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Abstract: Up to date, quantum electrodynamics (QED) is the most precisely tested quantum field
theory. Nevertheless, particularly in the high-intensity regime it predicts various phenomena
that so far have not directly been accessible in all-optical experiments, such as photon-photon
scattering phenomena induced by quantum vacuum fluctuations. Here, we focus on all-optical
signatures of quantum vacuum effects accessible in the high-intensity regime of electromagnetic
fields. We present an experimental setup giving rise to signal photons distinguishable from the
background. This configuration is based on two optical pulsed petawatt lasers: one generates a
narrow but high-intensity scattering center to be probed by the other one. We calculate the differential
number of signal photons attainable with this field configuration analytically and compare it with the
background of the driving laser beams.
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1. Introduction

Shortly after Dirac predicted the positron and introduced his idea of the Dirac-Sea [1–3],
Sauter used his theory to describe the creation of an electron-positron pair in presence of a strong
electromagnetic field [4]. In the 1930s, Heisenberg and Euler formulated a Lagrangian—the famous
Heisenberg–Euler–Lagrangian LHE—that averages over the virtual electron-positron fluctuations. The
latter predicts nonlinear self-interaction of electromagnetic fields in the quantum vacuum, facilitating
photon-photon-scattering phenomena [5–7].

A relevant scale in the Heisenberg–Euler–Lagrangian is the critical field strength Ecrit =

c3m2
e / (e h̄) ≈ 1.3 × 1018 V m−1 or Bcrit = Ecrit/c ≈ 4 × 109 T, respectively. Here me is the

electron mass, e the elementary charge, c the speed of light, and h̄ Planck’s reduced constant.
We characterize a field as strong if it approaches the order of magnitude of this threshold. Due to
the large advances in laser technology during recent decades, it might become possible to find
signatures of quantum vacuum nonlinearities in experiments with strong laser fields in the near
future. Various phenomenona of quantum vacuum nonlinearity, e.g., photon-photon scattering,
vacuum birefringence, quantum reflection, photon splitting, and more, appear to be detectable with
state-of-the-art lasers [8–32].

In this work, we focus on photon-photon scattering as a signal of effective nonlinear interactions
of electromagnetic fields mediated by quantum fluctuations. We use the Heisenberg–Euler–Lagrangian
LHE to obtain an analytic expression for the density of signal photons by using the emission picture at
one-loop order. Furthermore, to simplify our calculations we restrict ourselves to Gaussian beams in
the limit of infinite Rayleigh lengths. As a means to enhance the signal we suggest a laser setup with
two high-intensity lasers, one of which is split into three different pump beams of different frequencies.
In Section 3 we explain this configuration and study the attainable signals in the following Section 4.
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We derive the differential number of signal photons and compare these results with the background
constituted by the driving laser beams. Ultimately, we show how to generate a spatially localized
scattering center which leads to signal photons scattered wide enough to be distinguishable from the
background photons.

2. Theoretical Background

In the following steps we use the Heaviside–Lorentz system with natural units (h̄ = c = 1).
Our metric convention is gµν = diag (−,+,+,+).

For describing the QED vacuum including vacuum fluctuations we use the
Heisenberg–Euler–Lagrangian, LHE = LMW + LNL, where LMW = − (1/4) FµνFµν denotes
the Maxwell Lagrangian with the field strength tensor Fµν and LNL accounts for higher-order,
non-linear terms in Fµν extending Maxwell’s linear theory in vacuum [5,6,33]. We want to focus on
signal photons created by these nonlinearities of the QED vacuum. To describe them we choose
the vacuum emission picture [30,34–37]. In order to obtain a sizable amount of these photons we
need a strong background field which we denote with F̄µν; additionally, the absolute value of this
field is denoted by F̄. The Heisenberg-Euler-Lagrangian depends on the background fields via the
invariant quantities

F =
1
4

F̄µν F̄µν =
1
2

(
B2 − E2

)
and G =

1
4

˜̄Fµν F̄µν = −B · E , (1)

using the dual field strength tensor F̃µν = −1/2 εµναβFαβ and the vector representation of the electric
field strength E and magnetic field strength B. We use the one-loop and lowest-order expansion of the
nonlinear term of the Heisenberg-Euler effective Lagrangian,

