plasmas, recent experiments in the WDM region [15,16]
to measure the dynamical conductivity are also treated by density-functional theory (DFT) for electrons
combined with molecular dynamics (MD) calculations for the ions [17]. These calculations have the
advantage that optimal single-electron orbitals are calculated, and these orbitals reflect the electron
structure of the aluminum ion, improving our effective electron–ion (e − i) interaction potential. In
addition, the static ionic structure factor is calculated so that a short-range order in the liquid or plasma
phase is implemented in the calculation of the dynamical conductivity. However, the choice of the
density functional for the correlation energy remains an open problem of these DFT-MD calculations. A
shortcoming of the DFT-MD approach is that electron–electron (e− e) collisions are not properly included
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in this mean-field theory, in contrast to our generalized linear response approach, where the contribution
of e− e collisions is taken into account, see also [18].

A systematic improvement of our approach is the use of optimal single-electron orbits and e − i
interaction potentials. In addition, the dynamical ion structure factor that causes not only multiple
scattering of the electrons, but also the excitation of the ion system, in particular phonons, should be
considered in a systematic approach. These improvements in our calculations that establish a closer
connection to DFT-MD simulations are a subject of future work.

2. A Brief Description of the Method

The plasma permittivity ε(ω) of an electromagnetic field with the frequency ω is directly related to
the dynamical conductivity σ(ω) according to ε(ω) = 1 + iσ(ω)/(ε0ω) or, using Gauss units instead of SI
units, as follows:

ε(ω) = 1 + 4πiσ(ω)/ω. (1)

Here and below we consider isotropic media in the case of weak spacial dispersion or the
long-wavelength (with respect to plasma perturbations) limit. In this case, the permittivity does not
depend on the wave vector of perturbations. The longitudinal permittivity coincides with the transverse
one: ε‖ = ε⊥ = ε [19].

For the calculation of σ(ω), one should determine the (quantum) statistically averaged electric
current, arising as the system’s response to external electromagnetic fields. Such calculation can be done
using the NSO ρ̂ = ρ̂rel + ρ̂irrel, which can be constructed as a sum of the so-called relevant statistical
operator ρ̂rel describing the quasi-equilibrium and the irrelevant statistical operator ρ̂irrel, which represents
the nonequilibrium contribution.

The relevant statistical operator is introduced as a generalized Gibbs ensemble, derived from the
principle of the maximum of entropy:

ρ̂rel(t) = Zrel(t)−1 exp
[
−β(Ĥ − µN̂) + ∑n Fn(t)B̂n

]
Zrel(t) = Tr

[
−β(Ĥ − µN̂) + ∑n Fn(t)B̂n

] (2)

where Ĥ is the Hamiltonian of the system. N̂ = ∑p â†
p âp is the particle number operator, where â†

p and
âp are the creation and annihilation operators of the electrons in state p. For the chosen set of relevant
observables {Bn}, n = 1 . . .N , we request

Tr
{

B̂nρ(t)
}
= 〈B̂n〉t = Tr

{
B̂nρ̂rel(t)

}
, (3)

meaning that the observed statistical averages 〈...〉t at time t are correctly reproduced by the averages
with the relevant statistical operator ρ̂rel(t). The Lagrange parameters Fn(t) are then determined by the
set of requested expressions (3) as response parameters. Similar conditions on 〈N̂〉 and 〈Ĥ〉 determine
µ as chemical potential and β = 1/Te, respectively, where Te is the electron temperature. (We give the
temperature in energy units, kB = 1, instead of SI units where β = 1/kBTe.)

IfN = 0 (i.e., an empty set of relevant observables), the operator ρ̂rel (2) is identical with the statistical
operator for the grand canonical ensemble [3]. In that case, the well-known Kubo formula [20] for the
electrical conductivity follows immediately [4,5].

The choice of relevant observables can be arbitrary. Different choices lead to the same results if
non-perturbative approaches such as infinite diagram summations or numerical calculations of correlation
functions are used [5,8,21]. However, the account of only a finite number of terms within a perturbation
expansion can lead to even divergent results. Therefore, it is necessary to choose the set of relevant
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observables in a way that the relevant statistical operator [5] already ensures a close approximation of the
considered system.

According to [9] (see also [4,8,21]), the NSO ρ̂(t) is determined by the dynamical evolution of the
system with Hamiltonian Ĥtot = Ĥ + Ĥext(t):

ρ̂(t) = lim
η→+0

η
∫ t

−∞
dt′e−η(t−t′)Û(t, t′)ρ̂rel(t′)Û†(t, t′) (4)

where Û(t, t′) is the time evolution operator, which solves the equation

ih̄∂tÛ(t, t′) = ĤtotÛ(t, t′) , Û(t′, t′) = 1 (5)

with Ĥext(t) being the Hamiltonian of the external perturbation. Due to Equation (4), correlations from
the initial state are further built up, which is determined by the relevant statistical operator ρ̂rel(t) (2).

For a high frequency electromagnetic field with an electric field strength E(t) acting on matter,
the external perturbation Ĥext(t) can be written in dipole approximation as

Ĥext(t) = −eR̂ · E(t), R̂ = ∑a r̂a, ˙̂R = P̂1Σ/m (6)

where m is the electron mass, and e is the electron charge. P̂1Σ = ∑νP̂1,ν is the operator of the total
momentum of electrons, which is the sum of momentums of electrons from different energy zones ν.
It coincides with the first moment of the density matrix, see Equation (11) below.

