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Abstract: In this lecture, we provide a basic introduction into the topic of charmed baryons and
their nonleptonic two-body decays. Some features of the baryon weak decays on the quark level are
discussed in detail in the framework of effective field theory. The calculation of the matrix elements
of the four-quark operators arising in the effective theory proceeds by using the covariant constituent
quark model. The model allows one to evaluate not only the factorizing tree-level diagrams but
also more complicated diagrams with the internal W–exchange. The technique required for such
calculation is discussed in some detail. Finally, the numerical results are presented, and comparison
of the contributions coming from the W–exchange diagrams with those from the tree-level are
carefully performed.
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1. Introduction

In 1964, Gell–Mann proposed [1] the theory of quarks–fundamental particles that make up most
ordinary matter. It was done by using the observation that the successful eightfold way of hadron
classification would be naturally explained if hadrons were composed of a quark-antiquark pair or
three quarks (or three antiquarks).

In the same year, George Zweig came to the same conclusion independently [2,3] by analyzing
the suppressed strong decays of the φ-meson. He called three constituents by aces.

The existence of a fourth quark was discussed by a number of authors around 1964, for instance,
by James Bjorken and Sheldon Glashow [4]. But there was little evidence for its existence. Its prediction
is usually credited to Glashow–Iliopoulos–Maiani [5] for the so-called GIM mechanism, which forbids
the flavor-changing neutral currents in the tree diagrams. It explains why weak interactions that
change strangeness by a factor of 2 are suppressed. The first particle containing the charmed quark
and antiquark was discovered in 1974 and named as the J/ψ meson.

The masses of singly charmed baryons was predicted in one gluon exchange model developed
in Reference [6]. The comprehensive review on heavy baryons, their spectroscopy, and semileptonic
and nonleptonic decays may be found in Reference [7]. In Tables 1 and 2, we display the names and
quark contents of the low-lying multiplets of charmed baryons with spin 1/2 and 3/2, respectively.
The values of masses with errors are taken from PDG [8], whereas without errors from Reference [7].
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Table 1. Charmed 1/2+ baryon states. Notation [a, b] and {a, b} for antisymmetric and symmetric flavor
index combinations. The third column shows which SU(3) adjoint (∗) or fundamental representation
the quark state belongs to.

Title Quark Content SU(3) (I, I3) Mass (MeV)

Λ+
c c[ud] 3 ∗ (0,0) 2286.46 ± 0.14

z‘ Ξ+
c c[us] 3 ∗ (1/2,1/2) 2467.93 ± 0.18

Ξ0
c c[ds] 3 ∗ (1/2,–1/2) 2470.91 ± 0.25

Σ++
c cuu 6 (1,1) 2453.97 ± 0.14

Σ+
c c{ud} 6 (1,0) 2452.9 ± 0.4

Σ0
c cdd 6 (1,–1) 2453.75 ± 0.14

Ξ′+c c{us} 6 (1/2,1/2) 2578.4 ± 0.5
Ξ′ 0c c{ds} 6 (1/2,–1/2) 2579.2 ± 0.5
Ω0

c css 6 (0,0) 2695.2 ± 1.7

Ξ++
cc ucc 3 (1/2,1/2) 3621.2 ± 0.7

Ξ+
cc dcc 3 (1/2,–1/2) 3610

Ω+
cc scc 3 (0,0) 3710

Table 2. Charmed 3/2+ baryon states.

Title Quark Content SU(3) (I, I3) Mass (MeV)

Σ∗++
c cuu 6 (1,1) 2518.41 ± 0.20

Σ∗+c cud 6 (1,0) 2517.5 ± 2.3
Σ∗ 0

c cdd 6 (1,–1) 2518.48 ± 0.20
Ξ∗+c cus 6 (1/2,1/2) 2645.57 ± 0.26
Ξ∗ 0

c cds 6 (1/2,–1/2) 2646.38 ± 0.21
Ω∗ 0

c css 6 (0,0) 2765.9 ± 2.0

Ξ∗++
cc ucc 3 (1/2,1/2) 3680

Ξ∗+cc dcc 3 (1/2,–1/2) 3680
Ω∗+cc scc 3 (0,0) 3760

Ω∗++
ccc ccc 1 (0,0) 4730

The lowest lying multiplet of charmed baryons with spin 1/2 can decay only weakly. Therefore,
the study of the nonleptonic decays of charmed baryons is very important in the phenomenology
of particle interactions. There are now more precise results on the branching ratios of the two-body
decays of charmed baryons Λ+

c → pφ, Λπ+, Σ+π0 [9] and Ξ+
c → pK̄∗(892)o [10,11]. In 2005, a

new era began in the studies of doubly charmed baryons when the SELEX Collaboration reported
on the observation of a state with the quantum numbers of the spin 1/2 ground state Ξ+

cc baryon
with a mass of 3518± 3 MeV [12]. The SELEX (Segmented Large X baryon Spectrometer) is a fixed
target experiment at Fermilab. This doubly charmed baryon state was conjectured to be an isospin- 1

2
baryon with quark content (dcc) and to have an isospin partner Ξ++

cc with the quark structure (ucc).
However, other Collaborations (BABAR, Belle, LHCb [8]) found no evidence for the Ξ+

cc nor the Ξ++
cc

states in the conjectured mass region of ∼ 3500 MeV. Recently, the LHCb Collaboration discovered
the doubly charmed state Ξ++

cc [13–15] in the invariant mass spectrum of the final state particles
(Λ+

c K− π+ π+). The LHCb is Large Hadron Collider beauty experiment at CERN. The extracted
mass of the Ξ++

cc state was given as 3621.40± 0.72± 0.27± 0.14 MeV and was ∼ 100 MeV heavier
than the mass of the original SELEX doubly charmed baryon state Ξ+

cc, which made it quite unlikely
that the two states were isospin partners. On the other hand, the LHCb mass measurement was in
agreement with theoretical mass value predictions for the doubly charmed baryon states. In particular,
the central mass value of the LHCb result for the Ξ++

cc was very close the value 3610 MeV and 3620
MeV predicted in Reference [7,16] using the one gluon exchange model of de Rujula, Georgi, and
Glashow [17] and a relativistic quark-diquark potential model [18], respectively. Fleck and Richard,
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using a variety of models, also predicted a mass value of ∼ 3600 [19], while Karliner et al. found
MΞcc = 3627± 12 MeV [20].