Leff =
2

45
α2

m2
e

(
4F 2 + 7G2

)
+ m4

e O
((

αF̄2

m4
e

)3)
, (2)

with the fine-structure-constant α = e2/ (4π) ≈ 1/137 [5,6,24]. Obviously, the corresponding
diagrams are

Leff =

×

×

×

× +

×

× ×

×

×× + . . . (3)

and contain only even numbers of external photons, according to Furry’s theorem [38]. The leading
order in Equation (3) is the coupling of four photons via a virtual electron-positron vacuum fluctuation;
all higher orders will be suppressed by powers of αF̄2/m4

e ∝ F̄2/E2
cr.

To count the number of signal photons in the vacuum emission picture for the setup described
in Section 3, it is necessary to evaluate the signal photon amplitude S(p) (k). This is the scattering
amplitude from the vacuum state to one signal photon γ(p) (k) with polarization (p) and three
dimensional wave vector k = k k̂ with k̂ = (cos ϕ sin ϑ, sin ϕ sin ϑ, cos ϑ). We can determine the
signal photon amplitude as [30]

S(p) (k) =
〈

γ(p) (k)
∣∣∣ Γint [Ā (x)]

∣∣∣ 0
〉

LCFA≈ i
ε
∗µ
(p) (k)√

2k0

∫
d4x eikαxα

(
kν F̄νµ

∂Leff
∂F + kν ˜̄Fνµ

∂Leff
∂G

)
, (4)

where Γint [Ā (x)] is the effective action governing the nonlinear interaction of electromagnetic fields
characterized by the electromagnetic vector potential Ā (x) and ε∗µ denotes the polarization of the
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signal photons with wave vector k. Please note that k = k0 =
√

k2
x + k2

y + k2
z. The typical spatial and

temporal scales characterizing the driving laser beams are much larger than the reduced Compton
wavelength λ̄C = 1/me ≈ 3.86× 10−13 m and Compton time τC ≈ 1.29× 10−21 s of the electron,
respectively. This justifies to use the locally constant field approximation (LCFA) [21,24,30,34] adopted
in the second line of Equation (4) .

In the LCFA, S(p) (k) is determined by the derivatives of the effective one-loop
Heisenberg–Euler–Lagrangian{

∂Leff
∂F

∂Leff
∂G

}
=

e2

4π

1
45

(
e

m2
e

)2
{

4F (x)
7G (x)

}
+O

((
eF̄
m2

e

)4
)

, (5)

where the fine-structure-constant α is expressed via the elementary charge e. In the limit of weak
electromagnetic fields—weak compared to the critical field strength Ecrit—we neglect higher-order
terms of O

((
eF̄/m2

e
)4
)

, and the signal photon amplitude can be expressed as

S(1) (k) =
1
i

e2

4π

m2
e

45

√
k0

2

(
e

m2
e

)3 ∫
d4x eikα xα

(
4
[
e(1) · E − e(2) · B

]
F + 7

[
e(1) · B + e(2) · E

]
G
)

, (6)

and S(2) (k) = S(1) (k)
∣∣∣ e(1)→e(2)
e(2)→−e(1)

. Here we introduced the unit vectors e(p) with p ∈ {1, 2}, which span

the polarizations of the signal photon. We define them by e(1) = (cos ϕ sin ϑ, sin ϕ cos ϑ, − sin ϑ) and
e(2) = (− sin ϕ, cos ϕ, 0).

3. Geometrical Setup

We suggest a special collision geometry of the driving laser pulses generating a tightly focused
field configuration. For later references, we distinguish between pump and probe laser fields.
The superposition of several pump pulses results in a narrow strongly peaked field region with
is probed by the counter propagating probe beam. Here we consider two high-intensity optical laser
beams, each with a photon energy ω0 = 2π/λ = 1.55 eV. In SI units the associated wavelength
is λ = 800 nm. Both lasers belong to the petawatt class and deliver a pulse duration of τ = 25 fs,
focused to a beam waist size wi = λ. For the probe laser we assume a total pulse energy of W = 25 J
and for the pump pulse a total energy of Wpump = 50 J. As noted above, the latter will be partitioned
into several pulses. Laser facilities providing beams of such energies are available by now [30,39–41].
The peak field strength E? associated with a pulse energy W = 25 J is

