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Abstract: We give a pedagogical review of the properties of the various meson condensation phases
triggered by a large isospin or strangeness imbalance. We argue that these phases are extremely
interesting and powerful playground for exploring the properties of hadronic matter. The reason
is that they are realized in a regime in which various theoretical methods overlap with increasingly
precise numerical lattice QCD simulations, providing insight on the properties of color confinement
and of chiral symmetry breaking.
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1. Introduction

The great success of the Standard Model of particle physics relies on the possibility of making
accurate and testable predictions that are in agreement with increasingly precise experimental data.
Despite this success, many aspects of the Standard Model are still not completely clear. Among these,
there are the mechanisms of color confinement and of chiral symmetry breaking (χSB) of the strong
interaction. The typical energy scales of confinement and χSB pertain to the nonperturbative region of
quantum chromodynamics (QCD), which makes their study extremely challenging.

For some theoreticians, the confinement and the χSB mechanisms are uninteresting because they
are details of a robust theoretical construction, thus sooner or later they will be fully understood;
for others (including the author), unraveling the origin of these mechanisms is of the utmost
importance for a comprehensive understanding of QCD; for all, it is still unclear which is the path
that can bring us to a full understanding of these mechanisms. My view is that any path, as far it is
physically sound, should be explored and tested. This brief review is about one those paths, exploring
the behavior of matter when there is an asymmetry in the number of particles with different isospin
and/or strangeness. This seems a promising direction because a number of theoretical methods can
be used for studying these phases. Comparing the results obtained by different methods helps us to
check their consistency and the degree of the reached accuracy.

To clarify the setting we report in Figure 1 a sketch of the so-called QCD phase diagram: a grand
canonical description of the phases of hadronic matter as a function of the hadronic temperature, T,
of the isospin chemical potential, µI , and of the baryonic chemical potentials, µB. The total baryonic
density is determined by µB, while µI describes the isospin asymmetry, say due to a different number
of up and down quarks. If it were possible we would have added a further axis, µS, indicating the
strangeness content. The blue region corresponds to a gas of confined hadrons with a chiral broken
symmetry. At large energy scales quarks and gluons should be liberated [1] realizing different phases.
We have indicated three of them. The quark-gluon plasma (QGP), realized at large temperature,
is asymptotically a gas of quarks and gluons that becomes strongly interacting for the temperature
reachable in heavy-ion collisions, see for instance [2–4]. At large µB we expect that deconfined
quarks fill their Fermi spheres and that the color interaction drives the formation of Cooper pairs
in a BCS-like color superconducting phase (CSC), see [5–7] for reviews. At large and positive µI we
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expect to populate the u and d̄ states with the color interaction inducing the formation of π+ states
that will eventually condense. A negative isospin chemical potential does instead favor the formation
of π− states. Whether these phases persist to the hadron gas surface of Figure 1 depends on the
non-perturbative properties of QCD. This diagram is somehow our starting point to set the stage,
we will review it in Section 5 feeding in the up to date results. For the time being we note that there
are two uncontroversial results: The critical temperature Tc ∼ 160 MeV has been experimentally
investigated at RHIC and at LHC and precisely determined by LQCD simulations [8,9] to correspond
to a analytic crossover. The transition to the pion condensed phase at T = 0 is a second order phase
transition happening exactly at µI = mπ [10,11].
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Figure 1. Cartoon of the grand-canonical phase diagram of hadronic matter as a function of temperature
and of the isospin and baryonic chemical potentials. The shaded green regions are explored by heavy
ion collisions (HIC) or are possibly realized in compact stars. For each phase we have indicated the
relevant quark condensates, see Equations (7)–(9) below.

1.1. Outside the Beta-Equilibrated Sheet

The three chemical potentials, µB, µI and µS are not three independent quantities because the
weak interactions regulate the isospin and strangeness content of matter at a given baryonic density.
Moreover, matter must be electrically neutral and the strong interactions can modify the dispersion
laws of quasiparticles. Therefore, we should indicate in Figure 1 a beta-equilibrated sheet µI = f (µB, T),
where f is some equation of state giving the isospin asymmetry at any temperature and baryonic
chemical potential. The beta-equilibrated sheet corresponds to the configuration realized in long lived
systems, as in compact stars. It is however instructive to consider configurations outside this surface,
for three main reasons. The first is that we do not actually know f , except in restricted energy regions:
at small energy scales by nuclear experiments, and at asymptotically large energy scales by perturbative
QCD; the second is that in the theoretical investigation we can turn off the weak interactions, thus we
can compare the outcomes of different theoretical methods outside the beta-equilibrated sheet to
test their robustness and consistency. Finally, working on the beta-equilibrated sheet is interesting
for studying the properties of dense nuclear matter in compact stars, but makes the problem so
complicated that it is presently hard to make predictions.

In the first papers discussing the pion condensation [12,13], Migdal tried to work on the
beta-equilibrated sheet considering how nuclear matter mechanisms could make the π0 stable states.
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Then, different authors [14–16] considered the possible mechanisms for in-medium stabilization
of charged pions by a softening of the pion spectrum by the p-wave pion-nucleus interaction.
The in-medium pion dispersion law was assumed to be

ω2(k) = m2
π + 0.7nmπω + k2(1− 6n) , (1)

where n is the baryonic density in units of fm−3. The exciting result is that a gapless mode appears
for n > 1/6 fm−3, thus very close to the nuclear saturation density n0 ∼ 0.16 fm−3, at a momentum
k = mπ/

√
6n− 1. Therefore, a transition to a superfluid phase was expected just above the nuclear

saturation density. However, it was pointed out by Migdal [17] that the π − π repulsive interaction
may qualitatively change this result and he argued in favor of π0 condensation as well as stable π+π−

molecules. Still today we have not solved this problem, but most of the theoretical works are now
directed to understanding what happens outside the beta-equilibrated sheet. This new approach has
allowed Son and Stephanov [10] to qualitatively and quantitatively assess the main properties of the
pion condensed phase by the use of a simple approach based on the modelization of QCD by chiral
perturbation theory (χPT) [10,11] .

Actually, there is a number of theoretical approaches that can be used. In principle,
any information on the phase diagram of Figure 1 could be obtained introducing in the QCD action a
chemical potential for the charge of interest. The QCD Lagrangian turns to be

LQCD = ψ̄
[
γµ
(
iDµ

)
−M

]
ψ− 1

4
Fa

µνFa,µν , (2)

where Fa
µν with a = 1, . . . , 8 are the color gauge field strengths, ψT = (u, d, s) is the spinor describing

up, down and strange quarks (with suppressed color and spinorial indices), the bare quark masses are
collected in the mass matrix

M = diag(m, m, ms) , (3)

where we have assumed degenerate light quark masses, and the covariant derivative

Dµ = ∂µ + igAµ −
i
2

vµ , (4)

includes both the minimal interaction with the gauge fields, Aµ, and with the external source

vµ = 2µδµ0 , (5)

with the chemical potentials collected in the matrix

µ = diag (µu, µd, µs) =
µB − µS

3
I + µI T3 +

2µS√
3

T8 , (6)

where T3 and T8 are the two diagonal SU(3) generators, I is the 3 × 3 identity matrix and we
have parameterized the quark chemical potentials as µu,d = µB/3 ± µI/2 and µs = µB/3 − µS.
To determine the phase diagram in Figure 1 one should obtain the behavior of the chiral, pion and
diquark condensates, respectively given by

σ ∝ 〈ψ̄ψ〉 , (7)

πa ∝ 〈ψ̄σaγ5ψ〉 , (8)

∆ ∝ 〈ψCγ5ψ〉 , (9)

where σa with a = 1, 2, 3 are the Pauli matrices, as a function of T, µB and µI .
Given the nonperturbative character of QCD at the energy scales of the various phase

transitions in Figure 1, the Lagrangian in Equation (2) is of little direct use. Various theoretical
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approaches have been developed, including linear sigma models and chiral perturbation theory
(χPT) [10,11,18–33], the Nambu-Jona Lasinio (NJL) models [34–56], the quark-meson models [57–62],
the random matrix model [63,64], the AdS/QCD model [65] and perturbative QCD (pQCD) (with
diagrams resummation) [66,67]. A guiding role in this forest of theoretical approaches is played
by the lattice QCD (LQCD) simulations [68–82], which provide a powerful tool for a numerical
check and for exploring non-perturbative QCD. As we shall discuss in some detail in Section 4.3,
the grand-canonical LQCD simulations at finite baryonic density and/or strangeness density are
hampered by the so-called sign problem, but are feasible at µB = µS = 0 and µI 6= 0 [68]; moreover it
is possible to simulate an ensemble of kaons by the canonical LQCD approach [74,75], corresponding
to a system at nonvanishing strangeness density, as discussed in more detail in Section 4.3. This places
the study of the meson condensation on a firmer ground with respect to the study of the phases
at large baryonic density: the various theoretical models (we will mostly focus on χPT and the
NJL model) give a qualitative and semiquantitative description of the meson condensed phase;
the LQCD simulations provide numerical evidence for the proposed phase transitions and for the
meson properties. The theoretical understanding at large µB cannot count on experimental data nor
on numerical simulations. The phases realized at high baryonic densities could be relevant for dense
stellar objects, but it is hard to obtain constraints on the microscopic properties of matter from the
macroscopic properties of compact stars [83,84].