The new measurement of the LHCb Collaboration has stimulated much theoretical activity of the
nonleptonic decays of doubly heavy baryons. The recent review can be found in Reference [21,22].

2. Light Baryons in SU(3)

In this section, let us recall the basic features of the SU(3)-classification of light baryons. Baryons
are classified into multiplets according to decomposition of reducible product of the fundamental
quark representations:

3⊗ 3⊗ 3 = 10⊕ 8⊕ 8′ ⊕ 1. (1)

The octet representation 8 is written as (see Reference [23]):

Bi
j =

1
2

(
Tiqj −

1
3

δi
jT

kqk

)
, (2)

where a vector Ti belonging to the representation 3̄ can be written as

Ti =
1√
2

εijk(qjqk − qkqj), with quark triplet q =

 q1

q2

q3

 =

 u
d
s

 . (3)

The matrix form of the octet representation looks like

Bi
j =


1√
6

Λ0 + 1√
2

Σ0 Σ+ p

Σ− 1√
6

Λ0 − 1√
2

Σ0 n

Ξ− Ξ0 − 2√
6

Λ0

 . (4)

The quark content of baryons are shown in Table 3.

Table 3. Quark content of the baryon octet.

p→ 1√
2
[u, d]u n→ 1√

2
[u, d]d

Σ+ → 1√
2
[s, u]u Σ0 → 1

2 ([d, s]u + [u, s]d) Σ− → 1√
2
[d, s]d

Λ0 → 1√
12
(−2[u, d]s + [d, s]u + [s, u]d) Ξ− → 1√

2
[d, s]s Ξ0 → 1√

2
[s, u]s

Up to now, we discussed only the flavor structure of quark fields. Generally speaking, they also
depend on color, spin, and space coordinates. Therefore, one has to construct the relativistic three
quark currents with quantum numbers corresponding to certain member of the baryon octet. One can
start from construction of qqq–currents, which are symmetric under permutation of all quarks in the
case of exact SUF(3)-symmetry. This program has been realized in Reference [24]. The starting point is
the relativistic three-quark current with quantum numbers of a baryon octet JP = 1

2
+

. The general
form of this current can be written as

Bk
j → Rk; j1,j2,j3

j qa1
j1

qa2
j2

qa3
j3

εa1,a2,a3 , (5)
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where j = (α, m); ai, αi, mi are the color, spinor, and flavor indices. By using the Fierz transformations
for both Dirac matrices and SU(3)-matrices, one finds that there exist two independent currents for a
baryon octet with quantum numbers JP = 1

2
+

. They may be written in the form:

Jkm = εkm2m1 δmm3 Γ1 qa1
m1 (q

a2
m2 CΓ2qa3

m3)εa1a2a3 , (6)

where Γ1 ⊗ Γ2 =γµγ5 ⊗ γµ (vector current) or σµνγ5 ⊗ σµν (tensor current). C = γ0γ2 is the usual
charge conjugation matrix:

CT = −C, C−1 = C, C† = C.

CΓTC−1 =

{
+ Γ S, P, A

− Γ V, T.

One can check that the diquark with identical flavors exists for Γ2 = γµ and σµν only:

(ua2 CΓ2ua3)εa1a2a3 = −(ua3 (CΓ2)
T ua2)εa1a2a3

= −(ua3 C C−1ΓT
2 CT︸ ︷︷ ︸

+Γ2

ua2)εa1a2a3 = +(ua2 CΓ2ua3)εa1a2a3 .

Finally, the isotopic components for three-quark currents are written as in Table 4. The obtained
expressions are coincided with those from Reference [25,26].

Table 4. Three-quark currents of the baryon octet (tensor Levi-Civita εa1a2a3 skipped).

p→ Γ1da1 (ua2 CΓ2ua3 ) n→ Γ1ua1 (da2 CΓ2da3 )

Σ+ → Γ1sa1 (ua2 CΓ2ua3 ) Σ0 →
√

2 Γ1sa1 (ua2 CΓ2da3 ) Σ− → Γ1sa1 (da2 CΓ2da3 )

Λ0 →
√

2
3 {Γ1ua1 (da2 CΓ2sa3 )− Γ1da1 (ua2 CΓ2sa3 )} Ξ− → Γ1da1 (sa2 CΓ2sa3 ) Ξ0 → Γ1ua1 (sa2 CΓ2sa3 )

2.1. Fierz Transformations for Dirac Matrices

The basis of sixteen 4× 4 Dirac matrices is shown in Table 5.

Table 5. Basis of Dirac matrices.

Scalar S I 1

Vector V γµ 4

Tensor T σµν = i
2 [γ

µ, γν] (µ < ν) 6

Pseudoscalar P γ5 = iγ0γ1γ2γ3 1

Axial A iγµγ5 4

16 total

The matrices from the basis satisfy to the normalization condition given by Equation (7) in general
form and conditions given by Equation (8) for each matrix from the basis.

tr(ΓCΓD) = 4 δCD where (C, D = S, V, T, P, A), (7)
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tr(I4 I4) = 4, tr(γµγν) = 4 gµν ,
tr(γ5γ5) = 4, tr(iγ5γµ · iγ5γν) = 4 gµν ,
tr(σµνσαβ) = 4 (gµαgνβ − gµβgνα) .

(8)

Any product of Dirac matrices can be decomposed into 16 independent matrices:

Γ = ∑
D=S,V,T,P,A

CDΓD, where 4 CD = tr(ΓΓD). (9)

One can derive from Equation (9) the useful property of the Dirac matrices called the Fierz transformation.
One has

4 Γα1α2 = ∑
D

tr(ΓΓD)ΓD
α1α2

= Γα4α3 ∑
D

ΓD
α3α4

ΓD
α1α2

= 4 Γα1α2 . (10)

The last equality holds if and only if the following property is valid:

∑
D=S,V,T,P,A

ΓD
α1α2

ΓD
α3α4

= 4 δα1α4 δα3α2 . (11)

By using following, Equation (11), one can arrive at the Fierz transformation

4 Γ(1)
α1α2 Γ(2)

α3α4 = 4 δβ2α2 δβ4α4 Γ(1)
α1β2

Γ(2)
α3β4

= ∑
D

ΓD
β2α4

ΓD
β4α2

Γ(1)
α1β2

Γ(2)
α3β4

= ∑
D
(Γ(1)ΓD)α1α4(Γ

(2)ΓD)α3α2 .
(12)

Then, we introduce the short notation.