In linear response theory, which we assume to be applicable, an expansion of the relevant ρ̂rel(t),
Equation (2), and the irrelevant ρ̂irrel(t) = ρ̂(t)− ρ̂rel(t) statistical operators with respect to the external
perturbation and the response parameters Fn(t) are considered, see [5,9]. Together with Equation (3) and
using the Kubo identity, this gives rise to the following system of equations:

〈δB̂n〉 = ∑m(B̂n; δB̂m)Fm (7)

∑
m

[
−iω

{
(B̂n; B̂m) + 〈 ˆ̇Bm; δB̂m〉z

}
+ (B̂n; ˆ̇Bm) + 〈 ˆ̇Bn; ˆ̇Bm〉z

]
Fm = β

e
m

{
(B̂n; P̂1Σ) + 〈 ˆ̇Bm; P̂1Σ〉z

}
E (8)

where z = ω + iη; δB̂n = B̂n− 〈B̂n〉0, and 〈B̂n〉0 is the statistical average of B̂n with the equilibrium statistical
operator of the grand canonical ensemble ρ̂0 = Z−1

0 exp[−(Ĥ − µN̂)/Te] with Z0 = Tr{e−(Ĥ−µN̂)/Te}.
In Equations (7) and (8), expressions such as (Â; B̂) and

〈
Â; B̂

〉
z denote Kubo scalar products of

operators Â and B̂ and the Laplace transform of the Kubo scalar product of these operators, respectively.
The latter are called equilibrium correlation functions. They are defined by expressions

(Â; B̂) =

β∫
0

dτ Tr
{

Â(−ih̄τ)B̂+ρ̂0
}

(9)

〈
Â; B̂

〉
z =

∞∫
0

dteizt (Â(t); B̂
)

(10)

where the operator Â is taken in Heisenberg representation Â(t) = eiĤt/h̄ Âe−iĤt.
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For further treatment of Equations (7) and (8), it is necessary to define the set of relevant observables
Bn. For the description of the permittivity of plasmas, it is convenient to choose the moments of the density
matrix as the set of relevant observables:

B̂n = P̂n = ∑
pν

h̄pνn̂p,ν(Ep,ν/Te)
(L−1)/2, n ≡ {L, ν} (11)

where n̂p,ν = â+p,ν âp,ν, pν = m ∂Ep,ν/∂p, and

Ep,ν = p2/(2m mν) + E0,ν (12)

where mν and E0,ν are the effective electron mass (normalized to electron mass m) and the energy of the
bottom of the ν-th zone, respectively. Here, for generality, we consider moments of the density matrix
stipulated by different powers of electrons momentum p (labeled by the index “L“) and by different energy
zones (labeled by the index “ν“). The index “n” of observables comprises both L and ν; â+p,ν and âp,ν are
creation and annihilation operators for single-electron states with momentum p in the ν-th band.

The equilibrium correlation functions occurring in Equations (7) and (8) will be evaluated below.
Here we only mention that (B̂n; ˆ̇Bm) = 0 because the commutator [B̂n, B̂m] vanishes. In the lowest order of
interaction, which is proportional to e2, one can show [22] that the terms in (8) containing only one operator
ˆ̇Bn can be omitted in comparison to the leading order. In an isotropic system, we take the electrical field as

well as the current density in the z direction so that only the absolute value is of relevance. Equations (7)
and (8) are rewritten as the following system of equations for the dimensionless response parameters Fm

in terms of the dimensionless correlation functions Nnm and Cnm:

〈P̂n〉 =
enE
ωa.u.

∑m
NnmFm (13)

∑
m

[
Cnm − iω̃Nnm

]
Fm = ∑

µ

Nn{1µ} (14)

where Nn{1µ} has the second index with L = 1 and band index µ,

Nnm =
(P̂n; P̂m)

mnTe
, Cnm(ω) =

〈 ˆ̇Pn; ˆ̇Pm〉ω+iη

mnTeωa.u.
,

Fm = Fm
e E

mTe
. (15)

n is the particle number density of electrons in the conduction band (free electron density). ωa.u. is
the atomic unit of the frequency, so that h̄ωa.u. = EH = me4/h̄2 ≈ 27.2 eV is the Hartree energy unit,
and ω̃ = ω/ωa.u. is the dimensionless frequency. The indexes m, n = {L, ν} contain L, the power of the
momentum, and ν, the number of the energy band.

The electrical current 〈 Ĵ〉 = σ E can be calculated using the relation Ĵ = eP̂1Σ/m.
Inserting expression (13), we derive the permittivity (1) as a Drude-like formula

lim
k→0

ε(k, ω) = ε(ω) = 1−
ω2

pl

ω [ω + iν(ω)]
, (16)
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with ω2
pl = 4πne2/m and an effective collision frequency ν(ω), which can be expressed in terms of

dimensionless response parameters and correlation functions Nnm and Cnm, as defined in (15), according
to

ν(ω) = ν1(ω)rω(ω) (17)

ν1(ω) = ωa.u.
C11

N11
, rω(ω) =

N11

C11

1 + iω∗ ∑
m,ν

N{1,ν}mFm

∑
m,ν

N{1,ν}mFm
(18)

where the index “1” means n = 1 = {1, 1}, i.e., L = 1 in Equation (11), and ν = 1 is the conduction
band. ν1(ω) is the complex effective collision frequency of electrons for Drude-like transitions (within the
conduction band) and in single-moment approximation, while rω (18) is the so-called renormalization factor,
which takes into account the influence of higher moments of the density operator [8,12,22] and, in the case
considered here, the influence of transitions between different bands. Inserting the solution of the system
of Equations (14) for Fm into Expressions (18), we obtain the complex effective collision frequency in terms
of the correlation functions Nnm and Cnm.