This review is organized as follows. In Section 2 we investigate the stability of pions in nuclear
matter by a simplified non-interacting model description of hadronic matter. This model, mainly used
in the 1960s and in the 1970s, serves as a guide for understanding by simple qualitative reasoning
how meson condensation can occur and why it is unclear whether it be realized in compact stars
or any other stellar object. In Section 3 we use an argument based on group theory to derive the
phase diagram of the meson condensed phases. This is a useful result because any other theoretical
modeling is expected to reproduce this phase diagram. In Section 4 we report and compare the results
obtained by three different approaches: χPT, NJL and LQCD, showing that the obtained results are in
qualitative and quantitative agreement for T = 0 and µI . 2mπ . At nonvanishing temperature the
three approaches give similar qualitative results, but more work is needed to reconcile the χPT and
NJL methods with the precise numerical results of the LQCD simulations. We conclude, with a new
discussion of the QCD phase diagram, in Section 5.

2. The Early Works and Models

To understand why the pion condensation in dense hadronic matter is controversial [85] we
scrutinize the condition for the meson stabilization against weak decays by a simple non-interacting gas
approximation (NGA). This is a mean field model based on the assumption that neutrons, protons and
electrons behave as independent Fermi gases of quasiparticles. As we shall see below, the result of
these kind of models is that fermions are favored with respect to mesons [86–90]. The pion states can
only be populated at non extreme densities if the strong interaction modifies the pion spectrum.

2.1. The Equilibrium Configuration

The condensation mechanism of any type of particle relies on three basic requirements:

1. The particles must be bosons, as 4He atoms, or boson-like, as Cooper pairs in the BCS theory
2. The system has to be sufficiently cold: the particle condensation can be disrupted by the

thermal disorder
3. The particles must be stable.

Since mesons are bosons, they satisfy the first requirement. We can also imagine that they can
be produced in a relatively cold environment, as in the core of neutron stars [83]. The third point is
typically neglected in ultracold atom physics, because experiments are done with stable atoms [91].
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In contrast, all mesons in vacuum are unstable. The point is whether medium effects can stabilize
mesons or not.

The first papers discussing stable pions in dense nuclear matter appeared in the 1960s [86–89]
considering a medium of catalyzed nuclear matter: neutral matter consisting of nucleons and leptons
in electroweak equilibrium. In the Fermi gas approximation, the equilibrium distribution is determined
by the Urca process

n→ p + e + ν̄e p + e→ n + νe , (10)

that with the assumption of neutrino transparency implies that

µn = µp + µe , (11)

where µi, with i = n, p, e, are the appropriate chemical potentials, see [92] for the temperature
corrections to the Fermi gas approximation. The electrical neutrality requires that

np = ne , (12)

where np and ne are the number densities of protons and electrons, respectively.
In the NGA, the number density of each component is

ni = 2
∫ p f ,i

0

d3 p
(2π)3 =

p3
f ,i

3π2 , (13)

with p f ,i the Fermi momentum. The neutrality condition Equation (12) then implies that the Fermi
momenta of electrons and protons are the same, that is

p f ,p = p f ,e ' µe , (14)

where in the last expression we have neglected the electron mass. For free Fermi gases, without in-medium
effects, we obtain using Equation (11) that

p f ,n ' 2µe(µe +
√

µ2
e + m2

n) , (15)

where mn is the nucleon mass (we have neglected the small mass difference between protons and
neutrons). Upon substituting these expressions in Equation (13) we can express any number density
as a function of the electron chemical potential; in particular, the total number density as an increasing
function of the electron chemical potential. We can now include different hadronic states. We determine
and compare, for reasons that will soon become clear, the threshold electron chemical potential for the
appearance of π− and Σ−.

In vacuum π− decays to leptons, mostly in muon and in its antineutrino. Since muons decay in
electrons and neutrinos, we simplify the discussion considering the process (solid red line in Figure 2)

π− → e− + ν̄e , (16)

where we assume that neutrinos are not trapped. This process can be Pauli blocked as depicted in the
right side of Figure 2, meaning that it is in equilibrium with the electron decay process (dashed blue
line in Figure 2)

e− → π− + νe , (17)

in the configuration with
µeπ = mπ ' 135 MeV . (18)
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Figure 2. Sketch of the Pauli blocking mechanism for the charged pion decay (solid red line) induced by
an increasing electron chemical potential. With increasing electron density, the electron chemical
potential grows. The equilibrium configuration is reached for sufficiently high electron density,
last figure on the right, with the pion decay process equilibrated by the electron decay process
(blue dashed line), corresponding to µe = mπ .

We now proceed with a similar analysis for the stability of the Σ− baryonic resonance. In the
quark model it is a (dds) state with mass, mΣ− ' 1.2 GeV, weakly decaying by

Σ− → nπ− → n + e− + ν̄e , (19)

in about 10−10 s. The Σ− states can be populated by the electron capture process

e− + n→ Σ− + νe , (20)

with eventually an additional spectator neutron to ensure the energy-momentum conservation.
The equilibrium is reached at

µeΣ =
2mΣ− −

√
m2

Σ− + 3m2
p

3
' 126 MeV , (21)

and since µeπ > µeΣ the Σ− states appear at a lower density than the π− states. This result is somehow
surprising: at high density the heavier Σ− states are favored over the lighter mesonic π− states.
This happens because the production channels of these two hadrons are different and because the
Σ− is not much heavier than nucleons. The density for the appearance of the Σ− states in the NGA
is pretty large, about 4n0. Once the Σ− states are populated they must be included in the neutrality
condition in Equation (12), forbidding the appearance of pions up to n ∼ 300 n0, see for instance [90]
and references therein.

2.2. Including in-Medium Effects

Although in the free gas approximation the π− is not energetically favored with respect to Σ−,
the difference between the two critical chemical potentials is small, µeπ − µeΣ ' 10 MeV � mπ .
Thus, a slight change of their effective masses may invert this result: charged pion states could be
populated first.

To gain insight, we assume that the the strong interactions cause a constant Fermi energy shift [90],
independent of the particle momentum. In the NGA framework, for any baryon i, we define the
effective chemical potential

µeff,i = µi − B̄i , (22)

where B̄i is the constant chemical energy shift due to the strong interactions, while for leptons B̄lepton =

0. The chemical equilibrium, Equation (11), now reads

µeff,n = µeff,p + µe , (23)
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where we have assumed as before that neutrinos escape: the medium does not trap neutrinos. Turning
to the problem of populating π− and Σ− states, the charged pion states are now populated (do not
decay in leptons) at

µeπ = mπ − B̄π , (24)

thus a positive Bπ favors the appearance of π−. The Σ− appears at the critical electron chemical
potential in Equation (21) with

mΣ− → mΣ− − B̄Σ− + B̄p , (25)

therefore assuming small binding energies we find that pions appear first (µeπ ≤ µeΣ) for

B̄π − 0.47(B̄Σ− − B̄p) & 10 MeV , (26)

which is a condition depending on three in-medium quantities.
The point of this simple model is that the appearance of pions may or may not happen depending

on quite small parameters that are not under quantitive control. In particular, it is not clear in which
direction the medium effects go [90]. Any result obtained in this way can hardly stand firm against
scrutiny and it is doomed to be troublesome, because based on a too naive modeling and/or on
extrapolating nuclear matter properties at least to 2− 3 n0 [19].

3. Group Theory Analysis

In recent years a simpler approach to the mechanism of meson condensation has been developed,
disentangling it from weak equilibrium and strong interaction effects. We illustrate it for pions.
Pions are an isospin triplet: they are the three eigenstates of an I = 1 multiplet with different I3

projection. In vacuum the masses of the charged pions are degenerate, however this degeneracy is
removed by the isospin chemical potential as in the Stark-Lo Surdo effect. In particular, we expect that
the energy levels split as follows

Eπ0 =
√

m2
π + p2 , (27)

Eπ− = +µI +
√

m2
π + p2 , (28)

Eπ+ = −µI +
√

m2
π + p2 , (29)

which are valid for |µI | < mπ , because for |µI | > mπ one of the two charged mesons becomes massless.
This is an indication of a spontaneous symmetry breaking (SSB), with the resulting massless mode to
be identified with the Nambu-Goldstone boson (NGB) associated to a broken generator. The best tool
for exploring the (global) symmetry breaking is group theory. The good thing about this method is
that it gives robust results. Its main limitation is that it does not provide a microscopic mechanism for
the occurrence of the symmetry breaking.