Γ(1)
α1α2 Γ(2)

α3α4 = Γ̃(1) ⊗ Γ̃(2), and Γ(1)
α1α4 Γ(2)

α3α2 = Γ(1) ⊗ Γ(2). (13)

There are a plenty of useful identities which relate the product of two Dirac matrices with tilde to
product of two Dirac matrices without tilde. Here, are some of them:

4 γ̃µ ⊗ γ̃µ = + 4 I ⊗ I − 2 γµ ⊗ γµ − 2 γµγ5 ⊗ γµγ5 − 4 γ5 ⊗ γ5

4 γ̃µγ5 ⊗ γ̃µγ5 = − 4 I ⊗ I − 2 γµ ⊗ γµ − 2γµγ5 ⊗ γµγ5 + 4 γ5 ⊗ γ5

4 γ̃µ ⊗ γ̃µγ5 = −4 I ⊗ γ5 + 4 γ5 ⊗ I − 2γµ ⊗ γµγ5 − 2 γµγ5 ⊗ γµ

4 γ̃µγ5 ⊗ γ̃µ = + 4 I ⊗ γ5 − 4 γ5 ⊗ I − 2γµ ⊗ γµγ5 − 2 γµγ5 ⊗ γµ

4 Ĩ ⊗ γ̃5 = + I ⊗ γ5 + γ5 ⊗ I − γµ ⊗ γµγ5 + γµγ5 ⊗ γµ + 1
2 σµνγ5 ⊗ σµν

4 γ̃5 ⊗ Ĩ = + I ⊗ γ5 + γ5 ⊗ I + γµ ⊗ γµγ5 − γµγ5 ⊗ γµ + 1
2 σµνγ5 ⊗ σµν

4 σ̃µνγ5 ⊗ σ̃µν = + 12 I ⊗ γ5 + 12 γ5 ⊗ I − 2 σµνγ5 ⊗ σµν.

We will use the above identities to simplify the string of Dirac matrices involving two weak matrices
with Left/Right chirality Oµ

L/R = γµ(I ∓ γ5). One can prove that

ÕL/R ⊗ ÕL/R = −OL/R ⊗OL/R, ÕL/R ⊗ ÕR/L = 2 (I ± γ5)⊗ (I ∓ γ5). (14)

By using these properties of the weak matrices, one can get the following simplifications:

tr(Γ1OL/RΓ2OL/R) = − tr(Γ1OL/R) · tr(Γ2OL/R), (15)(
Γ1ORΓ2OLΓ3

)αβ
= 2

(
Γ1(I − γ5)Γ3

)αβ
· tr
[
Γ2(I + γ5)

]
. (16)
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2.2. SU(n)-Matrices

Here, let us recall some properties of the unitary matrices from the SU(n)-group. For SU(n)-group,
there are m = n2 − 1 generators ta = 1

2 λa, where λa are the Gell–Mann traceless n × n matrices
(a = 1, . . . , m = n2 − 1). They satisfy the following relations:

[λa, λb] = 2i f abcλc, tr(λaλb) = 2δab, (a, b = 1, . . . , m). (17)

For completeness, one has to add the unit matrix λ0 =
√

2
n In. Then, any n × n matrix can be

decomposed into basis matrices:

M =
m

∑
a=0

Maλa, Ma =
1
2

tr(λa M). (18)

From Equation (18), it is easy to derive the completeness condition:

m

∑
a=0

λa
m1m2

λa
m3m4

= 2 δm1m4 δm3m2 . (19)

Some corollaries follow from Equation (19):

m

∑
a=1

λa
m1m2

λa
m3m4

= 2 δm1m4 δm3m2 −
2
n

δm1m2 δm3m4

m

∑
a=1

λa
m1m2

λa
m3m4

=
2(n2 − 1)

n2 δm1m4 δm3m2 −
1
n

m

∑
a=1

λa
m1m4

λa
m3m2

. (20)

They allow to simplify the calculation of traces:

m
∑

a=1
tr (λa M1λa M2) = − 2

n tr (M1M2) + 2 tr (M1) tr (M2)

m
∑

a=1
tr (λa M1) tr (λa M2) = 2 tr (M1M2)− 2

n tr (M1) tr (M2) .
(21)

3. Charmed Baryons

The existence of a fourth quark had been discussed by a number of authors around 1964,
for instance, by James Bjorken and Sheldon Glashow [4]. The addition of the charmed quark to
the (uds) triplet extends the SU(3) to SU(4). The irreducible representations are formed according
to decomposition

4⊗ 4⊗ 4 = 20S ⊕ 20M ⊕ 20′M ⊕ 4A.

But, in that time, there was little evidence for existence of the charmed quark and related hadrons. Its
prediction is usually credited to Glashow–Iliopoulos–Maiani [5] for the so-called GIM mechanism,
which forbids the flavor-changing neutral currents in the tree diagrams.

GIM Mechanism

The attempt to construct the weak interactions with three (uds) quarks led to existence of the
flavor-changing neutral current (FCNC) at tree level. The left weak duplet is written as

Qu
L =

(
u

d cos θC + s sin θC

)
L

, (22)
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where θC is the Cabbibo angle. It gives the following contribution to the weak Lagrangian

Q̄u
Lγµ τ3

2 Qu
L = 1

2
(
ūLγµuL − cos2 θC d̄LγµdL − sin2 θC s̄LγµsL

− sin θC cos θC[d̄LγµsL + s̄LγµdL]
)

.
(23)

The charm quark allows one to construct an extra duplet:

Qc
L =

(
c

−d sin θC + s cos θC

)
L

. (24)

It will give the additional contribution the the weak Lagrangian, where the FCNC contribute with the
opposite sign:

Q̄c
Lγµ τ3

2
Qc

L =
1
2

(
c̄LγµcL − sin2 θC d̄LγµdL − cos2 θC s̄LγµsL

+ sin θC cos θC(d̄LγµsL + s̄LγµdL)
)

.