In our further considerations we look at the two following cases:

(a) L = 1, ν = 1, 2 . . ., i.e., the case of different energy bands, but only the 1st moment of the density
operator. Then n = {L, ν} = {1, ν} = ν. Inserting the definition of moments (13) for P{1,ν} into
Expression (15) for Nνµ, using the Kubo identity and expressing the electron momentum p via ṙ,
one can show [3] that

Nνµ = δν,µnν/n (19)

where nν is the number of electrons in the ν-th band.
(b) L = 1, 2 . . . , ν = 1, i.e., the case of a single conduction band and different moments of the density

operator. Then n = {L, ν} = {L, 1} = L.

Expressions for the correlation functions Nlm, l, m ≥ 1 can be found elsewhere (see, e.g., [3,18]):

Nlm =
Γ[(l + m + 3)/2]

Γ(5/2)
I(l+m−1)/2(εµ)

I1/2(εµ)
, l, m ≥ 1 (20)

where εµ = µ/Te is dimensionless chemical potential,

εµ = X1/2

(
2ε3/2

F /3
)

, (21)

with the Fermi integrals Iν(y) = Γ(ν + 1)
∫ ∞

0 xν[ex−y + 1]−1dx; εF = EF/Te = Θ−1, where Θ is
the degeneracy parameter, and EF = h̄2/(2m)(3π2n)2/3 is the Fermi energy; the dimensionless
chemical potential εµ in (21) is expressed via the inverse Fermi integral X1/2(x), which refers to the
Fermi integral I1/2(x). Particularly, from (20) one has

N11 = 1, N31 =
5
2

I3/2(εµ)

I1/2(εµ)
, N33 =

35
4

I5/2(εµ)

I1/2(εµ)
. (22)

In the non-degenerate case, Iν(εµ) = eεµ for all ν and N31 = 5/2, N33 = 35/4, see [9].

In previous works [9,22], correlation functions with only the first and third moments of the density
matrix (11) in the sum (18) were considered. It was shown that this leads to an accuracy of a few % for
the calculation of the renormalization factor. Therefore, restricting our approximation to only two bands
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or two moments of the density matrix in Cases (a) and (b), respectively, and using the solution of Equation
(14), the renormalization factor can be written in terms of respective correlation functions:

r(ω) =
1
C11

1 + iω̃Qω

Qω

Qω =
A22−2N22A21+N2

22A11
A11A22−A2

21
for Case (a)

Qω =
A33−2N31A31+N2

31A11
A11A33−A2

31
for Case (b)

Alm = Clm − iω̃Nlm, l, m ≥ 1.

(23)

Here, Expressions (19) and (22), respectively, have been used.
According to the definitions (10), (11) and (15), the correlation functions Cnm(ω) can be expressed in

terms of correlation functions of electron creation and annihilation operators as

Cnm(ω) =
−β

mnωa.u.
∑pν ,pµ

pν,z pµ,z × (Ep,ν/Te)
L−1

2 (Ep,µ/Te)
M−1

2 〈[Ĥ, n̂p,ν]; [Ĥ, n̂p,µ]〉ω+iη (24)

where n = {L, ν}, and m = {M, µ}. The further calculation of the correlation functions Cnm requires the
specific Hamiltonian Ĥ.

In the general case, the four-particle correlation function of creation and annihilation operators,
arising after respective elementary transformations of the correlation function 〈[Ĥ, n̂p,ν]; [Ĥ, n̂p,µ]〉ω+iη
with known Hamiltonian Ĥ, can be expressed via thermodynamic Green functions [3,8]. Green function
techniques allow one, in principle, to take into account all orders of interactions via the summation of
respective Feynman diagrams [3,8,22]. Below we consider the first Born approximation, which follows
at the lowest order with respect to the interaction either directly from the definition of the correlation
functions in (24), or from the four-particle Green functions expressed as a product of single-particle Green
functions, which are related to the correlation functions. As a result, we obtain concise and simple analytic
results. It shall be noted that it can be reasonable to calculate the renormalization factor (18) in the Born
or screened Born (see below) approximation and take into account strong-coupling effects only in the
calculation of the collision frequency ν1(ω) (17), (18), see [18].

Below we look at two different cases:

(A) We consider individual interactions of electrons with each other and with randomly distributed
ions. This is the case for ion temperatures higher than the melting one, where the long-range order
of the ion lattice is destructed. The short-range order is described by the ionic structure factor.
As an example, we can consider a metallic solid sample irradiated by intense short-pulse laser
beams. The ion lattice disappears after a heating process longer than the characteristic melting time
τm, which is of the order of the time between ion collisions. This time is given by the interatomic
distance ra ∼ (4πnat/3)−1/3 divided by the sound velocity vs ∼

√
ZTe/mat, where nat, mat are the

concentration and the mass of the heavy particles, respectively, so that

τm =
ra

vs
= km A5/6

at

√
T1

ZTe
$−1/3

km ≈ 7.5 fs, T1 = 1 eV. (25)
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Here, Aat is the atomic number, and $ is the mass density of matter in g/cm3. For example,
for aluminum, τm ≈ 11 fs with Z = 3, $ = 2.71 g/cm3 and Te = 20 eV. We will not discuss the
phenomenon of melting here, but we consider it as an example of a disordered configuration of ions.