E? =
√

2

√
2
π

Wω2
0

π3τ
≈ 1.1× 1015 V

m
, (7)

and satisfies the approximations done in Section 2.
The pulsed laser of pulse energy Wpump = 50 J constitutes the pump field. Instead of limiting

ourselves to a single pump beam we use it to generate a high-intensity localized field configuration by
splitting it into three parts which are subsequently superimposed, thereby producing a particularly
strong field in the common beam focus. This composition can be achieved by using optical mirrors or
beam splitters before focusing [42]. Furthermore, we want to equip all three colliding pump beams
with different frequencies, i.e., we want to achieve ω0 → νiω0, where νi denotes a natural number;
see below. Experimentally, high-harmonic generation is one way to realize several beams of different
frequencies from a single driving beam. This leads us to introduce frequency factors νi which are
ν1 = 1, ν2 = 2 and ν3 = 4. We focus on three pump lasers plus one additional probe laser; therefore we
label the probe laser with i = 0 and the pump laser with i ∈ {1, 2, 3}. Each higher-harmonic generation
implies losses; for the frequency doubling process conserving the pulse duration τ, the loss factor
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can be estimated as 59.55%, as shown experimentally in [43]. Hence, when aiming at using this
technique to generate a strong confined electromagnetic field it is indispensable to account for losses
of the pulse energy in the conversion process. In line with the above estimate of the loss factor,
we assume a conversion efficiency of the pulse energy of 40.45% for every high-harmonic generation
including mirrors and splitters. The first pump laser keeps its frequency and hence pulse energy
resulting in an effective pulse energy of Weff

1 = 25 J. We divide the remaining pump pulse energy
into two pules with W2 = 15.55 J and W3 = 9.55 J. Note, however, after frequency doubling only an
effective pulse energy of Weff

2 = 6.25 J remains for the second pump laser and Weff
3 = 1.5625 J for the

third, respectively. We can convert theses different pulse energies to the corresponding field strength
amplitudes, see Equation (7), and determine relative amplitudes Ai measuring theses fields in terms of
the peak field strength E?. This results in A1 = 1, A2 = 0.5, and A3 = 0.25. We use theses amplitudes
in the subsequent section to introduce a general expression for the field profile Ei (x); see Equation (13).
The probe laser is left unaltered, implying W = 25 J, A0 = 1 and ν0 = 1.

Our aim is to generate a narrow high-intensity scattering center. By superimposing laser fields
with different frequency and focusing them on the same spot coherently we try to construct such center.
A small scattering volume with intense field strength could be beneficial in achieving larger values
of scattering angles. Recently, it has been demonstrated that by using the mechanism of coherent
harmonic focusing (CHF) quantum vacuum signatures can be boosted substantially [44,45]. To make
the signal photons distinguishable from the background photons of the driving laser beams we use a
special three dimensional geometry to interfere the pump lasers. Former studies of CHF only consider
counter-propagating laser beams along one axis [37,45]. Here, we want to narrow down the volume
of interaction by colliding pump lasers with different frequencies in a three dimensional geometry,
see Figure 1.

αc

αp

ek1ek2 ek3

ek0

probe

pump

Figure 1. Illustration of the setup. The three red arrows represent the unit wave vectors eki (i ∈ {1, 2, 3})
for the pump field. They form a right triangular pyramid where the isosceles are described by theses
three unit wave vectors eki . The angle between them are 90◦ and the angle between these and the
distance perpendicular to the base is αc ≈ 54.74◦. Besides, the blue arrow symbolizes the unit wave
vector ek0 of the probe beam; it includes the angle αp ≈ 125.26◦ with each pump unit wave vector.