As the result, the FCNC vanish from the weak Lagrangian and occur only at the level of loop diagrams:

Q̄u
Lγµ τ3

2
Qu

L + Qc
Lγµ τ3

2
Qc

L = 1
2
(
ūLγµuL + c̄LγµcL − d̄LγµdL − s̄LγµsL

)
. (25)

For instance, the weak decay K0
L → µ+µ− goes via sum of one-loop diagrams with u-quark and

c-quark, as shown in Figure 1.
The matrix element is proportional to

M(K → µ+µ−) ∝
g4

2 sin θc cos θC

M2
W

m2
c −m2

u

M2
W

. (26)

The experimental data can be reproduced if the value of the charm quark mass is of order −→
mc ≈ 1.5 GeV. It was the first solid confirmation of the charm in particle physics.

Figure 1. Diagrams describing the decay K0
L → µ+µ−. The left diagram describes the exchange by

u-quark whereas the right by c-quark.

4. Nonleptonic Two-Body Weak Decays of Baryons

Ground states of baryons with JP = 1
2
+

can decay only weakly via the internal W-exchange.
Two-body decays of baryons have five different quark topologies shown in Figure 2.
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Figure 2. Quark diagrams with five different topologies. The set of diagrams divides in two groups:
(1) The reducible tree-diagrams called external (Ia) and internal W-emission (IIb) diagrams. (2) The
irreducible W-exchange diagrams with the labeling introduced in [7,16]. In [27] the W–exchange
diagrams are denoted as the Exchange (IIa), color-commensurate (IIb) and Bow tie (III) diagram.

The weak interactions of quarks at energy significantly less than the W-mass, the scale of charm
quark mass in the given decays, are described in the framework of an effective low-energy theory.
The formal framework is using the Wilson operator product expansion (OPE). As an example, let us
consider the tree-level W–exchange amplitude for c→ sud̄ transition. One has

A = − g2
2

8 V∗csVud (s̄Oµc)
(
−gµν

M2
W−k2

)
(ūOνd)

= − g2
2

8 M2
W

V∗csVud (s̄Oµc)
(
ūOµd

)
+O

(
k2

M2
W

)
,

(27)

where Oµ = γµ(1− γ5) is the weak Dirac matrix with left chirality, Vcs and Vud are the CKM-matrix
elements, and g2 is the coupling of gauge group. Since the momentum transfer is less than the W-mass,
i.e., |k| << MW , the terms of order O(k2/M2

W) may be neglected. It is easy to see that the leading
term of the expansion can be obtained from an effective Hamiltonian

Htree
eff =

GF√
2

V∗csVud (s̄aOµca)(ūbOµdb),
GF√

2
=

g2
2

8 M2
W

. (28)

Then, one needs to take into account the one-loop QCD corrections both in full theory and in the theory
with effective Hamiltonian. The corresponding tree and one-loop diagrams in full and effective theory
are shown in Figure 3.
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Figure 3. Tree and one-loop diagrams in full and effective theory. In the full theory the tree diagram is
described by exchange of the W-boson, whereas in the effective theory the tree diagram is generated by
four-quark operator from an effective Hamiltonian. In both theories the next-to-leading corrections are
described by gluon (g) exchanges between color quarks.

Including QCD corrections, the effective Hamiltonian is generalized to

Heff = GF√
2

V∗csVud (C1(µ)Q1 + C2(µ)Q2) ,

Q1 ≡ (s̄aOµcb)(ūbOµda), Q2 ≡ (s̄aOµca)(ūbOµdb),
(29)

where the Wilson coefficients Ci(µ) are determined from the matching full and effective theories.
The leading order in the strong QCD coupling αS looks as follows:

C1 = −3
αS
4π

ln
M2

W
µ2 , C2 = 1 +

αS
4π

ln
M2

W
µ2 . (30)

Obviously, this expansion will be reliable if the scale µ is of order of W-mass, i.e., µ ≈ MW). In this
case, the value of αS is small due to asymptotic freedom, and the value of the logarithm is small,
as well. Then, the Wilson coefficients are evaluated from µW down to the low-energy scale µ ∝ mc.
The last step is to calculate the hadronic matrix elements of the operators 〈Qi(µ)〉 that requires the
nonperturbative methods.

5. Covariant Constituent Quark Model

The Covariant Constituent Quark Model (CCQM) is based on a phenomenological, nonlocal,
relativistic Lagrangian describing the coupling of a hadron H to its constituents:

Lint = gH · H(x) · JH(x), (31)
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where JH(x) is the quark current corresponding to a hadron H. For mesons, baryons, and tetraquarks,
the corresponding quark currents may be written as

JM(x) =
∫

dx1
∫

dx2 FM(x; x1, x2) · q̄ a
f1
(x1) ΓM q a

f2
(x2),

JB(x) =
∫

dx1
∫

dx2
∫

dx3 FB(x; x1, x2, x3)× Γ1 qa1
f1
(x1)

(
εa1a2a3 qT a2

f2
(x2)C Γ2 qa3

f3
(x3)

)
JT(x) =

∫
dx1 . . .

∫
dx4 FT(x; x1, . . . , x4)

×
(

εa1a2cqT a1
f1

(x1)CΓ1 qa2
f2
(x2)

)
·
(

εa3a4c q̄T a3
f3

(x3) Γ2C q̄a4
f4
(x4)

)
.

(32)

where ai and fi are color and flavor indices. The vertex functions FH should satisfy to
translational invariance

FH(x + a; x1 + a, . . . , xn + a) = FH(x; x1, . . . , xn) , ∀a . (33)

The simple and obvious choice is written down as

FH(x, x1, . . . , xn) = δ(4)
(

x−
n
∑

i=1
wixi

)
ΦH

(
∑
i<j

(xi − xj)
2
)

,

ΦH
(

∑
i<j

(xi − xj)
2
)

=
n−1
∏
i=1

∫ d4qi
(2π)4 e−iq1(x1−xn)−iq2(x2−xn)−...−iqn−1(xn−1−xn)Φ̃H

(
− 1

2 ∑
i≤j

qiqj

)
,

Φ̃H(−Ω) = exp{Ω/Λ2
H},

(34)

where wi = mi/ ∑
j

mj so that
n
∑

i=1
wi = 1, and ΛH is an adjustable size parameter. The quark propagators

are chosen in the local Dirac form

Si(x1 − x2) =
∫ d4k

(2π)4i
e−ik(x1−x2)

mi− 6 k
. (35)

The quark confinement is realized by implementation of the so-called infrared confinement. We discuss
how it works in the next sections.