(B) In the solid state, the interaction of the electrons with a perfect ionic lattice is already taken
into account, introducing the band structure with the dispersion relation Ep,ν, Equation (12).
Only deviations from the perfect lattice lead to scattering of the electron quasiparticles. We consider
here the collective interactions of electrons with ion lattice vibrations (electron–phonon interaction).
In addition, we have electron–electron collisions that will not contribute to the conductivity because
of the conservation of the total momentum at the Coulomb interaction. However, Umklapp processes
are possible, and they lead to a transfer of momentum from the electron system to the ion lattice.

2.1. The Case of Individual Electron–Electron and Electron–Ion Interactions

For this case, the Hamiltonian accounting for only the electronic degrees of freedom can be written as

Ĥ = ∑
p

Ep â†
p âp + ∑

pk
Vei(k)â†

p+k âp

+
1
2 ∑

p1 p2k
Vee(k)â†

p1+k â†
p2−k âp2 âp1 , (26)

with Ep = h̄2 p2/(2m). Only a single conduction band is considered in this subsection. The interactions
between ions and electrons Vei(k) = V(k) are given by the Coulomb potential. V(k) =

−Zv(k) and Vee(k) = v(k) = 4πe2/k2 is the potential of the e− e interaction. The ions can be treated
in adiabatic approximation via the static ion structure factor Sii [23], which reflects the ion configuration.
The ion component will be described in terms of an average charge number Z with the particle density
ni = n/Z due to charge neutrality. The ion temperature is denoted as Ti.

In a more general case, pseudo-potentials Vps
ei (k) should be considered to take into account the

structure of complex ions, the screening of the Coulomb potential, and the influence of bound and
free electrons on their interaction with free electrons [12,24]. In particular, the expression for |Vei|2,
which appears in Born approximation can be rewritten as

|Vei(k)|2 = |Vps
ei (k)|

2Sii(k). (27)

One can use the following expression for the individual e− i interaction Vps
ei (k) [12]:

Vps
ei (k) = V(k)[1 +κ2

ei/k2]−1 cos(krcut), (28)

where the prefactor V(k) is the electron–ion Coulomb potential. The second term on the r.h.s. is owing to
the account of statical screening by the free electrons (the contribution of ions to screening is already taken
into account by the ion structure factor Sii). It can be derived [12,25] in the low-frequency limit from the
more sophisticated Lennard–Balescu approximation by summing up ring diagrams [8,22], leading to a
characteristic inverse screening radius. It is κee = (4πne2/Te)1/2 in the classical limit. The third term is
due to an empty-core model pseudo-potential [24,26], where rcut is a free parameter that can be fitted to
match experimental data on transport and optical properties.

Similarly, in calculations within Born approximation, it is reasonable to replace the electron–electron
Coulomb potential by a screened Coulomb potential:

Vee(k) = v(k)[1 +κ2
ee/k2]−1 (29)
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where the electron–electron Coulomb potential v(k) is statically screened with the screening parameter κee.
Substituting (26)– (29) into the correlation function 〈[Ĥ, n̂p,ν]; [Ĥ, n̂p,µ]〉ω+iη , one gets from (24), the

following expressions for the real and imaginary parts of the correlation functions Ceq
nm (where superscript

“eq“ denotes electron–electron (“q“=“e“) or electron–ion (“q“=“i“) contributions to the full correlation
function Cnm = Cee

nm + Cei
nm), see [12]:

C′
eq
nm = αq/(3πw)×

∫ ∞

0
f eq(y)dyReq

nm

(
w
y

, y
)

ln

[
1 + eεµ−(w/y−y)2

1 + eεµ−(w/y+y)2

]
(30)

C′′
eq
nm =

αq

3π2w

∞∫
0

f eq(y)dy

[
∑

l=±1
Ieq,l

nm (y)− 2Ieq,0
nm (y)

]
(31)

where αi = Z, αe = 1/
√

2, and C′eq
nm and C′′eq

nm denote real and imaginary parts of correlation
functions, respectively;

I eq,l
nm =

∞∫
0

dξ

ξ ∑
σ=±1

σReq
nm

(
ξ + σ

lw
y

, y
)

× ln
[
1 + eεµ−[ξ+σ(y+lw/y)]2

]
, (32)

with l = 0,±1. The factors Req
nm are the following polynomials for n, m = 1, 3, see [9]:

Rei
11 = 1

Rei
31(x, y) = Rei

13(x, y) = 1 + y2 + 3x2

Rei
33(x, y) = 2 + 2y2 + y4 + 2x2(5 + 3y2) + 9x4

Ree
11 = Ree

31 = Ree
13 = 0

Ree
33(x, y) = 1 + 19x2/4. (33)

Similar expressions can be given for the higher order polynomials, see [7,23]. The following
dimensionless units are used hereafter:

k̃ = k/kλ̄, y = k̃/(2
√

2), k−1
λ̄

= λ̄= h̄/
√

mTe;
r̃ = kλ̄r; w = h̄ω/(4Te)

(34)

(r is any quantity having the dimension of a coordinate).
The functions f eq(y) occurring in Equation (30) are

f ei(y) = f ei
scr(y) cos2(2

√
2yr̃cut)Sii(y), f ee(y) = f ee

scr(y) (35)

where f ei
scr(y) and f ee

scr(y) are screening functions,

f ei
scr(y) = y3/[y2 + κ2

ei/8] f ee
scr(y) = y3/[y2 + κ2

ee/4]. (36)