3.1. Global Symmetries of QCD

In Figure 3 we report the global symmetry breaking pattern which is relevant for meson
condensation. We start assuming three flavor massless quarks with µI = µS = 0 described by
an Hamiltonian,H, with global symmetries

G = SU(3)L × SU(3)R︸ ︷︷ ︸
⊃ U(1)Q

×U(1)B , (30)

where we have not included the U(1)A anomalous group and we have specified that the
electromagnetic gauge group, U(1)Q, is a subgroup of the considered symmetries. The baryon
symmetry group, U(1)B, can be broken by the formation of quark Cooper pairs in the CSC phase,
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see Figure 1. In the following we will not consider this possibility, focusing on the chiral symmetry,
SU(3)L × SU(3)R, corresponding to the invariance of massless QCD with respect to left- and
right-handed rotations, indicated respectively with UL and UR in Figure 3, of the quark fields.

(Pseudo)

 L ! UL L

 R ! UR R Spontaneous chiral
symmetry breakingh ̄ i 6= 0

Meson octet
Nambu-Goldstone 
bosons 

invariant under
locked chiral 
rotations         

“normal phase”
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Explicit 
symmetry breaking

Meson octet 
(no mass degeneracy)

One NGB

Spontaneous 
phase locking

massless quarks

(massive quarks)

UL = UR

µI > m⇡
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2

µI 6= 0
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SU(3)L ⇥ SU(3)R| {z }
� U(1)Q
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� U(1)Q

⇥U(1)B

Figure 3. Symmetry breaking path of three flavor quark matter; the arrows indicate the various
symmetry breakings. On the right we report the emergent low-energy degrees of freedom. The normal
phase is defined by the corresponding symmetry group, see Equation (35). See the text below for a
through description of the symmetry breakings.

In vacuum the chiral condensate locks the chiral rotation to the vectorial flavor group by the SSB

G→ SU(3)V︸ ︷︷ ︸
⊃ U(1)Q

×U(1)B , (31)

corresponding to the simultaneous rotations of left- and right-handed quark fields. The ground state is
still invariant under rotation of quark flavors but the left and right handed rotations are now locked:
the quark transformation leaving the vacuum invariant is UL = UR. According to the Goldstone’s
theorem this symmetry breaking pattern results in 8 NGBs associated to the broken generators, see the
left side of Figure 4. Actually, the bare quark masses explicitly break the chiral symmetry, meaning that
these modes are massive pseudo NGBs, identified with the pseudoscalar meson octet. Assuming that
the light quark masses are degenerate the isospin symmetry is preserved, meaning that the resulting
symmetry is now (second row of Figure 3)

SU(2)I ×U(1)Y︸ ︷︷ ︸
⊃ U(1)Q

×U(1)B , (32)

where SU(2)I is the isospin symmetry group and U(1)Y is the symmetry group generated by T8.
Thanks to the isospin invariance the pions are degenerate, with mass mπ ' 135 MeV. The kaons are
grouped in two isodoublets with degenerate masses mK ' 500 MeV. The kaon masses differ from
the pion masses because kaons involve a strange quark. These meson masses are reported on the
central part of Figure 4. The last member of the octet, which is not reported in Figure 4, is the η field,
with mass

mη '
√

4m2
K −m2

π

3
, (33)
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by the Gell Mann-Okubo relation.
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Figure 4. Sketch of the energy levels of pions and kaons. On the left we assume massless quarks and
vanishing chemical potentials. The effect of the explicit symmetry breaking induced by the quark
masses is shown in the central region. On the right we show the mass splitting within isomultiplets,
obtained for µI = 80 MeV and µS = 90 MeV. The isospin and the strangeness chemical potentials
completely remove the level degeneracy.

The chemical potentials induce two different symmetry breakings, one is explicit, at the
Lagrangian level, while the second one is a SSB, causing the meson condensation. At the Lagrangian
level, the chemical potentials explicitly break the Lorentz boost invariance, due to the presence of a
privileged reference frame, the one in which particles are at rest with the medium. Space rotations
and translations are instead unaffected: the considered medium is isotropic and homogeneous.
The chemical potentials also explicitly break the charge symmetry, meaning that charged conjugated
states will have different masses. This effect can also be seen in a more detailed way scrutinizing how
the chemical potentials in Equation (6) break the flavor symmetry. Since

[H, T3] = 0 and [H, T8] = 0 , (34)

while the commutator of the Hamiltonian with any other SU(3) generator is nonzero, the explicit
symmetry breaking is (third row in Figure 3)

SU(2)I ×U(1)Y︸ ︷︷ ︸
⊃ U(1)Q

×U(1)B → N = U(1)I ×U(1)Y︸ ︷︷ ︸
⊃ U(1)Q

×U(1)B (35)

where U(1)I and U(1)Y are the symmetries generated by T3 and T8, respectively. The remaining
symmetry group can be viewed as generated by the independent phase rotations of the three flavor
fields. This residual symmetry is extremely important, because it proves possible a SSB and a phase
transition between the normal phase, characterized by the symmetry N in Equation (35), to a superfluid
phase, with a reduced global symmetry. The meson condensation, last part of the diagram in Figure 3,
is indeed related to the SSB that locks the phases of quarks with different flavors. It is induced by a
large µI or µS.
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3.2. Phases of Condensed Mesons

We can figure out the conditions for the final SSB of Figure 3 by inspecting the meson mass
spectrum. The isospin and strangeness chemical potentials remove the degeneracy within isomultiplets
and between states with different hypercharge. Since

[H, T3] = 0 and [H, T2] = 0 , (36)

in the normal phase we can still group eigenstates as isospin multiplets. By the lemmas of Schur,
these states will not be degenerate in mass: there is a mass splitting within members of isomultiplets,
proportional to µI , and there is a mass splitting between states with different hypercharge, proportional
to µS. The only unaffected states are the π0 and η states, because they have both vanishing isospin and
hypercharge. Since the mass splitting is given by the corresponding charges we have that

mπ0 = mπ , (37)

mπ± = mπ ∓ µI , (38)

mη =

√
4m2

K −m2
π

3
, (39)

mK± = mK ∓
1
2

µI ∓ µS , (40)

mK0/K̄0 = mK ±
1
2

µI ∓ µS , (41)

where mπ and mK indicate the meson masses for µI = µS = 0.
To elucidate the mass splittings we show on the right of Figure 4 the results obtained for µI = 80 MeV

and µS = 90 MeV. As discussed above, the first mass splitting is induced by the nonvanishing quark
masses. The second splitting is due to the considered values of the chemical potentials, which completely
remove the level degeneracies. The shown hierarchy is only one of the possible ones: different values of
µI and/or µS may imply different level splittings, possibly with kaons lighter than pions.

The pion masses are independent of µS and we see from Equation (38) that for

µI = |mπ | , (42)

one of the charged mesons becomes massless. Analogously, for |µS| = mK − |µI |/2 one of the kaons
becomes massless. The normal phase will persists until no mode is massless, that is for

|µI | < mπ and |µS| < mk −
|µI |

2
, (43)

which corresponds to the irregular hexagon (solid red line) in Figure 5.
This phase diagram was first derived in [11] in the χPT framework. At the boundary of the

hexagon we expect a massless mode, signaling a SSB. This massless mode eventually condenses
if the temperature is below the relevant critical temperature. When meson condensation occurs,
the vacuum will have a nonvanishing charge associated to one of the non-diagonal generators of
SU(3) characterizing the condensed meson.

For the description of the broken phases, we first note that the µI and µS Lagrangian terms
are proportional to T3 and T8, respectively, see Equation (6). Since these two generators form the
Cartan subalgebra of SU(3), it turns out useful to consider the three SU (2) Lie subalgebras of SU (3)
generated by

T± , T3 , V± , V3 , U± , U3 , (44)

where the step operators are respectively
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T± = T1 ± iT2 , V± = T4 ± iT5 , U± = T6 ± iT7 , (45)

and

Y =
2√
3

T8 , K = T3 −
1√
3

T8 , Q = T3 +
1√
3

T8 , (46)

are the corresponding weights.
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Figure 5. Phase diagram of the meson condensed phase, see [11]. The irregular hexagon (solid red line),
obtained from the meson mass spectrum, corresponds to the second order phase transitions between
the normal phase and the meson condensed phases. The dashed lines have been drawn by hand and
represent the expected first order phase transitions between two different meson condensed phases.