5.1. Heavy Quark Limit in B− D(D∗) Transition

It is instructive to explore the heavy quark limit (HQL) in the heavy-to-heavy transition B →
D(D∗). The diagram describing the semileptonic decay B→ D(D∗) + `ν̄` is shown in Figure 4.
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Figure 4. Diagrams describing the semileptonic decay B→ D(D∗) + `ν̄`.

In the HQL, one takes the limit mB = mb + E, mb → ∞ and mD = mD∗ = mc + E, mc → ∞ in
the expressions for the coupling constants and form factors. In this limit, the heavy quark propagators
are reduced to the static form:

Sb(k + p1) =
1

mb− 6 k− 6 p1
→ 1+ 6v1

−2kv1 − 2E
+ O

(
1

mb

)
,

Sc(k + p2) =
1

mc− 6 k− 6 p2
→ 1+ 6v2

−2kv2 − 2E
+ O

(
1

mc

)
, (36)

where pi and vi = pi/mi (i = 1, 2) are the momenta and the four-velocities of the initial and final states.
Moreover, we have to keep the size parameters of heavy hadrons equal to each other in order to provide
the correct normalization of the Isgur-Wise function at zero recoil. By using technique developed
in our previous papers [28,29], one can arrive at the following expressions for the semileptonic
heavy-to-heavy transitions:

Tµ
HQL = ξ(w) · 1

4 tr
(

Oµ(1+ 6v1)γ
5 · γ5(1+ 6v2)

)
= ξ(w) · (vµ

1 + vµ
2 ), (37)

ε†
2 νTµν

HQL = ξ(w) · 1
4 tr
(

Oµ(1+ 6v1)γ
5· 6ε †

2 (1+ 6v2)
)

= ξ(w) · ε†
2 ν(−gµν(1 + w) + vµ

1 vν
2 + vν

1vµ
2 − i εµνv1v2). (38)

Here, w = v1v2, and the Isgur-Wise function is equal to

ξ(w) =
J3(E, w)

J3(E, 1)
, J3(E, w) =

1∫
0

dτ

W

∞∫
0

du Φ̃2(z)
mu +

√
u/W

m2
u + z

, (39)
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where W = 1+ 2τ(1− τ)(w− 1), z = u− 2E
√

u/W, and Φ̃(z) = exp(−z/Λ2). By using the definition
of the form factors given in Reference [28,29], one can easily obtain the expressions of the form factors
in the HQL. One finds

F±(q2) = ± m1±m2
2
√

m1m2
ξ(w),

A0(q2) =
√

m1m2
m1−m2

(1 + w)ξ(w), A+(q2) = −A−(q2) = V(q2) = m1+m2
2
√

m1m2
ξ(w),

(40)

where w = (m2
1 + m2

2 − q2)/(2m1m2). We use the physical masses of the heavy hadrons in the
numerical calculations. For the size parameter, we adopt the average value Λ = (ΛB +ΛD +ΛD∗)/3 =

1.70 GeV. The parameter E characterizes the difference in mass between the heavy hadron and the
corresponding heavy quark. We use its minimal value E = mD −mc = 0.20 GeV in order to avoid the
complication with confinement. In Figure 5, we display the heavy-to-heavy transition form factors
calculated in the HQL and compare them with the results of exact calculations [30]. One can see that
the two results obtained with and without use of the HQL behave very similar to each other, which
demonstrates the fidelity of HQET.

Figure 5. Comparison of the exact calculation of the form factor F+(q2) (solid line) with those obtained
in heavy quark limit (dashed line).

5.2. Infrared Confinement

We have shown in Reference [31] how the confinement of quarks can be effectively incorporated
in the covariant quark model. In a first step, we introduced an additional scale integration in the
space of Fock-Schwinger’s α–parameters with an integration range from zero to infinity. In a second
step, the scale integration was cut off at the upper limit which corresponds to the introduction of an
infrared (IR) cutoff. In this manner, all possible thresholds present in the initial quark diagram were
removed. The cutoff parameter was taken to be the same for all physical processes. Other model
parameters, such as the constituent quark masses and size parameters, were determined from a fit to
experimental data.

Let us describe the basic features of how IR confinement is implemented in our model. All
physical matrix elements are described by Feynman diagrams written in terms of a convolution of
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free quark propagators and the vertex functions. In computation of Feynman diagrams, we use, in the
momentum space, the Fock-Schwinger representation of the quark propagator:

S(k) =
m+ 6 k

m2 − k2 = (m+ 6 k)
∞∫

0

dα e−α(m2−k2) . (41)

The general form of a resulting Feynman diagrams is

Π (p1, . . . , pm) =

∞∫
0

dnα
∫ (

d4k
)`
×Num× exp

{
−

n

∑
i=1

αi

(
m2

i − (Ki + Pi)
2
)}

, (42)

where Ki represents a linear combination of loop momenta, Pi stands for a linear combination of
external momenta, and Num refers to the numerator product of propagators and vertex functions.
The integrand in Equation (42) has a Gaussian form with the exponential factor

kak + 2kr + R = kiaijk j + 2kiri + R, (i, j = 1, . . . , `),

where ki is a 4-vector of the “i”-loop integration, a is a `× ` matrix depending on the parameters αi
and size parameters Λ, ri is a 4- vector composed from the external momenta pi, and R is a quadratic
form of the masses and external momenta. Tensor loop integrals are calculated with the help of the
differential representation

kµ
i e2kr =

1
2

∂

∂ri µ
e2kr ,

which, in general, may be written in the form

∫ (
d4k
)`

P (k) ekak+2kr+R =
∫ (

d4k
)`

P
(

1
2

∂

∂r

)
ekak+2kr+R = P

(
1
2

∂

∂r

) ∫ (
d4k
)`

ekak+2kr+R, (43)

where the polynomial operator means P(k) = kµ1
1 . . . kµm

m . After doing the loop integration, the
differential operators ∂/∂ri µ will give cause to outer momenta tensors. It may be done in effective way
by using the identity

∞∫
0

dnα P
(

1
2

∂

∂r

)
e−

r2
a =

∞∫
0

dnα e−
r2
a P
(

1
2

∂

∂r
− r

a

)
. (44)

The calculation of the polynomial P
(

1
2

∂
∂r −

r
a

)
can be automized by using the commutator [ ∂

∂rµ
i

, rν
j ] =

δij gµν. We have written a FORM [32] program that achieves the necessary commutations of the
differential operators in a very efficient way.

