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Abstract: Measurements of the branching fractions of the semileptonic decays B → D(∗)τν̄τ and
Bc → J/ψτν̄τ systematically exceed the Standard Model predictions, pointing to possible signals
of new physics that can violate lepton flavor universality. The unknown origin of new physics
realized in these channels can be probed using a general effective Hamiltonian constructed from
four-fermion operators and the corresponding Wilson coefficients. Previously, constraints on these
Wilson coefficients were obtained mainly from the experimental data for the branching fractions.
Meanwhile, polarization observables were only theoretically studied. The situation has changed
with more experimental data having become available, particularly those regarding the polarization
of the tau and the D∗ meson. In this study, we discuss the implications of the new data on the
overall picture. We then include them in an updated fit of the Wilson coefficients using all hadronic
form factors from our covariant constituent quark model. The use of our form factors provides an
analysis independent of those in the literature. Several new-physics scenarios are studied with the
corresponding theoretical predictions provided, which are useful for future experimental studies.
In particular, we find that under the one-dominant-operator assumption, no operator survives
at 1σ. Moreover, the scalar operators OSL and OSR are ruled out at 2σ if one uses the constraint
B(Bc → τντ) ≤ 10%, while the more relaxed constraint B(Bc → τντ) ≤ 30% still allows these
operators at 2σ, but only minimally. The inclusion of the new data for the D∗ polarization fraction
FD∗

L reduces the likelihood of the right-handed vector operator OVR and significantly constrains
the tensor operator OTL . Specifically, the FD∗

L alone rules out OTL at 1σ. Finally, we show that the
longitudinal polarization Pτ

L of the tau in the decays B → D∗τν̄τ and Bc → J/ψτν̄τ is extremely
sensitive to the tensor operator. Within the 2σ allowed region, the best-fit value TL = 0.04 + i0.17
predicts Pτ

L (D∗) = −0.33 and Pτ
L (J/ψ) = −0.34, which are at about 33% larger than the Standard

Model (SM) prediction Pτ
L (D∗) = −0.50 and Pτ

L (J/ψ) = −0.51.

Keywords: semileptonic decay; B meson; lepton flavor universality; beyond Standard Model; form
factors; covariant constituent quark model; branching fraction; polarization

1. Introduction

The Standard Model (SM) of elementary particles has been tested in numerous high-precision
experiments, showing its uniquely powerful predicting ability in a wide range of physical processes.
However, the lack of answers to fundamental questions, such as the problems of hierarchy, dark
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matter, neutrino mass, etc., implies that the SM can well be a low-energy effective theory of a more
fundamental one. Therefore, the search for New Physics (NP) beyond the SM is one of the most
important tasks of modern physics. Such searches can go directly by aiming at higher energies
and looking for new particles beyond the SM, or indirectly by scrutinizing possible NP effects in
high-luminosity measurements. While the direct searches have not observed any NP signals so far,
the second approach has provided some interesting hints of NP in several decay channels of the beauty
mesons. One of the most exciting hints is the persistent excess of the measured branching fractions of
the semileptonic decays B→ D(∗)τν̄τ over the SM prediction, which may imply violation of lepton
flavor universality (LFU), and is widely known in the literature as “the RD(∗) puzzle” [1].

The ratios of branching fractions RD(∗) ≡ B(B̄0 → D(∗)τ−ν̄τ)/B(B̄0 → D(∗)`−ν̄`), where ` = e, µ,
are often considered in order to reduce the hadronic uncertainties and to cancel the dependence on
the Cabibbo–Kobayashi–Maskawa (CKM) matrix element |Vcb|. Independent measurements of RD(∗)

by the BABAR [2,3], Belle [4–6], and LHCb [7,8] collaborations showed a combined excess of about
4σ over the SM prediction, based on the analysis [9] of the Heavy Flavor Averaging Group (HFLAV)
in summer 2018. Very recently, the Belle collaboration reported a new measurement of the ratios of
RD(∗) [10]. Their results (first presented at Moriond 2019)

RD = 0.307± 0.037 (stat)± 0.016 (syst), RD∗ = 0.283± 0.018 (stat)± 0.014 (syst), (1)

agree with the average SM predictions [9,11–14]

RD = 0.299± 0.003, RD∗ = 0.258± 0.005, (2)

within 0.2σ and 1.1σ, respectively. The inclusion of these new results reduces the overall tension with
the SM from 4σ to 3.1σ, and the global average values now read [9]