Let us now consider the case in which one of the charged pions, say the π+, becomes massless
and condenses. The spontaneously broken generator is T+, which locks the phases of up and down
quarks. Since [T+, Y] = 0, it follows the SSB

U(1)I ×U(1)Y︸ ︷︷ ︸
⊃ U(1)Q

×U(1)B → U(1)Y ×U(1)B︸ ︷︷ ︸
6⊃ U(1)Q

, (47)

meaning that the massless mode is the NGB associated to U(1)I breaking. We remark that this
superfluid mode actually signals the transition to a superconducting phase, because the U(1)Q
symmetry is broken. Since [T+, Q] 6= 0 the charged pion states can mix and indeed the massless
mode coincides with the π+ only at the phase transition point. In general it will be a superposition
of the two charged pion states. Analogous results hold if the π− becomes massless and condenses,
with T− the broken generator.

The second possibility is that the K+ becomes massless and condenses; the spontaneously broken
generator is V+, which locks the phases of up and strange quarks. In this case [V+, K] = 0, with the
resulting SSB

U(1)I ×U(1)Y︸ ︷︷ ︸
⊃ U(1)Q

×U(1)B → U(1)K ×U(1)B︸ ︷︷ ︸
6⊃ U(1)Q

, (48)
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meaning that there is a residual global symmetry associated to the weight K. In this case the isospin
and hypercharge phases are locked. The system is a kaon superconductor, because the condensed
meson is charged. Analogous results hold if the K− becomes massless and condenses.

The third case is the condensation of one of the neutral kaons. If the K0 becomes massless and
condenses, then the spontaneously broken generator is U+, with down-strange quark phase locking.
Since [U+, Q] = 0, the resulting SSB is

U(1)I ×U(1)Y︸ ︷︷ ︸
⊃ U(1)Q

×U(1)B → U(1)Q ×U(1)B , (49)

meaning that the electromagnetic gauge field is unbroken. Therefore, the system is a kaon superfluid
where the superfluid mode is given by the mixing of the two neutral kaons.

Let us analyze the order of the transition lines in Figure 5. The χSB and the meson condensation
mechanisms are independent: the χSB is related to the locking of the phases of left- and right-handed
quarks, while the meson condensation locks the phases of quarks with different flavors. This means
that the chiral condensate and the meson condensate can coexist, therefore the irregular hexagon
should be a second order phase transition line. On the other hand, it is not possible to have the
simultaneous condensation of say π+ and K+ because both condensates involve an up quark. In group
theory this is related to the fact that the two generators T+ and V+ do not commute. We expect that the
presence of a meson condensate excludes the other, implying the first order phase transition shown
in Equation (5) as dashed lines. The simultaneous condensation can only happen at the vertices of
the hexagon or close to the first order phase transition lines if inhomogeneous phases are realized.
This has been preliminarily explored by canonical LQCD simulation in [75] and by χPT in [30].

To summarize, any meson condensate tilts the vacuum in a certain direction having a residual
U(1)B ×U(1) symmetry which is generated by the baryonic charge and by one of the weight operators
in Equation (46). The low-energy spectrum consists of one NGB. This NGB has the same quantum
numbers of one of the standard mesons at the phase transition point, but then in the superfluid phase
it mixes with its charged conjugated state as shown in Figure 6, see also [26].

d

0

_
K ï

T 3
0 /ï/  /+

K+0K

Y

K

Figure 6. Weight diagram of the mesonic octet. We have enclosed with the same symbol the states
that can mix in the meson condensed phase. They have the same T-spin, U-spin and V-spin quantum
numbers. The π0 and the η are not simultaneous T-spin, U-spin and V-spin eigenstates; their mixing
depends on the spontaneously induced charge of the vacuum, see [26] for more details.
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4. Modern Approaches

We now present two different approaches to the meson condensation, one is based on the effective
field theory χPT description of mesons, the second on the NJL modelization of the strong interaction
by a contact term. Then we compare the results of these methods with those of the pertinent LQCD
numerical simulations. We restrict to consider an homogeneous and static medium; for inhomogeneous
phases see [7,61,93–95].

4.1. Chiral Perturbation Theory

The χPT Lagrangian is an extremely powerful tool for systematically describe the strong
interactions between hadrons [96–104]. Remarkably, χPT can also be used to study a variety of
gauge theories with isospin asymmetry, including 2 color QCD with different flavors [105–111].
Quite generally, any χPT realization is based on two key ingredients: the global symmetries of the
studied theory and an appropriate low momentum expansion.

The relevant global symmetry of QCD for constructing the χPT Lagrangian is the chiral symmetry

SU(N f )L × SU(N f )R , (50)

with N f the number of relevant quark flavors. The meson fields are collected in the unimodular Σ
field, transforming as

Σ→ LΣR† , (51)

where L ∈ SU(N f )L and R ∈ SU(N f )R. Based on the chiral symmetry and this transformation
property one builds the most general Lagrangian at the given order in the momentum expansion,
assuming that the meson momenta satisfy

p� Λχ , (52)

where Λχ ∼ 1 GeV is the χPT breaking scale. At each order in the momentum expansion the
chiral symmetry fixes the form of the various Lagrangian pieces but the pre-factors, the so-called
low energy constants (LECs), must be determined by different means. The leading O(p2) χPT
Lagrangian [11,97,103] describing the in-medium pseudoscalar mesons is given by

L =
f 2
π

4
Tr(DνΣDνΣ†) +

f 2
π

4
Tr(XΣ† + ΣX†) , (53)

where the trace is in flavor space and the auxiliary field X transforms as Σ. The locking of the
chiral rotations to the vector SU(N f )V group is induced by the vev of X, see for example the
discussion in [98,103], which is usually written as 〈X〉 = 2BM with M the quark mass matrix defined
in Equation (3). The two LECS, B and fπ , can be fixed by the vacuum properties [97,99,100,103,104];
for instance B from the mass relations m2

π = 2Bm and m2
K = B(m + ms), while fπ ' 93 MeV from the

weak pion decays.
The adjoint covariant derivative in Equation (53) takes into account the minimal coupling of the meson

fields with gauge fields, external currents and the effect of different chemical potentials [97,99,101]. Pretty
much as the covariant derivative in the quark sector, see Equation (4), we define it as

DνΣ = ∂νΣ +
i
2
[vν, Σ] , (54)

where the external current, vν, is given in Equation (5); here we can take µ = diag(µI/2,−µI/2,−µS)

because mesons have no baryonic charge. This leading order (LO) χPT Lagrangian is sufficient to
accurately describe the phase structure of QCD at µI . 2mπ [10,11,29], including finite temperature
effects [22–24] and pion in-medium stability [26,28].
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4.1.1. Ground State

The ground state can be variationally determined by replacing Σ→ Σ̄ in Equation (53), where Σ̄ is
the time independent and homogeneous vacuum expectation value of the meson fields. The resulting
static Lagrangian

Lstatic = −
f 2
π

4
Tr
([

µ, Σ̄
] [

µ, Σ̄†
])

+
f 2
π B
2

Tr
(

M(Σ̄ + Σ̄†)
)

, (55)

must be maximized to determine the vacuum configuration. Specifically, one can parameterize the
most general SU(3) vev as

Σ̄ = eiαn·λ , (56)

where λi, for i = 1, . . . , 8 are the Gell-Mann matrices, and the tilting angle α and the eight-dimensional
unit vector n are the variational parameters that should be obtained maximizing Equation (55).
The normal phase is easily described by α = 0, thus Σ̄ = Σ̄N = I, but in general one should
maximize Equation (55) with respect to eight independent parameters, which is a rather formidable
task. As far as I know, nobody has ever considered this procedure, and for a good reason. From the
insight gained in Section 3 by the group theory analysis, we expect that in each different meson
condensed phase the vacuum is rotated in a specific way. In the pion condensed phase the only
nonvanishing components should be (n1, n2), in the charged kaon condensed phase (n4, n5), while in
the neutral kaon condensed phase (n6, n7). One can further simplify the ansatz observing that the
potential must have a flat direction, the one spanned by the NGB.

To elucidate these aspects let us first focus on the N f = 2 case, with the most general ansatz

Σ̄ = eiαn·σ = cos α + in · σ sin α , (57)

where n = (n1, n2, n3). The static Lagrangian now reads

Lstatic = f 2
πm2

π cos α +
f 2
π

2
(sin α)2µ2

I (1− n2
3) , (58)

showing that it is independent of n1 and n2, corresponding to the flat direction spanned by the NGB
that interpolates between the π+ and π− fields, see Section 3. For maximizing the Lagrangian one has
to take n3 = 0, then we have the freedom to take say n1 = 0 and n2 = 1. In summary, the ground state
has vanishing projection along the isospin direction while the rotations around the direction of the
chemical potential leave the vacuum invariant.