The last point which remains to be discussed is the infrared cut-off we impose on the integration
over the Fock-Schwinger parameters. This integration is multidimensional with the limits from 0 to
+∞. In order to arrive to a single cut-off parameter, we first transform the integral over an infinite space
into an integral over a simplex convoluted with only one-dimensional improper integral. For that
purpose, we use the δ-function form of the identity

1 =

∞∫
0

dt δ

(
t−

n

∑
i=1

αi

)
, (∀αi ≥ 0), (45)
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from which follows

Π =

∞∫
0

dt tn−1
1∫

0

dnα δ

(
1−

n

∑
i=1

αi

)
×W (tα1, . . . , tα1) , (46)

where W represents the integrand of Schwinger parameters. The cut-off λ is then introduced in a
natural way:

∞∫
0

dt tn−1 . . .→
1/λ2∫
0

dt tn−1 . . . . (47)

Such a cut-off makes the integral to be an analytic function without any singularities. In this way, all
potential thresholds in the quark loop diagrams are removed together with corresponding branch
points [31]. Within the covariant quark model, the cut-off parameter is universal for all processes, and
its value, as obtained from a fit to data, is

λcut−off = 0.181 GeV.

The numerical evaluations have been done by a numerical program written in the fortran code.
As an example, let us consider a scalar one-loop two-point function:

Π2(p2) =
∫ d4kE

π2
e−s k2

E

[m2 + (kE + 1
2 pE)2][m2 + (kE − 1

2 pE)2]
,

where the numerator factor e−s k2
E comes from the product of nonlocal vertex form factors of Gaussian

form. kE, pE are Euclidean momenta (p2
E = − p2). Doing the loop integration, one obtains

Π2(p2) =

∞∫
0

dt
t

(s + t)2

1∫
0

dα exp
{
− t [m2 − α(1− α)p2] +

st
s + t

(
α− 1

2

)2
p2
}

. (48)

The function Π2(p2) has a branch point at p2 = 4m2, which occurs at α = 1/2. By introducing a cut-off
in the t–integration, one obtains

Πc
2(p2) =

1/λ2∫
0

dt
t

(s + t)2

1∫
0

dα exp
{
− t [m2 − α(1− α)p2] +

st
s + t

(
α− 1

2

)2
p2
}

, (49)

where the one-loop two-point function Πc
2(p2) no longer has a branch point at p2 = 4m2.

The confinement scenario also allows us to include all possible, both two-quark and multi-quark,
resonance states in our calculations.

6. Some Nonleptonic Decays of Doubly Charmed Baryons

We will consider the decays that belong to the same topology class:

Ξ++
cc → Ξ+

c (Ξ′+c ) + π+(ρ+) T-Ia and W-IIb
Ω+

cc → Ξ+
c (Ξ′+c ) + K̄0(K∗ 0) T-Ib and W-IIb.

(50)

Their quantum numbers and interpolating currents are shown in Table 6.
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Table 6. Interpolating currents.

Baryon JP Interpolating Current Mass (MeV)

Ξ++
cc

1
2
+

εabc γµγ5 ua(cbCγµcc) 3620.6

Ω+
cc

1
2
+

εabc γµγ5 sa(cbCγµcc) 3710.0

Ξ
′+
c

1
2
+

εabc γµγ5 ca(ubCγµsc) 2577.4

Ξ+
c

1
2
+

εabc ca(ubCγ5sc) 2467.9

The W–exchange contributions to the above decays fall into two classes:

1. The decays with a Ξ′+c -baryon containing a symmetric {us} diquark described by the interpolating
current εabc (ubCγµsc). The W–exchange contribution is strongly suppressed due to the
Körner-Pati-Woo (KPW) theorem [33,34], which states that the contraction of the flavor
antisymmetric current-current operator with a flavor symmetric final state configuration is zero in
the SU(3) limit.

2. The decays with a Ξ+
c -baryon containing a antisymmetric [us] diquark described by the

interpolating current εabc (ubCγ5sc). In this case, the W–exchange contribution is not a
priori suppressed.

In our approach, the tree and W–exchange contributions are described by the Feynman diagrams
shown in Figure 6.

Figure 6. Diagrams describing the nonleptonic decay B1 → B2 + M.

The matrix element is written down as

< B2 M|Heff|B1 >=
GF√

2
VcsV†

ud ū(p2)
(

12 CT MT + 12 (C1 − C2) MW

)
u(p1), (51)

where the combinations of the Wilson coefficients are given by

CT =

 CT = +(C2 + ξC1) charged meson

CT = −(C1 + ξC2) neutral meson.

The factor of ξ = 1/Nc is set to zero in the numerical calculations. The contribution from the tree
diagram factorizes into two pieces:

MT = M(1)
T ·M

(2)
T , (52)
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where

M(1)
T = Nc gM

∫ d4k
(2π)4i

Φ̃M(−k2) tr
(

OLSd(k− wdq)ΓMSs(u)(k + ws(u)q)
)

,

M(2)
T = gB1 gB2

∫ d4k1

(2π)4i

∫ d4k2

(2π)4i
Φ̃B1

(
− ~Ω 2

1

)
Φ̃B2

(
− ~Ω 2

2

)
× Γ1Sc(k2)γ

µSc(k1 − p1)ORSu(s)(k1 − p2)Γ̃2Ss(u)(k1 − k2)γµγ5.

The M(1)
T is related to the leptonic decay constants:

M(1)
T =

 − fP · q pseudoscalar meson

+ fVmV · εV vector meson.