Here,
κ2

ei = min
{

k̃2
D, k̃2

max

}
κee = k̃D

k̃2
max = Ck̃max

8εF/(18πZ)2/3, k̃2
D = [R̃2

D(1 + 2εF/3)]−1
(37)
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where R̃D = RD/λ̄ is the dimensionless Debye radius, RD = Vth/ωpl, Vth =
√

Te/m, and Ck̃max
≈ 1 is

constant. Expressions for the ion–ion structure factor can be found in [12,27,28].
The value of k̃D leads to a proper interpolation between the degenerate and non-degenerate limits

of screening and ensures a good agreement between Lennard–Balescu calculations and screened Born
calculations everywhere, except for some frequency regions in the vicinity of the plasma frequency ωpl [12].
The parameter k̃max gives a respective restriction of screening for strongly coupled plasmas [12,29] at
distances of the order of the interatomic distance

R0 = (4πni/3)−1/3. (38)

In the vicinity ω ∼ ωpl, a more precise expression for the screening function f ei
scr can be derived by

comparing it with the Lennard–Balescu expression for the dynamical collision frequency ν1(ω), see [12]:

f ei
scr = fdyn(y, w) = ε∗RPA(y, w)/[yε′RPA(y, 0)|εRPA(y, w)|2] (39)

where εRPA is the RPA (random phase approximation) permittivity, ε∗RPA is its complex conjugate, and ε′RPA
is its real part;

εRPA(y, w) = 1 +
√

ω̃au

8
√

2π

1
y3

[
− ∑

l=±1
I l

11(y) +iπ ln

(
1 + exp[εµ − (w/y− y)2]

1 + exp[εµ − (w/y + y)2]

)]
(40)

I l
11 =

∞∫
0

dξ

ξ ∑
σ=±1

σ ln
[
1 + eεµ−[ξ+σ(y+lw/y)]2

]
. (41)

l = 0,±1.
Taking in mind that in the considered case of dynamical screening the screening function fscr(y, w) (39)

is a complex function (note that in the case of statical screening f ei
scr is dependent only on y, rather than

on y and w), one can rewrite the expressions for real and imaginary parts of the correlation functions
stipulated by electron–ion interactions as

C′ei
nm = C′ei

nm( f ′dyn)− C′′ei
nm( f ′′dyn)

C′′ei
nm = C′′ei

nm( f ′dyn) + C′ei
nm( f ′′dyn)

(42)

where designations C′ei
nm( f ′dyn) and C′′ei

nm( f ′dyn) (where superscripts “ei“ designate e− i interactions) mean
that in the respective Expressions (30) and (31) for the real and imaginary part of the correlation function,
respectively, the real part of the screening function (39) is substituted by f ei

scr in (36), and similarly
designations C′ei

nm( f ′′dyn) and C′′ei
nm( f ′′dyn) indicate the substitution of the imaginary part of fdyn (39) by f ei

scr
in (36).

With the same arguments as for static screening (36), one can suppose that f ′dyn should be replaced by

fscr,min = y3/[y2 + k̃2
max/8] (43)

where k̃max is given by (37) if f ′dyn < fscr,min.
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It should be noted that the restriction of screening at distances ≈ R0 occur at Γei,g > 1/3, where

Γei,g =
Γei

εF

[
4(1 + e−εµ(εF))/(3

√
π)
]2/3 (44)

is the generalized electron–ion coupling parameter for plasma at arbitrary degeneracy [12], and Γei =

Ze2/(R0Te) is the classical plasma coupling parameter. In the non-degenerate case (εF � 1), the relation
(44) gives the conventional expression Γei,g ≈ Γei = Ze2/(R0Te), while in the case of strongly
degenerate (εF � 1) plasmas, the generalized coupling parameter depends on the Fermi energy,
Γei,g ≈ (9π/16)1/3Ze2/(R0EF) ≈ 1.21Ze2/(R0EF).

2.2. Collective Electron–Phonon Interactions and Electron–Electron Interactions via Umklapp Processes

For ion temperatures Ti < Tm or when a lattice is heated to Ti > Tm during times t < τm, where τm is
given by (25), one can assume that the electrons interact with lattice vibrations (phonons). In addition,
electron–electron interactions can contribute to the change in the energy of the electron gas through
electron momentum transfer to the lattice (Umklapp processes). This situation can be described by the
Hamiltonian

Ĥ = ∑
k,i,σ

Ek,i â+k,i,σ âk,i,σ + ∑
q,λ

h̄ωq,λ b̂+q,λ b̂q,λ

+ ∑
k,q,i,i′ ,λ,σ

gk(q, i, i′, λ)â+k+q,i,σ âk,i′ ,σ(b̂
+
q,λ + b̂−q,λ)

+
U
2n ∑

k,k′ ,q,g,i,σ̂
a+k+q−g,i,σ â+k′−q,i,−σ âk′ ,i,−σ âk,i,σ

(45)

where the first two terms on the r.h.s. of (45) represent electron and phonon kinetic energies, respectively.
The third term represents the electron–phonon interaction in the Fröhlich form [30]. The fourth term
represents the electron–electron interaction accounting for Umklapp processes in the Hubbard [31] form,
where g is the wave vector of the inverse lattice. i, i′ are electron band numbers, λ is the phonon mode
number, σ is the spin quantum number, â+k,i, âk,i, b̂+q,λ, b̂−q,λ are the creation and annihilation operators
of electrons and phonons, respectively, Ek,i and ωq,λ are the energy of electrons in the i-th band, given
by (12) and the frequency of phonons in λ-th mode, respectively, and gk(q, i, i′, λ) is the coefficient of the
electron–phonon interaction. U is the single-site approximation to the Coulomb interaction of electrons
with opposite spin orientations.

