
Article

Improving Center Vortex Detection by Usage of
Center Regions as Guidance for the Direct Maximal
Center Gauge

Rudolf Golubich and Manfried Faber *

Atominstitut, Technische Universität Wien, Operngasse 9, A-1040 Wien, Austria; rudolf.golubich@gmail.com
* Correspondence: faber@kph.tuwien.ac.at

Received: 19 November 2019; Accepted: 9 December 2019; Published: 11 December 2019 ����������
�������

Abstract: The center vortex model of quantum chromodynamic states that vortices, a closed
color-magnetic flux, percolate the vacuum. Vortices are seen as the relevant excitations of the
vacuum, causing confinement and dynamical chiral symmetry breaking. In an appropriate gauge,
as direct maximal center gauge, vortices are detected by projecting onto the center degrees of freedom.
Such gauges suffer from Gribov copy problems: different local maxima of the corresponding
gauge functional can result in different predictions of the string tension. By using nontrivial center
regions—that is, regions whose boundary evaluates to a nontrivial center element—a resolution of this
issue seems possible. We use such nontrivial center regions to guide simulated annealing procedures,
preventing an underestimation of the string tension in order to resolve the Gribov copy problem.
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1. Introduction

First proposed by Hooft [1] and Cornwall [2] the center vortex model gives an explanation of
confinement in non-Abelian gauge theories. It states that the vacuum is a condensate of quantized
magnetic flux tubes, the so-called vortices. The vortex model is able to explain the following:

• Behavior of Wilson loops, see [3];
• Finite temperature phase transition→ Polyakov loops
• Orders of phase transitions in SU(2) and SU(3);
• Casimir scaling of heavy-quark potential, see [4];
• Spontaneous breaking of scale invariance, see [5];
• Chiral symmetry breaking, see [6,7]→ quark condensate;

but suffers from Gribov copy problems: predictions concerning the string tension depend on the
specific implementation of the gauge fixing procedure, see [8,9].

In this work, an explanation of the problem is given before an improvement of the vortex detection
is presented.

Center vortices are located by P-vortices, which are identified in direct maximal center gauge,
the gauge which maximizes the functional

R2 = ∑
x

∑
µ

| Tr[Uµ(x)] |2 . (1)
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The projection onto the center degrees of freedom

Zµ(x) = sign Tr[Uµ(x)] (2)

leads to plaquettes with nontrivial center values, P-plaquettes which form P-vortices, and closed
surfaces in dual space. This procedure can be seen as a best fit procedure of a thin vortex configuration
to a given field configuration [3,10], see Figure 1.

Figure 1. Vortex detection as a best fit procedure of P-Vortices to thick vortices shown in a
two-dimensional slice through a four dimensional lattice.

The way P-vortices locate thick vortices is called vortex finding property.
Center vortices can be directly related to the string tension: the flux building up the vortex

contributes a nontrivial center element to surrounding Wilson loops, see Figure 2.

Figure 2. Each P-plaquette contributes a nontrivial center element to surrounding Wilson loops.

The behavior of Wilson loops can be explained and a nonvanishing string tension extracted by
using the density ρu of uncorrelated P-plaquettes per unit volume

〈1
2

Tr(W(R, T)〉 = [−1 ρu + 1 (1− ρu)]
R×T = eln(1−2ρu) R×T ⇒ σ = − ln(1− 2 ρu). (3)

The string tension can also be calculated by Creutz ratios

χ(R, T) = − ln
〈W(R + 1, T + 1)〉 〈W(R, T)〉
〈W(R, T + 1)〉 〈W(R + 1, T)〉 . (4)

From 〈W(R, T)〉 ≈ e−σ R T−2 µ (R+T)+C, it follows for sufficiently large R and T that χ(R, T) ≈ σ.
Creutz ratios for center-projected Wilson loops are expected to give correct values for σ if the vortex
finding property is given.

The problem with the direct maximal center gauge is that different local maxima of the gauge
functional R can lead to different predictions concerning the string tension in center-projected
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configurations [8,9]. An improvement in the value of the gauge functional results in an underestimation
of the string tension, as can be seen in Figure 3.

Figure 3. The string tension, calculated via Creutz ratios of the full theory χ(R)SU(2),
the center-projected theory χ(R)Z2, and the vortex density. By increasing the number of simulated
annealing sweeps, a better value of gauge functional is reached, but the string tension is underestimated
by χ(R)Z2. The data was calculated in lattices of size 124 (left),124 (middle), and 144 (right) in Wilson
action. The vortex density was not corrected for correlated P-plaquettes, hence, it is overestimated.

In fact, preliminary analyses show that the string tension decreases linearly with an improvement
in the value of the gauge functional.