We now return to the three-flavor case. In the three different meson condensed phases we
expect that it suffices to take only one entry of the unit vector n nonzero. In particular, in the pion
condensed phase

Σ̄π = eiαλ2 =




cos α sin α 0
− sin α cos α 0

0 0 1


 =

1 + 2 cos α

3
I + iλ2 sin α +

cos α− 1√
3

λ8 , (59)

while in the charged kaon condensed phase

Σ̄K =eiαλ5 =




cos α 0 sin α

0 1 0
− sin α 0 cos α


 =

1 + 2 cos α

3
I +

cos α− 1
2
√

3

(√
3λ3 − λ8

)
+ iλ5 sin α , (60)
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finally in the neutral kaon condensed phase

Σ̄K0 =eiαλ7 =




1 0 0
0 cos α sin α

0 − sin α cos α


 =

1 + 2 cos α

3
I +

1− cos α

2
√

3

(√
3λ3 + λ8

)
+ iλ7 sin α , (61)

where α assumes different values in the three different phases.
To allow the transition between the three phases one can consider the more general ansatz

Σ̄ = e−iγλ2 e−iβλ7 eiαλ2 eiβλ7 eiγλ2 , (62)

with α, β, γ ∈ [0, π/2] are three different angles. Once again, the normal phase corresponds to α = 0
and it is insensitive to the values of β and γ. The pion condensed phase corresponds to β = 0, γ = 0,
the K+ condensed phase to β = π/2, γ = 0, the K0 condensed phase to β = π/2, γ = π/2. Any value
of β and γ different from the above ones indicates a phase with simultaneous condensation of two or
more meson fields. We have argued in Section 3 that this is not the case. This has been explicitly shown
in χPT for the π+ and K+ condensation phases [11]. In this case we can simplify the ground state
ansatz by taking γ = 0 in Equation (62), obtaining the same ansatz of [11]. Any value β ∈ (0, π/2)
corresponds to the simultaneous π+-K+ condensation. The analysis of [11] shows that at the phase
transition the angle β discontinuously jumps from 0 to π/2 resulting in a first order phase transition
(as depicted in Figure 5): no simultaneous condensation is possible.

Below we summarize the main properties of the possible phases obtained by the χPT analysis.
The phase diagram is in agreement with Figure 5, indeed it was first derived by χPT in [11]. Given the
symmetry of the phase diagram we focus on the µI > 0 and µS > 0 part of Figure 5 characterized by
the π+ and K+ condensates. The red solid line is exactly determined, while the χPT prediction for the
dashed blue line is

µS =
−m2

π +
√
(m2

π − µ2
I )

2 + 4m2
Kµ2

I

2µI
. (63)

We also report below the relevant thermodynamic quantities. Once Σ̄ is determined, the pressure
is obtained from

P = −Lstatic(Σ̄) , (64)

and then the number densities and the energy density follow from the thermodynamic relations

nI,S =
∂P

∂µI,S
, ε = µInI + µSnS − P . (65)

Finally one can obtain the equation of state (EoS) by appropriately expressing the chemical
potentials as a function of the pressure.

• The normal phase is favored for

µI < mπ ,

µS < mK −
1
2

µI , (66)

with the trivial vev Σ̄N = diag(1, 1, 1). The nonvanishing condensates are the three chiral
condensates, see Equation (7),

σu = σd = σs ≡ σ0 , (67)
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where the subscript indicates the quark flavor and σ0 is the value of the chiral condensate in
vacuum. In the normal phase the values of the chiral condensates are not affected by the chemical
potentials. The pressure is given by

P =





f 2
πm2

π for N f = 2 ,

f 2
πm2

π

(
1
2 +

m2
K

m2
π

)
for N f = 3 ,

(68)

and thus the isospin and strangeness number densities vanish, that is

nI = nS = 0 . (69)

• The π+ condensed phase is favored for

µI > mπ ,

µS <
−m2

π +
√
(m2

π − µ2
I )

2 + 4m2
Kµ2

I

2µI
, (70)

resulting in the vacuum in Equation (59) with

cos απ =

(
mπ

µI

)2
, (71)

determined by maximizing the static Lagrangian in Equation (58). The condensates are given by

σu = σd = σ0 cos απ σs = σ0

〈π+〉 = σ0 sin απ 〈K+〉 = 0 , (72)

and the pressure produced by the condensation of pions is given by [10,11]

P =
f 2
πµ2

I
2

(
1− m2

π

µ2
I

)2

, (73)

where the normal phase pressure has been subtracted. This expression is valid for both N f = 2
and N f = 3; it is of course insensitive to the kaon mass and the strange quark chemical potential.
The number densities are

nI = f 2
πµI

(
1− m4

π

µ4
I

)
ns = 0 , (74)

and the O(p2) equation of state [27] is

ε(P) = −P + 2
√

P(2 f 2
πm2

π + P) . (75)

• The K+ condensed phase is favored for

µS > mK −
1
2

µI ,

µS >
−m2

π +
√
(m2

π − µ2
I )

2 + 4m2
Kµ2

I

2µI
, (76)
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resulting in the vacuum in Equation (60) with

cos αK =

(
mK
µK

)2
, (77)

where µK = µI/2 + µS is the relevant combination of chemical potentials, because K+ has isospin
1/2 and strangeness 1. The condensates are given by

σu = σs = σ0 cos αK σd = σ0

〈π+〉 = 0 〈K+〉 = σ0 sin αK , (78)

and the normalized pressure by

P =
f 2
πµ2

K
2

(
1− m2

K
µ2

K

)2

, (79)

which consents to obtain the number densities

nI =
f 2
πµK
2

(
1− m4

K
µ4

K

)
ns = 2nI . (80)

The EoS is
ε(P) = −P + 2

√
P(2 f 2

πm2
K + P) . (81)

As we shall see in Section 4.3, these χPT results are in good agreement with the NJL and LQCD
results close to the second order phase transitions.

Let us briefly comment on the difference between the charged meson condensed phases and the
neutral kaon condensed phase. The expression of the various thermodynamic quantities in the neutral
kaon condensed phase can be obtained from those of the charged kaon condensed phase by replacing
µI → −µI , due to the fact that K0 has isospin −1/2. The relevant difference, as we have already noted
is Section 3, is that the K0 and the K̄0 condensed phases are superfluid, while the charged meson
condensed phases are superconductors. In the latter case one can determine the screening masses
of the electromagnetic field by gauging the U(1)Q subgroup of the chiral group, see Equation (30),
resulting in the Debye and Meissner screening masses [26]

M2
D = M2

M = f 2
πe2(sin α)2 , (82)

where the Debye mass is related to the electric charge susceptibility, see for instance [112], while the
nonvanishing value of the Meissner mass implies that the system is a superconductor.

4.1.2. Low-Energy Excitations

Once the ground state has been identified, one can determine the low-energy fluctuations by an
appropriate expansion. This is quite useful also because it allows us to identify the NGB. We briefly
illustrate the procedure for the two-flavor case. A useful parameterization is

Σ = cos ρ + iϕ̂ · σ sin ρ , (83)

where the radial field, ρ, and the unit vector field, ϕ̂, encode in a nontrivial way the three pion fields.
By this parameterization the LO χPT Lagrangian takes the form obtained in [29]

L =
f 2
π

2

(
∂µρ∂µρ + sin2 ρ ∂µ ϕ̂i∂µ ϕ̂i − 2mπγ sin2 ρ ε3ik ϕ̂i∂0 ϕ̂k

)
−V(ρ) , (84)
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where

V(ρ) = − f 2
πm2

π

(
cos ρ +

γ2

2
sin2 ρ

)
, (85)

is the potential and γ = µI/mπ is the control parameter. From the ground state analysis we know that
the pion condensed phase is favored for |γ| > 1, and the minimum of the potential is attained for the
radial field vev, ρ̄ = απ , see Equation (71).