This effective Hamiltonian (45) can be derived from a more fundamental Hamiltonian describing the
Coulomb system consisting of electrons and ions. The phonon excitations are obtained from the dynamical
structure factor, and the Hubbard term is obtained from the e − e interaction. For our exploratory
calculations, we consider the case of electrons interacting with a single phonon mode of longitudinal
optical (LO) phonons with a frequency independent of the wave vector [30]. LO phonons have been
considered for simplicity. One can expect that a consideration of acoustical phonons (see, e.g., [32]) gives
similar results for ion temperatures greater than the Debye one.

We also disregard in this subsection interband transitions between different bands n, i and consider
only the contribution due to free–free transitions of electrons with effective mass mi = m∗ in the conduction
band (the consideration of a two-level system for the case of electron–phonon interactions is given in
the subsequent subsection). Besides that, we disregard cross terms from contributions of different types
of interactions (normal and Umklapp processes) when calculating the correlation functions of the first
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moment of the density operator. Calculating commutators in (24) and making respective transformations,
one obtains in the Born approximation

C11 = Ce−ph + CU (46)

where

Ce−ph =
iε−3/2

F
2π5/2

wLO

ω̃1/2
a.u.

m2
∗Ceph

∞∫
0

ydy
∞∫
−∞

dx

×
[

1
w− x + wLO + iη

+
1

w + x− wLO + iη

]

× (e4x − 1)−1 − (e4αwLO − 1)−1

x− αwLO

× ln

[
1 + exp[εµ − (y− x/y)2]

1 + exp[εµ − (y + x/y)2]

]
(47)

is the contribution due to electron–phonon interactions, derived earlier in [13], where Ceph is a constant of
the order of unity, α = Te/Ti; w = h̄ω/(4Te), ω̃au = h̄ωau/Te, wLO = h̄ωLO/(4Te) with the frequency of the
longitudinal optical phonons ωLO, and η is an infinitesimal small value.

The contribution of Umklapp processes to the correlation function is given by the second term in
Equation (46),

CU =
9im∗

4
U2T2

e

E3
FEH

∑
g

g2 JΩ(g)JE(W, εB, εµ) (48)

JΩ(g) =
1

(4π)4

∫∫∫∫
dΩ dΩ′dΩ1dΩ′1 × δ

(
k1 + k′1 − k− k′ − g

)
(49)

JE(W, εB, εµ) =

εB−εµ∫∫∫∫
−εµ

nx1 nx′1
nxnx′ dx1dx′1dx dx′

x1 + x′1 − x− x′ + W + iη
× ex1+x′1 − ex+x′

x1 + x′1 − x− x′
. (50)

In (49), the vectors g, k1, k′1, k, and k′ are taken dimensionless, as the ratio to the absolute value of the
Fermi wave vector kF = kF = (3π2n)1/3. The integration in (49) is performed on solid angles for each of
the respective wavevectors k1, k′1, k, k′. Therefore, the integral (49) is dependent only on g. Furthermore,
W = h̄ω/Te = 4w; εB = EB/Te, and EB is the energy of electrons on the surface of the 1st Brillouin zone
boundary. In (50), nx = 1/[1 + ex] is the Bose distribution function.

The integral over dx in Equations (47) and (48) can be performed applying the Sokhotski–Plemelj
formula ∫ ∞

−∞

f (x)
x + iη

dx = −iπ f (0) + P
∫ ∞

−∞

f (x)
x

dx,

where P denotes the principal value of the integral. In this case, real and imaginary parts of the correlation
function can easily be derived. Below we consider the real parts of the correlation functions (46):
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C′e−ph =
ε−3/2

F
2π3/2

m2
∗CephwLO

ω̃1/2
a.u.

× ∑
σ=±1

(e4[wLO+σw] − 1)−1 − (e4wLOα − 1)−1

wLO(α− 1)− σw

×
∞∫

0

ydy ln


1 + exp

{
εµ −

[
y− wLO + σw

y

]2
}

1 + exp

{
εµ −

[
y +

wLO + σw
y

]2
}


(51)

and

C′U =
9
4

CUNg ḡ2m∗
U2T2

e

E3
FEH

J′E

J′E =
4

W

2ε∆−2εµ∫
−2εµ

dt
[

1
et−W − 1

− 1
et − 1

]

× ln

[
et/2 + e−B/2

et/2−B/2 + 1

]
ln

[
et/2−W/2 + e−B/2

et/2−B/2−W/2 + 1

] (52)

where ε∆ = ∆E/Te, where ∆E is the energetic distance between the Fermi surface and the Brillouin zone
boundary, B = εµ + ε∆.

While deriving Equation (52) from Equation (48), the substitution x = (t + r)/2, x′ = (t− r)/2, x1 =

(t1 + r1)/2, x′1 = (t1 − r1)/2 was done, the integrals over r and r1 were calculated explicitly, and the
δ-function was accounted for while integrating over t1. To derive Expression (49), the approximation

∑g g2 JΩ(g) ≈ CU ḡ2Ng

is made. CU is a constant of the order of 1, which can be found, e.g., from optical measurements,
as in [10,33,34]. Ng is the number of different wavevectors of the inverse lattice in the first Brillouin zone,
which coincides with the number of nearest neighbors in the inverse lattice for the point g = 0. ḡ2 is the
average value of g2 in the first Brillouin zone.