We believe that this is caused by a failing gauge-fixing procedure during which the vortex finding
property is lost. If the P-vortices fail to locate thick vortices, the string tension will be underestimated
by χ(R)Z2, see Figure 4.

=⇒
loosing the

vortex finding
property

Figure 4. When P-vortices no longer locate thick vortices, we speak of a loss of the vortex finding
property. The figure shows a two-dimensional slice through a four-dimensional lattice.

A failing vortex detection can result in vortex clusters disintegrating into small vortices consisting
only of correlated P-plaquettes. This causes a misleadingly high vortex density.

The loss of the vortex finding property can be avoided by using the information about center
regions, that is, regions enclosed by a Wilson loop that evaluate to center elements.
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Center regions can be related to a non-Abelian generalization of the Abelian stokes theorem:

P exp
(

i
∮

∂S
Aµ(x) dxµ

)
= P exp

(
i
2

∫
S
Fµν(x) dxµ dxν

)
,

Fµν(x) = U−1(x, O) Fµν(x) U(x, O), U(x, O) = P exp
(

i
∫

l
Aη(y) dyη

)
,

(5)

with P denoting path ordering, P "surface ordering", and l being a path from the base O of ∂S to x,
see [11]. The left hand side of (5) can be identified as the evaluation of a Wilson loop spanning the
surface S. The right-hand side can be expressed using plaquettes: Uµν(x) = exp

(
ia2Fµν +O(a3)

)
,

with lattice spacing a, see [12]. With these ingredients, the non-Abelian stokes theorem reads in the
lattice, as shown in Figure 5:

= × × ×

Figure 5. Factoring a Wilson into factors of plaquettes using the non-Abelian stokes theorem.

By finding center regions, that is, plaquettes within S that combine to bigger regions which
evaluate to center elements, the Wilson loop spanning S can be factorized into a commuting factor, a
center element, and an non-Abelian part, see Figure 6.
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︸ ︷︷ ︸
center regions

︸ ︷︷ ︸
Area law

︸ ︷︷ ︸
Perimeter law

Regions whose boundaries evaluate to
center elements can be used to factorize a
Wilson loop into two parts:

• An area factor, collecting the fully
enclosed nontrivial regions, leading
to a linear rising potential;

• a perimeter factor, from noncenter
contributions due to partially
enclosed center regions.

Figure 6. Center regions explain the coulombic behavior and the linear rise of the quark–antiquark
potential as they lead to an area law and a perimeter law for Wilson loops.

The center regions capture the center degrees of freedom and can be directly related to the
behavior of Wilson loops. It seems reasonable to demand that their evaluation should not be changed
by center gauge or projection on the center degrees of freedom. We show that by preserving nontrivial
center regions, the loss of the vortex finding property is prevented and the full string tension can
be recovered.

2. Materials and Methods

The predictions of the center vortex model concerning the string tension in SU(2) gluonic quantum
chromodynamic are analyzed by calculating the Creutz ratios after center projection in maximal center
gauge. The gauge fixing procedure is based upon simulated annealing, maximizing the functional (1),
that is, bringing each link as close to a center element as possible. The simulated annealing algorithms
are modified so that the evaluation of center regions is preserved during the procedure: transformations
resulting in nontrivial center regions projecting onto the nontrivial center element are enforced,
and transformations resulting in nontrivial center regions projecting onto the trivial center element
are prevented.
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The detection of the nontrivial center regions of one lattice configuration is done by enlarging
regions until their evaluation becomes the nearest possible to a nontrivial center element, see Figure 7.

1) 2) 3)

Steps 1–3: Starting with a plaquette that neither belongs to an already identified center region nor has already been
taken as origin for growing a region, it is tested, whereby enlargement around a neighboring plaquette brings the
region’s evaluation nearer to a center element. Enlargement in the best direction is done.

4) 5) 6)

Steps 4–6: If no enlargement leads to further improvement, a new enlargement procedure is started with another
plaquette. With this enlargement, it is possible that it would grow into an existing region. The collision-handling
described in the following is used to prevent this:

7a) 7b)

Step 7a: The evaluation of the growing region
is nearer to a nontrivial centre element than the
evaluation of the old region: delete the old region,
only keeping the mark on its starting plaquette, and
allow growing.

Step 7b: The growing region evaluates further away
from a nontrivial centre element than the existing
one: prevent growing in this direction and, if possible,
enlarge in second best direction instead. Multiple
collisions after growing are possible.

Figure 7. The algorithm for detecting center regions repeats these procedures until every plaquette
either belongs to an identified region or has been taken once as starting plaquette for growing a region.
The arrow marks the direction of enlargement. Plaquettes belonging to a region are colored, plaquettes
already used as origin are shaded.