RD = 0.340± 0.030, RD∗ = 0.295± 0.014. (3)

Even though the tension is now somehow reduced, the puzzle remains unsolved and attractive.
One of the reasons is that similar anomalies also appear in other B meson decays (see, e.g., [15] for a
recent review). In particular, the recent LHCb measurement [16] of the ratio of branching fractions

RJ/ψ ≡
B(Bc → J/ψτν)

B(Bc → J/ψµν)
= 0.71± 0.17 (stat)± 0.18 (syst) (4)

also exceeds the SM predictions [17–19] at about 1.5σ. It is important to note that the decays Bc →
J/ψ`ν and B → D(∗)`ν are described by the same transition b → c`ν at the quark level. The excess
of RJ/ψ over the SM predictions therefore implies hints of NP in the b→ cτντ transition, once again.
It also suggests the consideration of the decay Bc → ηcτν as a promising probe of NP.

The RD(∗) and RJ/ψ puzzles have been the motivation of a huge number of theoretical studies,
which can be divided into two basic categories: Specific models of NP and general effective Lagrangian
approaches. The first approach explains the discrepancies by assuming the participation of additional
mediators beyond the SM, such as charged Higgs bosons, W ′ boson, leptoquarks, etc., in the given
process. Such models are well constructed, and the new mediators have some definite properties that
can be tested by experiments. However, at the same time, they suffer from stringent experimental
constraints coming from various processes, also including direct searches at the Large Hadron Collider
(LHC). Details on these models can be found in the recent papers [20–26] and references therein. In the
second approach, one starts with a general effective Hamiltonian for the weak b → c`ν transition
that includes both the SM and beyond-SM contributions in the form of dimension-six four-fermion
operators. Experimental constraints on various physical observables in the decays are then used to
discriminate between different NP scenarios. This approach is more general and exploratory in the
sense that it may provide important insights for further construction of NP models if the discrepancy
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with the SM is confirmed. There is a large number of analyses using this approach in the literature.
We therefore mention here only a few pioneering studies [27–31] as well as very recent papers [32–37].

Following the general Hamiltonian approach and using the hadronic form factors obtained in the
covariant constituent quark model (CCQM), we have studied the B-meson anomalies in a series of
papers [38–41]. We have shown in detail how various polarization observables could help distinguish
between NP contributions. In particular, we found that the longitudinal polarization fraction FD∗

L
of the D∗ meson in the decay B0 → D∗τντ is very sensitive to the scalar and tensor four-fermion
operators, and the effects are opposite: The scalar operator enhances, while the tensor one lowers the
value of FD∗

L [38] (also see [42–44]). Recently, the Belle collaboration reported their first measurement
of the fraction FD∗

L [45], and the result was quite curious. For the electron mode, their measured value
FD∗

L (B0 → D∗e+νe) = 0.56± 0.02 agrees very well with our prediction of 0.54 [46], while for the tau
mode, their result FD∗

L (B0 → D∗τ+ντ) = 0.60± 0.08 (stat)± 0.04 (syst) lies at about 1.6σ above our
prediction of 0.46 [46]. Based on our analysis [39], one sees that this enhancement, if confirmed, is clear
evidence of the scalar operator.

Moreover, the longitudinal polarization of the tau in B→ D∗τντ was also observed for the first
time in a recent experiment at Belle [6]. Even though the result Pτ

L = −0.38± 0.51 (stat)+0.21
−0.16 (syst)

still suffers from large uncertainties, this observation gives a clear message that more accurate data
will soon be available at Belle II. In light of the new experimental data, we redo the global fit for the
NP Wilson coefficients with particular focus on the new measurement of D∗ polarization [45] and its
impact on the overall picture. The rest of the paper is organized as follows: In Section 2, we introduce
some formalism concerning the semileptonic B decay and the NP effective Hamiltonian. Section 3 is
dedicated to the calculation of the form factors in the CCQM. Numerical results and their discussion
are given in Section 4. Finally, we briefly conclude in Section 5.