2.3. Interband Transitions in a Two-Level System

In this subsection, we consider expressions for the force–force correlation functions of first order
moments C{1,ν}{1,µ} = Cνµ for different energy bands ν, µ = 1, 2. The expressions will be derived for the
case of collective electron–phonon interactions, when the electronic system Hamiltonian is described by (45)
with the account of only the first three terms, i.e., without Umklapp processes. With this Hamiltonian
and with an electron–phonon coupling function for longitudinal optical phonons, one can obtain from
Equation (24) the following expression for correlation functions Cνµ similarly, as was done above:

(i) for the correlation functions related to intra-band electron transitions:

Cνν = −im2
∗κ

∞∫
0

ydy
∞∫
−∞

dxXνν(x)∆Fνν(x, y)− ∑
µ 6=ν

C0
µν (53)
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where κ =
ε−3/2

F
2π5/2

wLO

ω̃1/2
a.u.

Ceph; C0
µν stands for the indirect influence of interband transitions:

C0
µν = im2

∗κ/4
∞∫
0

dy
∞∫
−∞

dx
{

Xµν(x)

×
[(

x2

y3 +
2x
y

+ y
)

∆Fµν(x, y) +
m−1
∗
y

∆F̃µν(x, y)
]

+Xνµ(x)

×
[(

x2

y3 −
2x
y

+ y
)

∆Fνµ(x, y) +
m−1
∗
y

∆F̃νµ(x, y)
]}

(54)

where

Xµν(x) =
[

1/ϕνµ(x, α)

w + iη + ϕνµ(x, 1)
+

1/ϕνµ(x, α)

w + iη − ϕνµ(x, 1)

]
×
[

1
e4x+4wµν − 1

− 1
e4αwLO − 1

]
(55)

where ϕνµ(x, t) = x + wνµ − twLO, wνµ = 1
4 (Eν − Eµ)/Te;

∆Fµν(x, y) = F1(Aµ
−(x, y))− F1(Aν

+(x, y)),

∆F̃µν(x, y) = F2(Aµ
−(x, y))− F2(Aν

+(x, y))

Aµ
±(x, y) = exp

[
(x/y± y)2 + (Eµ − µ)/Te

]
F1(t) = ln

(
1 + 1

t

)
, F2(t) = ln2(t) + 2 Li2(−t).

(56)

(Note that in the above expression, in the term Eµ − µ, the second value µ denotes the chemical
potential, and the index µ in the first term Eµ denotes the energy band).

(ii) for the correlation functions related to interband electrons transitions:

C
µ 6=ν
µν = im2

∗κ/4
∞∫
0

dy
∞∫
−∞

dx
{

Xµν(x) ×
[(

x2

y3 − y
)

∆Fµν(x, y) +
m−1
∗
y

∆F̃µν(x, y)
]
+ the same with µ↔ ν

}
. (57)

3. Calculations and Discussion

We perform exploratory calculations of the absorption coefficient of aluminum plasmas with the solid
density $ = 2.71 g/cm3 and the average ion charge Z = 3 (step-like density profile), irradiated by lasers
with different wavelengths shown in Figures 1 and 2. The dielectric function (16) was determined for two
cases: an ordered lattice with an account of collective electron–phonon interactions and Umklapp processes
by means of Expressions (46), (51), and (52), assuming Ti < Tmelt or t < τm (25), and a disordered lattice,
with an account of individual electron–ion and electron–electron interactions by means of Expressions (23),
(30), and (31), with respect to a Percus–Yevick-like model [16] for Sii, with the restrictions of screening (37)
(see also [12]).

The effective mass m∗ was calculated according to the Huttner model [35], see also [11]. The value of
Ceph ≈ 5.73 in (47) was chosen to reproduce the low-frequency cold reflectivity of aluminum [11,33] for
the laser wavelength λ = 0.4 µm. The value of ωLO was determined by the position of the maximum of
the phonon spectrum for aluminum [36] as h̄ωLO ≈ 0.006 eV. Furthermore, the following parameters have
been used: CU = 1.5, U = 2 eV, ∆E = 7.3 eV, and ḡ2 = 2. The value Ng = 8 is chosen, assuming the fcc
lattice structure and the bcc inverse lattice structure for aluminum.
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Figure 1. Absorption coefficient (first row) as well as real (second row) and imaginary (third row) parts
of the complex collision frequency of electrons (46), as a function of the electron temperature Te, for a
solid-density aluminum plasma ($ = 2.71 g/cm3) and laser radiation of different wavelengths λ (left
column: 80 nm; center: 0.4 µm; right: 10 µm). Curves are shown for different ion temperatures (see
legend), calculated for the case of an ordered lattice by Models (46), (51), and (52) (with an account
of electron–phonon interactions and Umklapp processes, labeled by “e-ph”), as well as for the case of
a disordered lattice (electron–ion and electron–electron interactions, labeled by “e-i”). Curves with the
markers “*” and “�” are according to the models cited in the text (see legend).

Figure 1 shows the dependence of the absorption coefficient A, Equation (2), the real and imaginary
parts of the effective collision frequency ν(ω) (17) on the electron temperature. Ordered (electron–phonon)
and disordered ion lattices (e− i) are considered at different wavelengths of laser radiation (λ = 0.08, 0.4, 10
µm). The results for λ = 0.4 µm are compared with a semi-empirical model by Povarnitsyn et al. [33,37]
and with calculations of the absorption coefficient taken from the work of Cauble et al. [38].