The low-energy radial and angular excitations can now be introduced as follows [26,29,30]

ρ = απ + χ , ϕ̂ = (ϕ1, ϕ2) , (86)

where we have neglected the fluctuation of the ϕ3 ≡ π0 field, because it decouples. We can
parameterize the angular field by

ϕ̂ = (cos θ, sin θ) , (87)

where θ is the Bogolyubov mode, and rescaling the radial field as χ → χ/ fπ and the Bogolyubov
mode as θ → θ/ fπ sin ρ̄, one obtains the quadratic Lagrangian

L =
1
2

∂µχ∂µχ− 1
2

m2
χχ2 +

1
2

∂µα ∂µα− gχ∂0α , (88)

where mχ = mπγ sin απ is the mass of the radial field fluctuations and g = 2µI is the coupling between
the oscillations of the radial and the angular fields. The mass of the radial mode vanishes at the phase
transition to the normal phase because it is a second order phase transition. The Bogolyubov field
seems to propagate at the speed of light, but integrating out the radial fluctuations one obtains the
actual NGB with a phonon-like dispersion law

Eph = cs p , (89)

thus propagating at the sound speed [10],

cs =

√
∂P
∂nI

=

√
γ4 − 1
γ4 + 3

. (90)

Alternatively, by diagonalizing the quadratic Lagrangian one obtains the dispersion laws

E± =

√√√√√p2 +
m2

eff
2
±

√√√√
(

m2
eff
2

)2

+ g2 p2 , (91)

where the low momentum expansion of the E− field coincides with the NGB dispersion law and the
other mode with mass

m2
eff = m2

χ + g2 = m2
π

γ4 + 3
γ2 , (92)

is the rotated radial mode. In conclusion, the low-energy modes correspond to a NGB with dispersion
law in Equation (89) and to a radial mode with mass meff.

4.2. The Nambu-Jona Lasinio Model

The meson condensed phases can also be studied by a modeling of the strong interaction by
contact interaction terms [34–41,45–47,50,52,55], see [54] for a brief recent review. These models
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stem from the original work by Nambu and Jona Lasinio [113–115] of a pre-QCD Lagrangian for the
description of the strong interaction by contact interaction terms:

L = ψ̄
[
iγµ∂µ −M

]
ψ + G[(ψ̄ψ)2 + (ψ̄iγ5σψ)2] , (93)

where ψ is the two-nucleon isodoublet, M is the pertinent mass matrix and G is a dimensional coupling.
The interaction preserves the global symmetry group G, see Equation (30), for a proper description of
hadronic matter. The nucleons emerge as quasiparticle states and the spontaneously breaking of the
chiral symmetry leads to the appearance of mesons. The model is based on an analogy with the BCS
theory of superconductivity describing the electron interaction by means of a local interaction term
with no gauge fields. It is not completely specified until a regularization scheme is provided and the
value of the coupling constant is fixed.

In the modern view [35,57,116–118], the model describes quark matter with an effective contact
interaction term that preserve the chiral symmetries of QCD. The spinor ψ in Equation (93) now
represents the quark fields and M the corresponding mass matrix, see Equation (3). The NJL model
(eventually supplemented by Polyakov loop terms) has been applied to study the entire QCD phase
diagram in Figure 1. The major phenomenological shortcoming of the quark NJL model is that it does
not provide a confinement mechanism, indeed it has no gauge dynamics. Moreover, the presence of
a dimension 6 operator requires an ultra-violet regularization scheme [57], which in the most used
approximations is a hard cutoff at the Λ ∼ 1 GeV scale or a form factor of the form [119]

F(p2) =
Λ2

p2 + Λ2 , (94)

to mimic the asymptotic freedom property of QCD. The coupling constant and the bare quark masses
are then fixed to reproduce the low energy physics. Typical values of these quantities are

GΛ2 ' 6 m ' 1.5 MeV ms ' 50 MeV , (95)

see however [57,118]. The NJL model is a useful tool for a qualitative and semiquantitative exploration
of the properties of hadronic matter, however the obtained results depend on the choice of these
parameters and on the regularization scheme employed. Unfortunately, one cannot systematically
improve the model because no expansion parameter can be identified. Despite these limitations, the
NJL Lagrangian is Lorentz invariant, with the chiral symmetry realized and spontaneously broken
exactly as it is expected to happen in QCD: by a chiral condensate. Moreover, the chiral symmetry can
be explicitly broken by the inclusion of small current quark masses.

There is a certain degree of uncertainty in the form of the NJL Lagrangian. In the two-flavor case
most of the authors retain the form in Equation (93), although different chirally symmetric interactions
can be written. This increases the number of phenomenological parameters that have to be fixed.
Following [57,118,120], the NJL Lagrangian can be generalized to

L = ψ̄
[
iγµ∂µ −M

]
ψ + L1 + L2 , (96)

where the two interaction terms are

L1 = G1[(ψ̄ψ)2 + (ψ̄iγ5σψ)2 + (ψ̄σψ)2 + (ψ̄iγ5ψ)2]

L2 = G2[(ψ̄ψ)2 + (ψ̄iγ5σψ)2 − (ψ̄σψ)2 − (ψ̄iγ5ψ)2] . (97)

The first term preserves the U(1)A symmetry while the second term explicitly breaks it.
Whether or not the latter is comparable with the first depends on nonperturbative effects, indeed the
U(1)A breaking term is supposed to describe the interaction mediated by some instanton configurations
of the gauge fields. Considering different values of the coupling constants G1 and G2 implies distinct
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values of the chiral condensates of different flavors and a different phase diagram. This issue emerges
also in the three-flavor case, where the NJL Lagrangian takes a slightly different form [121],

L =ψ̄
[
iγµ∂µ −M

]
ψ + G

8

∑
a=0

[(ψ̄λaψ)2 + (ψ̄iγ5λaψ)2]− K[det ψ̄(1 + γ5)ψ + det ψ̄(1− γ5)ψ] , (98)

where now ψT = (u, d, s) and G and K are the two coupling constants analogous of G1 and G2;
the determinant term removes the U(1)A symmetry. Considering the U(1)A symmetric Lagrangian
with K = 0, the authors of [36] find the same transition hexagon (solid red line) reported in Figure 5,
however the up and down chiral condensates split and at large values of the chemical potentials they
find phase transition lines not present in Figure 5.

In the following we will focus on the traditional two-flavor NJL model, with G1 = G2 = G/2
corresponding to the Lagrangian in Equation (93), and thus maximally violated U(1)A symmetry.
The presence of a medium can be described by a covariant derivative analogous to Equation (4),
which takes into account the baryon and isospin chemical potentials. With the NJL model one can
explore the entire QCD phase diagram (with the limitations discussed above), a clear advantage
with respect to the χPT approach which can hardly investigate the effect of the baryon chemical
potential. To obtain the properties of the vacuum and of the low-energy excitations one can perform a
Hubbard-Stratanovich transformation introducing the collective boson variables

σf (x) = −4G
Λ

(ψ̄ f ψ f ) πa = −
2G
Λ

(ψ̄γ5iλaψ + h.c.) , (99)

corresponding to scalar and pseudoscalar fields. Their expectation values are determined by
minimizing the one loop effective potential, or equivalently, by solving the coupled gap equations.
By this analysis it has been confirmed that the pion condensed phase sets in at µI = mπ , see [38].
Moreover, it has been determined the dependence of the condensates on the chemical potentials and
on the temperature.

At vanishing temperature, in the two flavor case the grand potential has the particularly
simple expression

Ω = G(σ2 + 〈π〉2)− 3
2π2

∫ Λ

0
dkk2(E+ + E−) , (100)

where we have used the hard cutoff procedure and the quark quasiparticle dispersion laws are given by

Eq,± =

√(
Ek ±

µI
2

)2
+ 4G2〈π〉2 , (101)

where Ek =
√

k2 + m̄2 with m̄ = m− 2Gσ the effective quark mass. Therefore, the effect of the chiral
condensate is a shift of the quark masses [57], while the pion condensate opens a gap between the
quasiparticle dispersion laws. This is the typical effect of condensation on the quasiparticle spectrum,
as it indicates the formation of correlated pairs of fermions. In the pion condensed phase it costs
additional energy to produce quasiparticle fermionic excitations because of quark-antiquark pairs.
Clearly, this picture of meson condensation cannot be directly compared with the χPT results of the
previous section, because the considered degrees of freedom are different. However, as we shall
discuss below, the values of the pion and chiral condensates can be compared, as well as various
thermodynamic quantities. Moreover, the three flavor NJL model phase diagram obtained in [38] is
in agreement with the theory group expectation in Figure 5 and quantitatively very similar to that
obtained in χPT.