2. Theoretical Framework

In the model-independent approach, the SM is extended by considering a general effective
Hamiltonian for the quark-level transition b → c`ν (` = e, µ, τ) constructed from all dimension-six
operators as follows (i = L, R) [47–49]:

He f f =
4GFVcb√

2

(
OVL + ∑

X=Si ,Vi ,TL

δτ`XOX

)
, (5)

where the four-fermion operators OX are given by

OVi = (c̄γµPib)
( ¯̀γµPLν`

)
, (6)

OSi = (c̄Pib)
( ¯̀PLν`

)
, (7)

OTL = (c̄σµνPLb)
( ¯̀σµνPLν`

)
. (8)

Here, σµν = i
[
γµ, γν

]
/2, PL,R = (1∓γ5)/2, and Xs are the complex Wilson coefficients governing

the NP contributions. The tensor operator with right-handed quark current simply does not contribute.
One recovers the SM Hamiltonian by setting VL,R = SL,R = TL = 0. We have assumed that NP only
couples to the third-generation leptons, and neutrinos are left-handed.

The matrix element of the semileptonic decays B→ D(∗)τντ and Bc → J/ψ(ηc)τντ can be written
in the following general form, where P (V) denotes a pseudoscalar (vector) meson:

M =MSM +
√

2GFVcb ∑
X

X · 〈V(P′)|c̄ΓXb|P〉 · τ̄ΓXντ , (9)

where ΓX is the Dirac matrix corresponding to the operator OX. The hadronic part in the matrix
element is parametrized by a set of invariant form factors depending on the momentum transfer
squared q2 between the two hadrons. For the P→ P′ transition, one has
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〈P′(p2)|c̄γµb|P(p1)〉 = F+(q2)Pµ + F−(q2)qµ, (10)

〈P′(p2)|c̄b|P(p1)〉 = (m1 + m2)FS(q2), (11)

〈P′(p2)|c̄σµν(1− γ5)b|P(p1)〉 =
iFT(q2)

m1 + m2

(
Pµqν − Pνqµ + iεµνPq

)
, (12)

where P = p1 + p2, q = p1 − p2, εµνPq ≡ εµναβPαqβ, and the mesons are on shell: p2
1 = m2

1 = m2
P, and

p2
2 = m2

2 = m2
V(P′). The P→ V transition form factors are defined by

〈V(p2)|c̄γµ(1∓ γ5)b|P(p1)〉 =
ε†

2α

m1 + m2

[
∓ gµαPqA0(q2)± PµPα A+(q2)

±qµPα A−(q2) + iεµαPqV(q2)
]
, (13)

〈V(p2)|c̄γ5b|P(p1)〉 = ε†
2αPαGP(q2), (14)

〈V(p2)|c̄σµν(1− γ5)b|P(p1)〉 = −iε†
2α

[ (
Pµgνα − Pνgµα + iεPµνα

)
GT

1 (q
2)

+ (qµgνα − qνgµα + iεqµνα) GT
2 (q

2)

+
(

Pµqν − Pνqµ + iεPqµν
)

Pα GT
0 (q

2)

(m1 + m2)2

]
, (15)

where ε2 is the polarization vector of the V meson which satisfies the condition ε†
2 · p2 = 0.

The differential decay widths are written in terms of helicity amplitudes which, in turn,
are combinations of the invariant form factors (see, e.g., [38] for the full expressions). One has

dΓ(P→ V(P′)τν)

dq2 =
G2

F|Vcb|2|p2|q2

(2π)312m2
1

(
1− m2

τ

q2

)2
· HV(P′)

tot , (16)

where

HP′
tot = |1 + gV |2

[
|H0|2 + δτ(|H0|2 + 3|Ht|2)

]
+

3
2
|gS|2|HS

P|2

+3
√

2δτRegS HS
PHt + 8|TL|2(1 + 4δτ)|HT |2 + 12

√
2δτReTL H0HT , (17)

HV
tot = (|1 + VL|2 + |VR|2)

[
∑

n=0,±
|Hn|2 + δτ

(
∑

n=0,±
|Hn|2 + 3|Ht|2

)]
+

3
2
|gP|2|HS

V |2

−2ReVR
[
(1 + δτ)(|H0|2 + 2H+H−) + 3δτ |Ht|2

]
− 3
√

2δτRegPHS
V Ht

+8|TL|2(1 + 4δτ) ∑
n=0,±

|Hn
T |2 − 12

√
2δτReTL ∑

n=0,±
Hn Hn

T . (18)

Here, δ` ≡ m2
`/2q2 is the helicity flip factor, and |p2| = λ1/2(m2

1, m2
2, q2)/2m1 is the momentum

of the daughter meson in the rest frame of the parent meson. For simplicity, we have introduced
gV ≡ VL + VR, gS ≡ SL + SR, and gP ≡ SL − SR. Note that in this paper, we do not consider
interference terms between different NP operators since we assume the dominance of only one NP
operator besides the SM contribution.