The semileptonic and nonleptonic two-body decays of the doubly charmed baryons Ξ++
cc , Ξ+

cc and Ω+
cc

have been studied in Reference [35] by considering those nonleptonic decay channels in which the
decay proceeds solely via the factorizing contributions.

The W–exchange contribution has no factorization and is written as genuine three-loop diagram:

MW = gB1 gB2 gM

∫ d4k1

(2π)4i

∫ d4k2

(2π)4i

∫ d4k3

(2π)4i
Φ̃B1

(
− ~Ω 2

1

)
Φ̃B2

(
− ~Ω 2

2

)
Φ̃M(−P2)

× 2Γ1Sc(k1)γ
µSc(k2)(1− γ5)Sd(k2 − k1 + p2)ΓMSs(u)(k2 − k1 + p1)γµγ5

× tr
(

Su(s)(k3)Γ̃2Ss(u)(k3 − k1 + p2)(1 + γ5)
)

.

Here, Γ1 ⊗ Γ̃2 = I ⊗ γ5 for B2 = Ξ+
c , and −γνγ5 ⊗ γν for B2 = Ξ′+c . To verify the KPW theorem in the

case of B2 = Ξ′+c , we use the identity

tr
(

Su(k3)γνSs(k3 − k1 + p2)) = − tr
(

Ss(−k3 + k1 − p2)γνSu(−k3)
)

. (53)

Then, by shifting k3 → −k3 + k1 − p2, one gets the same expression with opposite sign and u ↔ s
interchange. Thus, if mu = ms, then MW ≡ 0. It directly confirms the KPW–theorem.

7. Numerical Results

The transition amplitudes in terms of invariant amplitudes are written down as

< B2 P|Heff|B1 > =
GF√

2
V∗csVud ū(p2) (A + γ5 B) u(p1)

< B2 V|Heff|B1 > =
GF√

2
V∗csVud

× ū(p2) ε∗Vδ

(
γδVγ + pδ

1Vp + γ5γδV5γ + γ5 pδ
1 V5p

)
u(p1)

The invariant amplitudes can be expressed in terms of helicity amplitudes as

HV
1
2 t

=
√

Q+ A HA
1
2 t

=
√

Q− B

HV
1
2 0

= +
√

Q−/q2
(

m+ Vγ + 1
2 Q+ Vp

)
HV

1
2 1

= −
√

2Q− Vγ

HA
1
2 0

= +
√

Q+/q2
(

m− V5γ + 1
2 Q− V5p

)
HA

1
2 1

= −
√

2Q+ V5γ.

(54)
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Here, m± = m1 ±m2, Q± = m2
± − q2 and |p2| = λ1/2(m2

1, m2
2, q2)/(2m1). The parity relations have

taken place: HV
−λ2,−λM

= +HV
λ2,λM

, HA
−λ2,−λM

= −HA
λ2,λM

. Finally, the decay widths are written as

Γ
(

B1 → B2 + P(V)
)

=
G2

F
32π
|V∗csVud|2

|p2|
m2

1
HP(V)

HP =
∣∣∣H1

2 t

∣∣∣2 +
∣∣∣H− 1

2 t

∣∣∣2 ,

HV =
∣∣∣H1

2 0

∣∣∣2 +
∣∣∣H− 1

2 0

∣∣∣2 +
∣∣∣H1

2 1

∣∣∣2 +
∣∣∣H− 1

2 −1

∣∣∣2 ,

where H = HV −HA. All model parameters have been fixed in our previous studies, except for the size
parameter Λcc of the doubly charmed baryons. As a first approximation, we equate the size parameter
of doubly charmed baryons with that of singly charmed baryons, i.e., we take Λcc = Λc = 0.8675 GeV,
where we adopt the value of Λc from Reference [36] obtained by fitting the magnetic moment of Λc to
its experimental value.

Numerical results for the helicity amplitudes and decay widths are displayed in the Tables 7–10.
Our results highlight the importance of the KPW theorem for the nonleptonic decays when the

final state involves a Ξ′+ baryon containing a symmetric {su} diquark. Tables 7–10 show that the
relevant W–exchange contributions are nonzero but are strongly suppressed. Nonzero values result
from SU(3) breaking effects, which are accounted for in our approach. Take, for example, the decay
Ξ++

cc → Ξ
′+
c + π+. When compared to the tree contribution, the SU(3) breaking effects amount to

∼ (2− 4)%. While the consequences of the KPW theorem for the W–exchange contribution are also
incorporated in the pole model approach of Reference [37] (see Figure 7), they are not included in the
final-state interaction approach of Reference [38].

Figure 7. Schematic image of the pole model.
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Table 7. Decays Ω+
cc → Ξ′+c + K̄0(K̄∗ 0).

Helicity Tree Diagram W Diagram Total

HV
1
2 t

0.20 −0.01 0.19

HA
1
2 t

0.25 −0.01 0.24

Γ(Ω+
cc → Ξ′+c + K̄0) = 0.15 · 10−13 GeV

HV
1
2 0

−0.25 0.04× 10−1 −0.25

HA
1
2 0

−0.50 0.01 −0.49

HV
1
2 1

0.27 −0.01 0.26

HA
1
2 1

0.56 0.04× 10−2 0.56

Γ(Ω+
cc → Ξ′+c + K̄∗ 0) = 0.74 · 10−13 GeV

Table 8. Decays Ω+
cc → Ξ+

c + K̄0(K̄∗ 0).

Helicity Tree Diagram W Diagram Total

HV
1
2 t

−0.35 1.06 0.71

HA
1
2 t

−0.10 0.31 0.21

Γ(Ω+
cc → Ξ+

c + K̄0) = 0.95 · 10−13 GeV

HV
1
2 0

0.50 −0.69 −0.19

HA
1
2 0

0.18 −0.45 −0.27

HV
1
2 1

−0.11 −0.24 −0.35

HA
1
2 1

−0.18 0.66 0.48

Γ(Ω+
cc → Ξ+

c + K̄∗ 0) = 0.62 · 10−13 GeV

Table 9. Decays Ξ++
cc → Ξ′+c + π+(ρ+).