In the NJL model it is possible to include an electron (or positron) background to neutralize the
pion electric charge. When requiring the electrical neutrality [39,40], the NJL models tend to disfavor
the appearance of the pion condensed phase [45,47]. At the physical point, corresponding to a neutral
configuration in hydrostatic equilibrium, the pions do not condense [45].
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4.3. Comparison with Lattice QCD

The LQCD simulations are numerical implementation of the QCD action on a discretized
grid; the relevant physical results are then obtained performing the limit to the continuum.
These simulations can lead to the precise determination of many hadronic quantities and can provide
numerical evidence for conjectured properties of strongly interacting matter. The LQCD simulations
have been very successfully used for simulating hadronic matter in vacuum, but dealing with in
medium effects poses a series of problems. The most important one is that the LQCD simulations
at finite baryonic density are hampered by the so-called sign problem. Very briefly, in the LQCD
simulations with dynamical quarks the Dirac degrees of freedom are typically integrated out, see for
instance [122,123], resulting in a partition function that can be written as the euclidean path integral

Z ∼
∫

dAµ e−S(Aµ) det ∆D , (102)

where S is the euclidean action, Aµ are the gauge fields and det ∆D is the determinant of the Dirac
operators. The standard Monte Carlo simulations are based on importance sampling of the possible
gauge configurations. This procedure works if det ∆D > 0, that is with a real and positive Euclidean
path integral measure. At nonvanishing baryonic density the LQCD numerical technique becomes
problematic because the Dirac determinant is complex. Although continuous progress for facing this
problem has been reported over the years, see for example [124–128], as of yet it is not a feasible tool
for exploring the QCD phase diagram at large µB and, in particular, the transition from the confined
phase to the CSC phase in Figure 1. See however [68,129–131] for different LQCD approaches to the
region with nonvanishing baryonic and isospin chemical potentials.

Since it is hard to manage baryons in LQCD simulations, people decided to ignore baryons.
This poses the LQCD simulations outside the beta-equilibrated sheet, as discussed in Section 1,
to explore a part of the QCD phase diagram where the outcomes of the numerical simulations can
be compared with different methods, in particular with the χPT and the NJL results. The key point
is indeed that the LQCD simulations at nonvanishing isospin chemical potential and zero baryonic
density are not affected by the sign problem [68]. This does not mean that this direction is without
obstacles: the realization of multi-hadron systems in LQCD is an extremely challenging problem,
see [132] for a review. There is a wealth of LQCD results for the pion condensation [70–73,76,77,79,82]
while there has been little progress on kaons [74,75]. As we will see, the LQCD results on pion
condensation are reliable only for µI ≤ 2mπ , but these simulations are steadily improving and
becoming more accurate, even with physical quark masses and external magnetic fields [77,79,82]

The LQCD simulations can be performed in the canonical or in the grand canonical ensembles.
In the grand canonical simulation one discretizes on a lattice the actual QCD Lagrangian in Equation (2)
with the isospin chemical potential as external source. In this approach the strangeness density has
to be zero, as the strangeness chemical potential makes the measure complex. Moreover, the QCD
Lagrangian has to be supplemented with a pionic source [69,70]

Lλ = iλψ̄γ5σ2ψ , (103)

to trigger the breaking of the U(1)I symmetry and to stabilize the numerical simulations. Since the λ

term explicitly breaks the U(1)I symmetry, in the pion condensed phase there is a pseudo-NGB with
vanishing mass in the λ→ 0 limit. Therefore, the physical interesting results are obtained doing both
the continuum and the λ→ 0 limits. The first quenched LQCD simulations [69] already reported the
expected behavior of the condensates; these results were soon improved considering N f = 2 dynamical
quarks in [70]. To obtain more precise results one has to consider that both the pion and the chiral
condensates depend in a rather non-trivial way on λ. Moreover, the first simulations employed a large
pion mass. Progress with respect to these aspects has been reported in [133] where the λ→ 0 limit has
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been tackled by a reweighing technique in simulations with 2 light flavors and a heavy strange quark
at the physical pion mass.

In Figure 7 we compare the pion and chiral condensates obtained by the LO χPT, see Section 4.1,
by the two-flavor NJL model, see Section 4.2, and by the LQCD simulations of [133].
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Figure 7. Comparison of the chiral and pion condensates obtained by χPT (dashed black line), by the
two-flavor NJL model (solid blue line) and by LQCD simulations on a 6× 243 lattice by [133] (orange
squares). The condensates have been normalized at the value of the scalar condensate in the normal
phase (note that the LQCD data of [133] have been obtained at T = 113 MeV), while the chemical
potential is in units of the pion mass in the normal phase. Quite remarkably, the condensates obtained
with the three methods overlap for µI ≤ 2mπ . For larger values of the isospin chemical potentials the
evaluation of the pion condensate becomes problematic: the NJL model feels the hard cutoff Λ; the χPT
approaches the critical scale Λχ; the LQCD simulations start to feel the lattice saturation effects [70].

The chiral condensate obtained with the three approaches agree for any considered (or available)
value of µI . On the other hand, the pion condensates deviate at µI ∼ 2mπ . In χPT the the two
condensates obey the relation

σ2 + 〈π+〉2 = σ2
0 , (104)

and therefore the pion condensate quickly saturates at µI ∼ 2mπ . Both the NJL and the LQCD results
for the pion condensate indicate that it exceeds σ0 and it does not saturate at µI ∼ 2mπ . This seems
a robust result, although for larger values of µI both the NJL and the LQCD approaches become
problematic. The NJL results show a non-monotonic behavior due to the hard cutoff Λ, which serves to
mimic the asymptotic behavior of QCD, but that also signals the scale at which the NJL results are not
under control. Similarly, the LQCD simulations feel the finite size lattice effects, indeed for large value
of µI saturation effects become important, see for example [70]. Anyway, one can certainly regard this
comparison as successful, in the sense that in the range µI . 2mπ , where all the three approaches are
supposed to work, they give very similar results.

We now turn to the canonical approach [73–76]. The canonical LQCD simulations can explore
quark matter at nonvanishing isospin and strangeness density, while grand-canonical LQCD
simulations can only deal with finite isospin density. In the canonical LQCD simulations the isospin
and strangeness density are fixed and the corresponding chemical potentials are determined by
thermodynamic relations. The description of mesons in the canonical LQCD simulation is attained by
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the introduction of external sources with a fixed isospin or strangeness charge. In these simulations the
calculation of the meson field correlator requires the computation of a large number of Wick contraction
of the quark fields on the lattice, leading to time consuming and expensive calculations. This is the
main limitation of the canonical lattice simulations. Various different algorithms for reducing theses
costs have been developed in [76], resulting in the simulation of up to 72π+ in configurations with
spatial extents L ∼ 2, 2.5 and 3 fm, resulting in isospin chemical potentials up to 4.5mπ [76].

In Figure 8 we compare the energy density obtained with the canonical LQCD simulations with
that of the χPT and the NJL approaches.

µI/m⇡

✏/
✏ S

B

2 + 1 flavors pQCD

L = 16
L = 20
L = 24

NJL

�PT

Figure 8. Comparison of the energy density over the Stefan-Boltzmann limit obtained by different
methods. We report the lattice data points of the canonical simulations of [76] obtained at T = 20 MeV
with three different lattice volumes. The pQCD results of [66] (orange dotted line) indicate a constant
asymptotic energy density. The χPT leading order results of [27] (dashed black line) and the mean field
NJL results (solid blue line), see [38,49], perfectly reproduce the peak structure at µI ' 1.27 mπ .

More precisely, in this figure it is shown the normalized energy density ε/εSB, where εSB =

9µ4
I /(4π2) is the Stefan-Boltzmann limit, as a function of the normalized isospin chemical potential,

µI/mπ . The dots with error bars are the results of [76] obtained with three different spatial volumes
L3. With increasing µI the error bars increase, signaling that lattice simulations cease to be reliable
at µI ∼ 2mπ , as in the grand-canonical LQCD simulations discussed above. In this regime, the
normalized energy well agrees with the χPT results (dashed black line), and with the NJL results
(solid blue line). Both the χPT and the NJL curves perfectly capture the peak structure at low µI , while
they begin to depart from the LQCD results at µI ∼ 2mπ . The χPT and the NJL peak positions are
respectively at

µ
peak
I,χPT =

(√
13− 2

)1/2
mπ ' 1.27 mπ , (105)

µ
peak
I,NJL ' 1.27 mπ , (106)

where the χPT results are independent of fπ , while the NJL results are not very sensitive to the
parameter set used. The LQCD results of [76] are peaked at

µ
peak
I,LQCD = {1.20, 1.25, 1.275}mπ , (107)
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where the different values are obtained for lattice sides L = {16, 20, 24}, respectively; the continuum-
linearly-extrapolated peak is at µ

peak
I,LQCD ' 1.30 mπ. Therefore, also the canonical LQCD simulations are in

agreement with the χPT and the NJL results for µI . 2mπ.