The polarization of the D∗ meson can be studied by considering the cascade decay B0 → D∗(→
D0π)`ν̄`. The fourfold differential decay distribution is written in terms of the momentum transfer
squared q2, two polar angles, θ and θ∗ in the dilepton and D∗ rest frames, respectively, and one
azimuthal angle χ, which are defined in Figure 1. One has

d4Γ(B0 → D∗(→ D0π)`ν̄`)

dq2d cos θdχd cos θ∗
=

9
8π
|N|2B(D∗ → D0π)J(θ, θ∗, χ), (19)
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where

|N|2 =
G2

F|Vcb|2|p2|q2

(2π)312m2
1

(
1−

m2
`

q2

)2
. (20)

The full angular distribution J(θ, θ∗, χ) is expanded on a trigonometric basis as follows:

J(θ, θ∗, χ)

= J1s sin2 θ∗ + J1c cos2 θ∗ + (J2s sin2 θ∗ + J2c cos2 θ∗) cos 2θ

+J3 sin2 θ∗ sin2 θ cos 2χ + J4 sin 2θ∗ sin 2θ cos χ

+J5 sin 2θ∗ sin θ cos χ + (J6s sin2 θ∗ + J6c cos2 θ∗) cos θ

+J7 sin 2θ∗ sin θ sin χ + J8 sin 2θ∗ sin 2θ sin χ + J9 sin2 θ∗ sin2 θ sin 2χ, (21)

where Ji(a) (i = 1, . . . , 9; a = s, c) are angular coefficient functions, explicit expressions of which can be
found in [38]. A novel model-independent method for measuring the angular coefficients was recently
discussed in [50]. In this paper, we are interested in the polarization of the D∗ meson, for which we
need only J1s(c) and J2s(c). One has

4J1s =
3 + 2δτ

4
(|1 + VL|2 + |VR|2)(|H+|2 + |H−|2)− (3 + 2δτ)ReVRH+H−

−8
√

2δτReTL(H+H+
T + H−H−T ) + 4(1 + 6δτ)|TL|2(|H+

T |
2 + |H−T |

2), (22)

4J1c = 2|SR − SL|2|HS
V |2 + 4

√
2δτRe(SR − SL)HS

V H0t

+(|1 + VL|2 + |VR|2 − 2ReVR)
[
4δτ |Ht|2 +

(
1 + 2δτ

)
|H0|2

]
−16

√
2δτReTL H0H0

T + 16(1 + 2δτ)|TL|2|H0
T |2, (23)

4J2s =
1
4
(1− 2δτ)

[
(|1 + VL|2 + |VR|2)(|H+|2 + |H−|2)

−4ReVRH+H− − 16|TL|2(|H+
T |

2 + |H−T |
2)
]
, (24)

4J2c = (1− 2δτ)
[
− (|1 + VL|2 + |VR|2 − 2ReVR)|H0|2 + 16|TL|2|H0

T |2
]
. (25)

Note again that we do not consider interference terms between different NP operators.

B̄ 0

D �+
�

D 0

+

W ��

�

¯�

χ

x

Figure 1. Definition of the angles θ, θ∗, and χ in the cascade decay B̄0 → D∗+(→ D0π+)τ− ν̄τ .

After an integration of Equation (19) over all angles, one obtains the familiar differential decay rate

dΓ(B0 → D∗`ν̄`)

dq2 = |N|2 Jtot, Jtot = 3J1c + 6J1s − J2c − 2J2s. (26)
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For convenience, we define a normalized full angular distribution J̃(θ∗, θ, χ) as follows:

J̃(θ∗, θ, χ) =
9

8π

J(θ∗, θ, χ)

Jtot
. (27)

One can easily check that the normalized angular distribution J̃(θ∗, θ, χ) integrates to 1 after
cos θ∗, cos θ, and χ integrations. By integrating Equation (19) over cos θ and χ, one obtains the
hadron-side cos θ∗ distribution, whose normalized form can be written as

J̃(θ∗) =
3
4

(
2FL(q2) cos2 θ∗ + FT(q2) sin2 θ∗

)
, (28)

where FL(q2) and FT(q2) are the polarization fractions of the D∗ meson and are defined by