Helicity Tree Diagram W Diagram Total

HV
1
2 t

−0.38 −0.01 −0.39

HA
1
2 t

−0.55 −0.02 −0.57

Γ(Ξ++
cc → Ξ′+c + π+) = 0.82 · 10−13 GeV

HV
1
2 0

0.60 0.04× 10−1 0.61

HA
1
2 0

1.20 0.01 1.21

HV
1
2 1

−0.49 −0.01 −0.50

HA
1
2 1

−1.27 0.01× 10−1 −1.27

Γ(Ξ++
cc → Ξ′+c + ρ+) = 4.27 · 10−13 GeV
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Table 10. Decays Ξ++
cc → Ξ+

c + π+(ρ+).

Helicity Tree Diagram W Diagram Total

HV
1
2 t

−0.70 0.99 0.29

HA
1
2 t

−0.21 0.30 0.09

Γ(Ξ++
cc → Ξ+

c + π+) = 0.18 · 10−13 GeV

HV
1
2 0

1.17 −0.70 0.47

HA
1
2 0

0.45 −0.44 0.003

HV
1
2 1

−0.20 −0.23 −0.43

HA
1
2 1

−0.41 0.62 0.21

Γ(Ξ++
cc → Ξ+

c + ρ+) = 0.63 · 10−13 GeV

In Table 11, we compare our rate results with the results of some other approaches [37–42]. All
calculations approximately agree on the rate of the decay Ξ++

cc → Ξ
′+
c + ρ+, which is predicted to

have a large branching ratio of ∼ 16 %. In our calculation, this mode is predicted to have by far the
largest branching ratio of the decays analyzed in this paper. As concerns the decay Ξ++

cc → Ξ+
c + π+

discovered by the LHCb Collaboration [15], we find a branching ratio of B(Ξ++
cc → Ξ+

c π+) =

0.70% using the central value of the life time measurement in Reference [14]. The small value of
the branching ratio results from a substantial cancellation of the tree and W–exchange contributions.
The branching ratio is somewhat smaller than the branching ratio B(Ξ++

cc → Σ++
c + K̄0) = 1.28%

calculated in Reference [43]. We think that the latter mode is more dominant in comparison with
Ξ++

cc → Ξ+
c π+. We predict a branching ratio considerably smaller than the range of branching fractions

(6.66− 15.79)% calculated in Reference [37]. In our opinion, the calculations done in Reference [37]
involve generous approximations for the errors, which are hard to quantify.

Table 11. Comparison with other approaches. Abbreviation: M = NRQM, T = HQET.

Mode
Width (in 10−13 GeV)

GIKLT [22,43] DS [37,39] JHL [38] WYZ [40] YJLLWZ [41] KL [42]

Ξ++
cc → Σ++

c + K̄0 0.33

Ξ++
cc → Σ++

c + K̄∗ 0 1.38

Ω+
cc → Ξ′+c + K̄0 0.15 0.31 (M)

0.59 (T)

Ω+
cc → Ξ+

c + K̄0 0.95 0.68 (M)
1.08 (T)

Ω+
cc → Ξ′+c + K̄∗ 0 0.74 2.64+2.72

−1.79

Ω+
cc → Ξ+

c + K̄∗ 0 0.62 1.38+1.49
−0.95

Ξ++
cc → Ξ′+c + π+ 0.82 1.40 (M) 1.10

1.93 (T)

Ξ++
cc → Ξ+

c + π+ 0.18 1.71 (M) 1.57 1.58 2.25
2.39 (T)

Ξ++
cc → Ξ′+c + ρ+ 4.27 4.25+0.32

−0.19 4.12 3.82

Ξ++
cc → Ξ+

c + ρ+ 0.63 4.11+1.37
−0.86 3.03 2.76 6.70
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The only free parameter in our approach is the size parameter Λcc of the double heavy baryons,
for which we have chosen Λcc = 0.8675 GeV in Tables 7–10. In order to estimate the uncertainty
caused by the choice of the size parameter, we allow the size parameter to vary from 0.6 to 1.135 GeV.
We evaluate the mean Γ̄ = ∑ Γi/N and the mean square deviation σ2 = ∑(Γi − Γ̄)2/N. The results
for N = 5 are shown in Table 12. The rate errors amount to 6–15%. Since the dependence of the
rates on Λcc is nonlinear, the central values of the rates in Table 12 do not agree with the rate values
in Tables 7–10.

Table 12. Estimating uncertainties in the decay widths.

Mode Width (in 10−13 GeV)

Ω+
cc → Ξ′+c + K̄0 0.14± 0.01

Ω+
cc → Ξ′+c + K̄∗ 0 0.72± 0.06

Ω+
cc → Ξ+

c + K̄0 0.87± 0.13
Ω+

cc → Ξ+
c + K̄∗ 0 0.58± 0.07

Ξ++
cc → Ξ′+c + π+ 0.77± 0.05

Ξ++
cc → Ξ′+c + ρ+ 4.08± 0.29

Ξ++
cc → Ξ+

c + π+ 0.16± 0.02
Ξ++

cc → Ξ+
c + ρ+ 0.59± 0.04

8. Outlook

The discovery of the doubly charmed baryon Ξ++
cc by the LHCb Collaboration [13,14] and the first

observation of its two-body nonleptonic decay Ξ++
cc → Ξ+

c + π+ [15] provided strong encouragement
for further theoretical analysis of the weak decays of doubly charmed baryons. As well known, such
decays are described by the quark diagrams, which have several different topologies. One class of the
diagrams having the so-called factorizing topology is easy to evaluate in almost model independent
way, whereas another class with the internal W–exchange is extremely difficult to handle theoretically.
In this lecture, we gave a basic introduction to the methods of how to calculate the relevant diagrams
with any topologies in self-consistent way on the same basis. The theoretical background used for
this purpose is the covariant constituent model previously developed in our papers. As the first step,
we concentrated on the description of Cabibbo-favored nonleptonic two-body decays of the doubly
charmed ground state baryons Ξ++

cc and Ω+
cc where we have limited our analysis to the 1

2 →
1
2 + P(V)

decay channels. It would be straightforward to also include 1
2 →

3
2 + P(V) the nonleptonic decays

in the future. In addition, the study could be extended to the description of singly and doubly
suppressed Cabibbo decays, not only for doubly charmed baryon decays but also for singly charmed
baryon decays.
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