The most essential feature of the dependence of the effective collision frequency on electron
temperature, for the case of ordered ion lattice with electron–phonon interactions and Umklapp processes,
is that for Te > EF (EF ≈ 11.6 eV for solid-density aluminum) the real part ν′ is decreasing as

ν′ ∼ T−4
e
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according to the asymptotic behavior of Expressions (52), see [14]. This is much faster than the scaling

ν′ ∼ T−3/2
e

for the case of electron–ion interaction in a high-temperature plasma [12]. This is shown by the solid and
marked curves in Figure 1.

It should be noted that, in the case of an ordered ion lattice, unlike the case of a disordered ion lattice,
the temperature dependence of the real part of the effective collision frequency as well as the absorption
coefficient shows a clear peak in the vicinity of the Fermi temperature for all wavelengths. The maximum
values of A, calculated by Models (46), (51), and (52) for an ordered ion lattice, are relatively close to that
of the semi-empirical model [33] and to the values of A, calculated by Models (23), (30), and (31) for a
disordered lattice.

It should also be noted that under the conditions of Figure 1 the contribution of Umklapp
processes (52) exceeds the contribution of the electron–phonon contribution (51). The influence of
different ion temperatures is mainly owing to the dependence of the effective electron mass m∗ on the ion
temperature Ti, as calculated according to the Huttner model [35] (compare the thin and thick solid curves
in Figure 1).

Figure 2. The absorption coefficient and the real part of the complex collision frequency of electrons (46) in
a solid-density aluminum plasma are shown as a function of the laser frequency h̄ω for ion temperatures
Ti = 0.04 eV and different electron temperatures Te (see legend). Thick curves (left column) refer to the
case of an ordered lattice with electron–phonon interactions and Umklapp processes, and thin curves (right
column) refer to a disordered lattice with electron–ion and electron–electron interactions.

The imaginary part of ν(ω) calculated by a consequent quantum statistical model (for semi-empirical
models, it can be calculated by equating the respective expressions for permittivity to the Drude-like
expression (16), see [12]) is small for laser frequencies h̄ω � EF or for h̄ω � EF, while for h̄ω ∼ EF its
value can be considerable, see the subfigure at the left corner of Figure 1.

For h̄ω � EF and h̄ω < Te, Re ν(ω) (and hence the value of the density of absorbed power of laser
radiation, which is proportional to Im ε ∼ Re ν(ω)) is weakly dependent on ω, see Figure 2. For h̄ω � Te
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and h̄ω . EF, the value of Re ν(ω) is increasing with ω (the rate of the increase is proportional to ω2)
for Umklapp processes in an ordered ion lattice, see [13]). For h̄ω � Te and h̄ω � EF, the value of
Re ν(ω) is decreasing with ω, see Figure 2. The rate of such a decrease is proportional to ω−3/2 for the
case of a disordered ion lattice [12] and to ω−1 for the case of an ordered ion lattice [13]. One should
note here that the contribution of interband transitions to the dielectric function should be taken into
account for quantum energies exceeding the gap between the conductivity band and inner electron energy
levels [17]. As described above, the respective theoretical approach can be elaborated on the basis of the
nonequilibrium statistical operator method. Note also that in the case of a disordered ion lattice (individual
electron–ion and electron–electron interactions), Expressions (30) and (31) for the correlation functions
give rise to the Ziman–Evans formula [39,40] for the electric conductivity in the limit ω → 0 [12].

4. Conclusions

The NSO method allows one to describe consistently the dielectric function of WDM in a wide range
of frequencies and plasma parameters. Different kinds of electron–ion interactions, in particular in systems
with a disordered distribution of ions (individual electron–ion and electron–electron interactions) and
systems with an ordered ion configuration, described as an ion lattice (with collective electron–phonon
interactions and Umklapp processes), are successfully treated using this method.

A main peculiarity of the absorption of irradiated laser energy in the case of an ordered ion lattice,
owing to collective electron–phonon interactions and Umklapp processes, is a much stronger (∼ T−4

e )
decrease of the real part of the effective collision frequency at electron temperatures exceeding the Fermi
temperature, if compared to the case of individual electron–ion and electron–electron interactions (where
Re ν ∼ T−3/2

e for Te > EF). An essential feature of the electron–phonon interaction and the Umklapp
process is that they show, as a function of the electron temperature, a clear peak structure of the absorption
coefficient and of the real part of the effective collision frequency at Te ∼ EF. In addition, in both cases of
ordered and disordered ion lattices, the real part of the effective collision frequency as a function of the
photon energy shows a peak structure: Re ν(ω) is nearly independent of ω for h̄ω � EF and h̄ω < Te, but
Re ν(ω) is rising with ω (∼ ω2 for the case of ordered ion lattice) for h̄ω � Te, h̄ω . EF, and Re ν(ω) is
decreasing with ω (∼ ω−1 for the case of ordered ion lattice and ∼ ω−3/2 for the case of disordered ion
lattice) for h̄ω � Te and h̄ω � EF.

The NSO method can be also applied for the description of interband contributions to the dielectric
function, which are essential for photon energies exceeding the energy gaps between the conduction
band and electron bands corresponding to excited electron energy levels. The relation to DFT calculation
[17], which provides us with ab initio calculations of optimal single-electron states and replaces the
approximation for the electron–ion potential used in our calculations, is of high interest. In addition, our
approach allows one to take into account the contribution of electron–electron collisions to the dielectric
function, which is not possible in mean-field approaches such as DFT. More detailed investigations of this
case, as well as the calculation of the imaginary part of the effective collision frequency for the case of an
ordered ion lattice with electron–phonon interactions and Umklapp processes, will be the subject of our
future work.
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