FL(q2) =
3J1c − J2c

Jtot
, FT(q2) =

6J1s − 2J2s

Jtot
, FL(q2) + FT(q2) = 1. (29)

3. Form Factors in the Covariant Constituent Quark Model

The covariant constituent quark model has been developed by our group in a series of papers
(see, e.g., [51,52]). We only mention here some important features of the model for completeness.
More detailed descriptions of the model and the calculation techniques can be found in [51–55]. In the
CCQM, the interaction Lagrangian of a meson M with its constituent quarks is constructed from the
meson field M(x) and the interpolating quark current JM(x):

Lint = gM M(x)JM(x) + H.c., (30)

JM(x) =
∫

dx1

∫
dx2 FM(x; x1, x2)q̄a

2(x2)ΓMqa
1(x1), (31)

where ΓM = I, ΓM = γ5, and ΓM = γµ for a scalar, a pseudoscalar, and a vector meson, respectively.
The quark–meson coupling gM is determined by using the compositeness condition ZM = 0, where
ZM is the wave function renormalization constant of the meson.

Nonlocality of the quark–meson interaction is characterized by the vertex function FM(x; x1, x2),
whose form reads

FM(x; x1, x2) = δ(4) (x− w1x1 − w2x2) ΦM

(
(x1 − x2)

2
)

, (32)

where wi = mqi /(mqi + mqj) and (i, j = 1, 2), so that w1 + w2 = 1. This form of the vertex function
satisfies the translational invariance. It has been shown in our previous work that the concrete form of
the function ΦM

(
(x1 − x2)

2
)

has small effects on the final physical results. Therefore, for simplicity, it
is assumed to have the following Gaussian form in the momentum representation:

Φ̃M

(
−p2

)
= exp

(
p2/Λ2

M

)
. (33)

The parameter ΛM is a free parameter of the model that characterizes the finite size of the meson.
In the framework of the CCQM, hadronic matrix elements are described by Feynman diagrams

which are written as convolutions of quark propagators and vertex functions. Regarding the quark
propagators Sq, we use the Fock–Schwinger representation as follows:

Sq(k) = (mq+ 6 k)
∞∫

0

dα exp[−α(m2
q − k2)]. (34)
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The B0 → D(∗) and Bc → J/ψ(ηc) invariant form factors are calculated from the corresponding
one-loop quark diagrams. More details regarding the one-loop evaluation techniques can be found
in [46,56–58], where semileptonic meson decays were computed. A form factor F can be finally written
in the form of a threefold integral

F =

1/λ2∫
0

dt t
1∫

0

dα1

1∫
0

dα2 δ
(

1− α1 − α2

)
f (tα1, tα2), (35)

where f (tα1, tα2) is the resulting integrand corresponding to the form factor F, and λ is a universal
infrared cutoff parameter that guarantees the absence of branching points corresponding to the creation
of free quarks.

Before presenting the results for the form factors, it should be mentioned that the model contains
several free parameters: The constituent quark masses, the hadron size parameters ΛH , and the
universal infrared cutoff parameter λ. These parameters are determined from a least-squares fit to
available experimental data and some lattice calculations. Those parameters involved in this paper are
given by (in Gigaelectron Volts (GeV)) [52]

mu/d ms mc mb λ ΛB ΛBc ΛD ΛD∗ ΛJ/ψ Ληc

0.241 0.428 1.67 5.04 0.181 1.96 2.73 1.60 1.53 1.74 3.78
. (36)

Once the free parameters are fixed, the CCQM can be used as a strong tool to calculate hadronic
quantities. The model has been successfully applied for numerous studies of not only mesons, but also
baryons and other multiquark states.

In the CCQM, the form factors are calculable in the full kinematical momentum transfer region
0 ≤ q2 ≤ q2

max = (m1 −m2)
2. We use FORTRAN codes from the Numerical Algorithms Group (NAG)

library to do the numerical calculation of the threefold integrals in Equation (35). The calculated results
are then interpolated by a double-pole parametrization

F(q2) =
F(0)

1− as + bs2 , s =
q2

m2
1

. (37)

The parameters of the form factors for the B0 → D(∗) and Bc → J/ψ(ηc) transitions are listed in
Tables 1 and 2, respectively. Zero-recoil (or q2

max) values of the form factors are also listed for further
comparison.

Table 1. Parameters of the dipole approximation in Equation (37) for B0 → D(∗) form factors.
Zero-recoil values of the form factors are also listed.