Nonvanishing Temperature

Given the successful comparison of the χPT, NJL and LQCD approaches at T = 0, one may
expect a similar agreement at small temperatures. As we will see, the agreement between the three
methods at T 6= 0 is much worse. Herein we report on the investigation of the phase diagram at T 6= 0
and µI 6= 0 comparing the results for the transition lines at µB = 0 separating the pion condensed
phase from the normal phase at low T, and between the pion condensed phase and the quark-gluon
plasma, at high T. We show in Figure 9 the results obtained with the different approaches. The LQCD
simulations of [133] indicate that at µB = 0 there is in the µI , T plane a chiral crossover line (shaded
blue region) joining the points (0, 160) to the (pseudo) tricritical point (140, 151) (orange dot with
error bars). At the tricritical point the chiral crossover line joins the second order phase transition line
(shaded green region). The LQCD results for the second order phase transition are almost insensitive
to the temperature for T . 150 MeV, then the phase transition line becomes strongly temperature
dependent, with a sort of “T-like” phase diagram shape. The mean-field NJL second order phase
transition (solid blue line) [38] shows a behavior similar to that of the LQCD simulations for T . 100
MeV, then for higher temperatures the NJL results show a more pronounced temperature dependence.
Eventually, the NJL critical curve saturates with a critical temperature that is not sensitive to the
isospin chemical potential for 500 MeV < µI < 1 GeV (not shown in the figure). The analytic χPT
temperature dependence of the second order phase transition has been obtained in [22]

µI(T) = mπ +
1

4 f 2
π

√
m3

πT3

2π3 ζ

(
3
2

)
, (108)

and is reported in Figure 9 with a dashed black line. The T3/2 behavior does not agree with the LQCD
nor with the NJL results. The χPT results of [24] indicate an even stronger temperature dependence.
These results are somehow surprising, as one would expect χPT to work up to T . 100 MeV while
Figure 9 shows that it is inconsistent with the LQCD low temperature behavior.

Given the rather precise LQCD data, one should understand what are the origins of the
discrepancies. The NJL results have been obtained by a hard cutoff scheme, maybe one can relax
this requirement by a Pauli-Villars regularization scheme or by a form factor, as in (94), that does
not completely eliminate the hard scale contribution. The improved χPT results of [24] do not match
the LQCD behavior at low µI but indicate a critical temperature that is independent of the chemical
potential for µI > T, which is in agreement with both the LQCD and NJL simulations. One should
certainly try to understand what is the χPT missing ingredient at lower temperatures.
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Figure 9. Phase diagram of hadronic matter at µB = 0. The green shaded area marked with LQCD
corresponds to the second order phase transition separating the pion condensed phase from the
normal phase, at low temperature, and the chirally restored quark gluon plasma, at high temperature.
These three phases meet at a (pseudo) tricritical point (orange dot with error bars), at Ttricritical '
151 MeV and µI,tricritical ' 140 MeV. The shaded blue area marks the chiral crossover line which
in part overlaps with a (probable) deconfinement phase transition (shaded red area), see the text
for more details. These results have been obtained in [133] by LQCD simulations. The NJL second
order transition line (solid blue), see [38], overlaps with the LQCD data for T . 100 MeV. Then it
shows a stronger temperature dependence. The χPT second order transition line (dashed black),
corresponding to Equation (108), shows a temperature dependence that disagrees with both the LQCD
and NJL results.

Quite remarkably, the LQCD simulations are now tackling the color deconfinement transition as a
function of the isospin chemical potential. Color deconfinement can be characterized by the behavior
of the so-called Polyakov loop, see for instance [4,134],

P(r) =
1
3

Tr ΠNτ
τ=1Uτ(r) , (109)

at large lattice spacing. The expectation value of the Polyakov loop is related to the correlation function
between two static heavy quarks, therefore it is a measure of the strength of the color interaction.
It has the important property to vanish in the color confined phase of pure gauge theories [4]. A first
inspection of the Polyakov loop dependence at nonvanishing µI and T has been done in [133], by a
243 × 6 lattice. Various lines of constant values of the Polyakov loop have been obtained to infer the
position of the deconfinement critical temperature. In Figure 9 we report the line of [133] (shaded red
line) corresponding to P = 1, which in their notation can be taken as indicating the color deconfinement
transition. This line partially overlaps with the chiral crossover line, but then it starts to bend inside
the pion condensed phase. These preliminary results should be tested with different lattice spacings.
Quite interestingly, the results of [133] indicate that the deconfinement line is quite insensitive to the
presence of the pion condensate, or equivalently, to the melting of the chiral condensate at large µI .
We expect that for sufficiently large µI the BEC pion condensate turns in a BCS condensate. In this case
the deconfined quarks should form quark-antiquark Cooper pairs, pretty much as in the CSC phase,
but with an important difference: the BCS pairs in this case can be color singlets. Therefore, in this
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case there is no need to have color deconfinement nor any phase transition at all. Quite generally,
indeed, there is no phase transition between the BEC and the BCS phases [91]. Moreover, it would
be interesting to see the behavior of the energy density of the system as a function of T for a fixed µI ,
as we expect that the deconfinement phase transition should induce a rapid increase of the energy
density due to the liberation of the quark and gluon degrees of freedom.

5. Conclusions

We have briefly reviewed the meson condensation phenomenon happening when the isospin or
the strange chemical potentials exceed a critical value. We have clarified that it is unclear whether
or not these phases can be realized in Nature. In vacuum all mesons are unstable, therefore a stable
meson can only exist in a dense medium, as in compact stars. In the core of these stellar objects the
large number of electrons may stabilize the π−, however the problem is that with increasing density
other particles compete with π− to share the excess electron charge. By a simple noninteracting model
we have seen how the electron negative charge is drained off into Σ− states favoring the strangeness
production. The strong interactions can modify this picture, but it is unclear whether they favor or
disfavor the appearance of stable pions. Quite recently, it has been proposed that pion stars consisting
of pions and charged leptons may exist [29,135,136]. The astrophysical observation of this exotic star
would certainly be a smoking gun of a macroscopic coherent state of pions.

Although it is unclear whether the meson condensed phases are realized in compact stars or in any
other physical setting, they are interesting by themselves. The reason is that they allow us to explore
the properties of QCD in a regime in which various methods overlap. In particular, the χPT, the NJL
and the LQCD approaches give similar results at vanishing temperature for µI . 2mπ . The µI − µS
phase diagram in Figure 5 finds χPT and NJL in excellent agreement, and the LQCD numerical results
have confirmed that the phase transition between the normal phase and the pion condensation phase is
of the second order. Unfortunately, the entire µI − µS phase diagram has not been completely explored
by canonical LQCD simulations; such simulations could allow to figure out whether mixed phases
are realized.

These findings allow us to improve the first version of the QCD phase diagram shown in Figure 1.
That diagram was based on naive arguments on the strong interaction. We now draw in Figure 10 the
QCD phase diagram in which we have fed the acquired knowledge.

The solid thick lines correspond to the second order phase transitions that are most tenable. The
LQCD simulations give numerical support to the second order phase transition line at µI = mπ , which
should be temperature independent up to T ≈ 150 MeV, see also Figure 9. The dotted lines indicate a
chiral and (quite probably) deconfinement crossover. Since there is a chiral crossover at small µB and
µI = 0 [125–128] and since we have seen in the previous section that there is a chiral crossover at µB = 0
and µI . mπ , the most simple possibility is that there is an almost temperature independent chiral
crossover region at T ' Tc (dashed area). There is indeed growing evidence that the chiral crossover
extends in the µB, µI plane at an almost constant temperature T ∼ Tc [35,38,63,137,138]. The general
result of these works is that the transition temperature smoothly decreases with µI (or µS), but the
order of the phase transition is hard to establish. From Figure 10 it seems like the hadron gas occupies
a first octant sphere with the edges cut by a vertical and an horizontal plane. However, there are still
uncertain transitions, marked with a thin blue line. We have added a phase transition line between
the hadron gas phase and the color superconducting phase, although there is no experimental data nor
any LQCD simulation that supports it and may as well be a smooth crossover [139], see also [5,6]. We
have also assumed that the hadron gas is separated from the pion condensed phase and/or the color
superconducting phase by a transition (thin blue) line extending in the T = 0 plane, which is just a
guess. We have not shown in Figure 9 any transition line between the color superconducting phase
and the pion condensed phase. This happens in a region where three different quark condensates
compete and it is not at all obvious that the phase diagram has a simple form.
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Figure 10. Sketch of the phase diagram of hadronic matter. The solid thick lines have been determined
in the LQCD simulations of [133]. For µB = 0 and T . 150 MeV, the transition to the pion condensed
phase happens at µI = mπ . The shaded area on the top corresponds to a chiral and deconfinement
crossover. We have indicated with thin blue lines the possible transitions from the hadron gas phase to
the color superconducting and to the pion condensed phases, although there are neither experimental
data nor LQCD simulations that support their existence. How the color superconducting phase turns
in a quark-gluon plasma or in a pion condensed phase is not known.
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