The algorithm starts with sorting the plaquettes of a given configuration by a rising trace of their
evaluation. This stack is worked down plaquette by plaquette, enlarging each as far as possible by
adding neighboring plaquettes. During this procedure, collisions of growing regions are prevented.

The regions identified this way comprise of many, whose evaluation deviates far from the center
of the group. A set of nontrivial center regions has to be selected from the set of identified regions, only
regions with traces smaller than Trmax are taken into account. This parameter Trmax has to be adjusted
under consideration of the behavior of Creutz ratios, as shown in Figure 8, which are calculated after
gauge-fixing and center projection.

Figure 8. Trmax can be fine-tuned by looking at the dependency of the Creutz ratios on the loop size R.

At low values of Trmax, the Creutz ratios are expected to be nearly constant with respect to the
loop size. With raising Trmax they start to approach their asymptotic value from above and become
chaotic with Trmax chosen inappropriately high.
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As the center degrees of freedom are expected to capture the long-range behavior, the Creutz
ratios calculated in center-projected configurations are near to the correct value of the string tension
already for small loop sizes. Hence, we chose Trmax as high as possible without causing the behavior
of the Creutz ratios to approach the string tension from above.

The regions determined by this procedure are then used to guide the gauge-fixing procedure.
The influence on the predicted string tension is analyzed by calculating the Creutz ratios in
center-projected configurations.

3. Results

Here, we present the calculations of the center vortex string tension for different values of Trmax

at β = 2.3. Similar results were obtained for β = 2.4 and β = 2.5. In the following, only the Creutz
ratios of the center-projected configurations χ(R)Z2 are of relevance. The Creutz ratios of the full SU(2)
theory χ(R)SU(2) and the calculations of the string tension based on the vortex density are calculated
for comparison. They are only shown for the sake of completeness. All data was calculated with SU(2)
Wilson action.

The Creutz ratios tend towards the literature value of the string tension with increasing number
of simulated annealing steps with a Trmax = −0.985, whereas they clearly underestimate the string
tension when center regions are ignored, see Figure 9.

Figure 9. By preserving center regions, the Creutz ratios tend towards the literature value of string
tension during the simulated annealing procedure. The data was calculated at β = 2.3 in a 124 lattice
with 100 configurations taken into account per datapoint. Displayed is the mean of χ(2), χ(3), and
χ(4). The increased error bars when center regions are preserved might be because the algorithm does
not reach the exact local maxima, but fluctuates around it.

The full string tension can be easily recovered, although the value of the gauge functional is
reduced, see Figure 10.

The upper three graphs show the calculations done for optimizing the value of Trmax. The final
results, shown in the left graph in the lower row, are calculated with a value of Trnax = −0.985, that is,
a value between the respective values of the left and middle graph in the upper line. The final results
are compared with raw simulated annealing, that is, without preserving center regions shown in the
right graph of the lower row. The large errors using center regions might result from fluctuations
of the gauge functional around the maxima, which can not be reached due to the constraint of the
preservation of center regions: further approaches to the local maxima of the gauge functional are
therefore prevented.
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︷ ︸︸ ︷

versus

Figure 10. Optimization of Trmax in the upper line and final results for the guided simulated annealing
in the lower row at β = 2.3. The Creutz ratios were calculated with 300 Wilson configurations at
β = 2.3 in lattices of sizes 124 in the upper-left graph and 144 for the other graphs. The error bars
are calculated with the one-deletion-Jackknife method. The optimal value of Trmax was identified by
taking into account the behavior of the Creutz ratios and found to be around Trmax ≈ −0.985, reducing
the value of gauge functional from R = 0.871 to 0.862.

4. Discussion

By preserving nontrivial center regions, the full string tension can be recovered and extracted from
the center degrees of freedom in SU(2) quantum chromodynamics. The choice of the free parameter
Trmax based on the behavior of Creutz ratios does not give an unambiguous value, but merely
an interval of good values of Trmax. This arbitrariness has to be investigated in further work.
Preliminary data already hints at a way to eliminate it. The concept of identifying gauge-independent
observables evaluating to the relevant degrees of freedom and using them to guide the gauge-fixing
procedure reduces the number of free parameters of the gauge transformation. It forces all differing
local maxima of the gauge functional to incorporate specific, gauge-invariant properties that are related
to the relevant degrees of freedom. This might be a solution to the Gribov copy problem wherever
the gauge-fixing procedure is based upon a specific gauge functional. The algorithms presented can
be easily extended into higher symmetry groups or modified to capture different degrees of freedom.
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The procedures for identifying nontrivial center regions can also be used to reconstruct the thick
vortices from P-plaquettes. This will allow further investigations of the color structure of vortices.
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