A0 A+ A− V GP GT
0 GT

1 GT
2 F+ F− FS FT

F(0) 1.62 0.67 −0.77 0.77 −0.50 −0.073 0.73 −0.37 0.79 −0.36 0.80 0.77
a 0.34 0.87 0.89 0.90 0.87 1.23 0.90 0.88 0.75 0.77 0.22 0.76
b −0.16 0.06 0.07 0.08 0.06 0.33 0.07 0.07 0.04 0.05 −0.10 0.04

F(q2
max) 1.91 0.99 −1.15 1.15 −0.74 −0.13 1.10 −0.55 1.14 −0.53 0.89 1.11

Table 2. Parameters of the dipole approximation in Equation (37) for Bc → J/ψ(ηc) form factors.
Zero-recoil values of the form factors are also listed.

A0 A+ A− V GP GT
0 GT

1 GT
2 F+ F− FS FT

F(0) 1.65 0.55 −0.87 0.78 −0.61 −0.21 0.56 −0.27 0.75 −0.40 0.69 0.93
a 1.19 1.68 1.85 1.82 1.84 2.16 1.86 1.91 1.31 1.25 0.68 1.30
b 0.17 0.70 0.91 0.86 0.91 1.33 0.93 1.00 0.33 0.25 −0.12 0.31

F(q2
max) 2.34 0.89 −1.49 1.33 −1.03 −0.39 0.96 −0.47 1.12 −0.59 0.86 1.40
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4. Numerical Analysis

In this paper, we assume that, besides the SM contribution, only one NP operator appears at a time.
We also assume that all NP Wilson coefficients appearing in Equation (5) are complex. The allowed
regions for each of these coefficients are obtained by using experimental results for the ratios of
branching fractions RD = 0.340± 0.030, RD∗ = 0.295± 0.014 [9], RJ/ψ = 0.71± 0.25 [16], the upper
limit B(Bc → τν) ≤ 10 % from the LEP1 data [59], and the longitudinal polarization fraction of the
D∗ meson FD∗

L (B→ D∗τντ) = 0.60± 0.09 [45]. Within the SM, our quark model predicts RD = 0.267,
RD∗ = 0.238, RJ/ψ = 0.243, B(Bc → τν) = 2.74%, and FD∗

L (B→ D∗τντ) = 0.45. The theoretical errors
for our predictions are estimated to be of order of 10%.

When the general effective Hamiltonian (5) for the b → c`ν` transition is invoked, the pure
leptonic decay of the Bc meson with a tau in the final state is also affected. To be more specific, all NP
operators except for the tensor one contribute to this channel. The tauonic branching fraction of Bc in
the presence of NP is given by [60]

B(Bc → τν) =
G2

F
8π
|Vcb|2τBc mBc m2

τ

(
1− m2

τ

m2
Bc

)2

f 2
Bc
×
∣∣∣∣∣1− gA +

mBc

mτ

f P
Bc

fBc

gP

∣∣∣∣∣
2

, (38)

where gA ≡ VR − VL, gP ≡ SR − SL, τBc is the Bc lifetime, fBc is the leptonic decay constant of Bc,
and f P

Bc
is a new constant corresponding to the new quark current structure 〈0|q̄γ5b|Bc(p)〉 = mBc f P

Bc
.

In the CCQM, one obtains fBc = 489.3 MeV and f P
Bc

= 645.4 MeV.
First of all, we consider separately the new constraint coming from the recently measured

longitudinal polarization FD∗
L (B → D∗τντ) on the NP Wilson coefficients. The allowed regions

of the last are shown in Figure 2. It is seen that the current data on FD∗
L prefer the scalar scenarios

SL,R, and the right-handed vector coefficient VR is still viable within 1σ. Moreover, the most fruitful
implication of the FD∗

L measurement is that it singly rules out the tensor operator at 1σ, and also
severely constrains it at 2σ. This makes the explanation of the b→ cτν anomalies based solely on the
tensor interaction become less likely.

In Figure 3, we include all of the available constraints on the scalar scenarios at the level of
2σ. The quick observation is that both SL and SR are excluded at 2σ. However, more detailed
notations should be made. Firstly, in both cases, the current data on RJ/ψ and FD∗

L do not provide
any additional effective constraints to those already given by RD, RD∗ , and B(Bc → τντ). Secondly,
the combination of the two well-measured ratios RD and RD∗ prefers SL to SR: SL is well allowed
within 1σ, while SR is almost excluded at 2σ. It is seen that the branching fraction B(Bc → τντ) offers
a very stringent constraint on possible scalar contributions in the b → c semitauonic transition: SL
and SR are ruled out mainly by the constraint B(Bc → τντ) ≤ 10%. If one uses the more relaxed
constraint B(Bc → τντ) ≤ 30% obtained from the Bc lifetime [61], then one finds that SL and SR are
still available at 2σ, but only to a small extent. Better experimental data for B(Bc → τντ) are therefore
highly expected.
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Figure 2. Constraints on the complex Wilson coefficients SL (upper, left), SR (upper, right), VR (lower,
left), and TL (lower, right) from the measurement of FD∗

L (B→ D∗τντ) within 1σ (for SL, SR, VR) and
2σ (for TL). The allowed regions are indicated in gray color.
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The small (large) dash curve represents the constraint B(Bc → τντ) ≤ 10% (B(Bc → τντ) ≤ 30%).
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L (B → D∗τντ) within 1σ, and from the branching fraction
B(Bc → τντ) ≤ 10% (dashed curve).

The constraints on the vector and tensor Wilson coefficients within 1σ are presented in Figure 4.
None of the three operators is allowed at 1σ. Unlike the scalar scenarios, the constraint from the
branching fraction B(Bc → τντ) on the vector operators is still far less strict than that from the ratios
RD, RD∗ , and RJ/ψ. For the tensor scenario, B(Bc → τντ) simply has no effect. At 1σ, the tensor
operator is ruled out either by the combined data for RD, RD∗ , and RJ/ψ, or by the polarization fraction
FD∗

L (B→ D∗τντ) alone (see Figure 2). The new constraint from FD∗
L reduces the likelihood of the VR

scenario, which is now disfavored by either the combination of RD, RD∗ , and RJ/ψ, or the combination
of RD, RD∗ , and FD∗

L . Note that FD∗
L is independent of VL, and therefore, the new measurement of FD∗

L
does not change the situation regarding VL.

Finally, in Figure 5, we show the allowed regions for VL, VR, and TL within 2σ. In each region,
we find a best-fit value and mark it with an asterisk. The best-fit values read

VL = −0.36 + i 0.92, VR = 0.01− i 0.48, TL = 0.04 + i 0.17. (39)

The 2σ allowed regions together with these best-fit values can be used to analyze the effects of
NP operators on various physical observables, as has been done in numerous papers, including our
detailed analyses [38–40].
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Figure 5. Constraints on the complex Wilson coefficients VL (left), VR (center), and TL (right) from the
measurements of RD, RD∗ , RJ/ψ, and FD∗

L (B → D∗τντ) within 2σ, and from the branching fraction
B(Bc → τντ) ≤ 10% (dashed curve). The allowed regions are indicated in gray color. The asterisk
symbols indicate the best-fit values.

In this paper, we redo the analysis using the most updated data, and we present here only
significant changes compared with our previous results. The most important update is that the tensor
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coupling allowed at 2σ has a negligible effect on the ratios RD and Rηc in comparison with that on
RD∗ and RJ/ψ. For demonstration, we show in Figure 6 the differential ratios Rηc(q

2) and RJ/ψ(q2)

assuming the tensor scenario. In the case of the vector operators OVL and OVR , the effects on all of
the ratios RD(∗) and RJ/ψ(ηc) are rather similar. In Table 3 we present the average values of Rηc and
RJ/ψ over the whole q2 region. The predicted ranges for the ratios in the presence of NP are given in
correspondence with the 2σ allowed regions of the NP couplings shown in Figure 5.

Table 3. The q2 average of the ratios in the Standard Model (SM) and in the presence of New
Physics (NP).

< Rηc > < RJ/ψ >

SM 0.26 0.24
VL [0.26, 0.38] [0.25, 0.35]
VR [0.25, 0.41] [0.25, 0.36]
TL [0.25, 0.28] [0.24, 0.36]
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Figure 6. Differential ratios Rηc (q
2) (left) and RJ/ψ(q2) (right) in the tensor scenario. The black dashed

lines are the SM predictions; the gray bands include NP effects corresponding to the 2σ allowed regions
in Figure 5; the red dot-dashed lines represent the best-fit value of the corresponding NP coupling
given in Equation (39).

Finally, we focus on the prediction for the longitudinal polarization of the final tau, since it has
been measured recently (in the decay B → D∗τντ [6]), and more precise results are expected to be
coming in the near future. The longitudinal polarization reads [39]

PP→P′
L (q2) =

1
HP′

tot

{
− |1 + gV |2

[
|H0|2 − δτ(|H0|2 + 3|Ht|2)

]
+ 3
√

2δτRegS HS
P Ht

+
3
2
|gS|2|HS

P|2 + 8|TL|2(1− 4δτ)|HT |2 − 4
√

2δτReTL H0HT

}
, (40)

PP→V
L (q2) =

1
HV

tot

{
(|1 + VL|2 + |VR|2)

[
−∑

n
|Hn|2 + δτ(∑

n
|Hn|2 + 3|Ht|2)

]
−2ReVR

[
(1− δτ)(−|H0|2 + 2H+H−) + 3δτ |Ht|2

]
− 3
√

2δτRegPHS
V Ht

+
3
2
|gP|2|HS

V |2 + 8|TL|2(1− 4δτ) ∑
n=0,±

|Hn
T |2 + 4

√
2δτReTL ∑

n=0,±
Hn Hn

T

}
. (41)

Note that the tau longitudinal polarization is defined in the W∗ rest frame, not in the parent
B-meson rest frame.

The longitudinal polarization Pτ
L is not affected by the vector operators. The q2 dependence of

Pτ
L in the tensor scenario is presented in Figure 7. The q2 averaged values of Pτ

L are shown in Table 4.
The current status of experimental data has ruled out the scalar operators at 2σ, and the tensor operator
is the only NP contribution that has an impact on Pτ

L . Moreover, the effects of OTL on < Pτ
L (D) > and
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< Pτ
L (ηc) > are small. Specifically, the best-fit value suggests a large enhancement of < Pτ

L (D∗) >,
which can be tested in high-precision experiments at Belle II.
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Figure 7. Longitudinal polarization of the τ in the decays B0 → Dτν (left) and B0 → D∗τν (right) in
the tensor scenario. Notations are the same as in Figure 6.

Table 4. The q2 average of the longitudinal polarization in the SM and in the presence of NP.

< Pτ
L (D) > < Pτ

L (D∗) > < Pτ
L (ηc) > < Pτ

L (J/ψ) >

SM 0.33 −0.50 0.36 −0.51
TL [0.28, 0.37] [−0.50,−0.33] [0.31, 0.40] [−0.51,−0.34]

Best-fit (TL) 0.30 −0.33 0.33 −0.34
Experiment −0.38± 0.51+0.21

−0.16 [6]

5. Conclusions

Inspired by recent Belle measurements of the polarization observables Pτ
L and FD∗

L in the
B→ D∗τντ decay, as well as the ratios RD(∗) , we have revisited the flavor anomalies in the semileptonic
transition b → cτν based on an effective Hamiltonian consisting of vector, scalar, and tensor
four-fermion operators. The form factors parametrizing the corresponding hadronic transitions
B→ D(∗) and Bc → J/ψ(ηc) have been calculated in our covariant constituent quark model. Under
the assumption of one-operator dominance, we have obtained the available regions for the Wilson
coefficients characterizing the NP contributions using the most updated experimental constraints from
the ratios RD(∗) and RJ/ψ, the leptonic branching B(Bc → τν) ≤ 10%, and the polarization fraction
FD∗

L . In particular, we have discussed the effects of the new constraint from FD∗
L on the overall picture.

It turned out that at the level of 2σ, the scalar coefficients SL,R are excluded (mainly by the
constraint B(Bc → τν) ≤ 10%), while the vector (VL,R) and tensor (TL) ones are still available. If the
upper limit on B(Bc → τν) is relaxed up to 30%, then SL and SR are also allowed at 2σ, but only
minimally. However, all coefficients are ruled out at 1σ. The recent measurement of FD∗

L provides
a severe constraint on the tensor scenario. In particular, the tensor scenario is excluded at 1σ by
the constraint from FD∗

L alone. We have also observed that the effects of the tensor operator on the
differential ratios RD(q2) and Rηc(q

2) are now negligible. Finally, within the 2σ allowed regions of the
corresponding Wilson coefficients, we have provided predictions for the q2 average of the ratios of
branching fractions and the tau longitudinal polarization, which will be useful for future testing of
LFU in these decays.
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