For the pump laser beams we choose the wave vectors ki = νiω0 eki with i ∈ {1, 2, 3}, where the
unit wave vectors are

ek1 =

(
−
√

2
3

, 0,
1√
3

)
, ek2 =

(
1√
6

, − 1√
2

,
1√
3

)
, and ek3 =

(
1√
6

,
1√
2

,
1√
3

)
. (8)
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The angle between two pump wave vectors is 90◦, i.e., eki · ekj = 0. All pump beams are focused
to the same spot which we define as origin of the coordinate system. Furthermore, the angle between
each beam and the z-axis is αc = arctan

√
2. The associated electric and magnetic fields point into the

eEi and eBi directions. The overall profile of each field amplitude is given by the functions Ei (x). In our
coordinate system, the field vectors for the ith pump beam are E i = Ei (x) eEi and Bi = Ei (x) eBi .
We choose

eE1 =

(
1√
3

, 0,

√
2√
3

)
and eE2 = eE3 =

(√
2√
3

, 0, − 1√
3

)
. (9)

The unit vectors for the magnetic field are determined by eBi = eki × eE i .
Now we want to probe the high-intensity region with the probe beam of frequency ω0 and pulse

duration τ. To increase the signature of quantum vacuum nonlinearity we want to maximize the angle
between the probe beam and all pump beams. For the proposed setup the only option is to achieve
that maximum angle by using the probe laser pointing towards the tip of the pyramid formed by the
pump beams, see Figure 1. We denote the wave vector of the probe field with ek0 = −ez, it includes
an angle αp with each pump field wave vectors eki , i ∈ {1, 2, 3}. That angle is connected to αc by
αp = π − αc ≈ 125.26◦. In addition, we choose the polarization of the linear polarized probe beam as
eE0 = ey.

We assume an alignment of all laser beams such that the maxima of intensity of each beam—even
the probe beam—meet at the same point in spacetime. We define the collision center as the origin
in our coordinate system. Each laser beam has a Gaussian profile. To boost the signal we focus all
beams—including the higher harmonics after frequency doubling—to the same beam waist size wi = λ

at the collision center.

4. Results

In this section, we analyze the setup introduced in the previous section, calculate the differential
number of signal photons analytically and discuss the advantages.

4.1. Derivation of the Signal

Let us compute the differential number of signal photons per shot d3N analytically. The signal
amplitude S(p) (k), see Equation (6), yields

S(p) (k) =
1
i

e2

4π

m2
e

45

√
k0

2

(
e

m2
e

)3 3

∑
i,j,l=0

Iijl (k) g(p);ijl

(
k̂
)

(10)

with the Fourier integral

Iijl (k) ≡
∫

d4xeikµxµEi (x) Ej (x) El (x) , (11)

and an additional function g(p);ijl (ϑ, ϕ) depending only on the signal photon angles ϑ and ϕ and the
polarization. This function is determined by the geometry of the unit vectors of all electromagnetic
fields including the unit field vectors of the signal photon; we obtain

g(1);ijl (ϑ, ϕ) = 2
(

e(1) · eE l − e(2) · eBl

) (
eBi · eBj − eE i · eE j

)
− 7

2

(
e(1) · eBl + e(2) · eE l

) (
eBi · eE j + eBj · eE i

)
, (12)

and analogously g(2);ijl (ϑ, ϕ) = g(1);ijl (ϑ, ϕ)
∣∣∣ e(1)→e(2)
e(2)→−e(1)

.

The indices i,j,l in the Fourier integral Iijl (k) and the geometry function g(p);ijl (ϑ, ϕ) parameterize
all possible couplings of the driving laser field amplitudes appearing in the signal photon amplitude.
As the leading term to LHE is quartic in the electromagnetic field, each signal photon γ(p) arises from
the effective interaction of three laser fields: cf. Section 2 above.
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As mentioned in Section 3, in order to model the amplitude profile Ei (x) we use a Gaussian beam
profile in the limit of infinite Rayleigh range [46–48]. Within this assumption, it can be represented as

Ei (x) =
1
2

Ai E? e−4 (
ri−t)2

τ2 e
−

x2
⊥,i

w2
i (ri)

(
eiνi ω0(ri−t) + e−iνi ω0(ri−t)

)
, (13)

where we use the abbreviations ri = eki · x and x2
⊥,i =

∣∣eki × x
∣∣2. The infinite Rayleigh range

approximation is valid for weakly focused laser beams. This is particularly well justified for pump
laser beams generated by higher harmonics.

Aiming at observables, we use the signal amplitude S(p) (k), see Equation (10), together with the
beam profile Ei (x) and the geometry introduced in Section 3 to calculate the differential number of
signal photons

d3N(p) (k) = dkd cos ϑ dϕ
k2

(2π)3

∣∣∣S(p) (k)
∣∣∣2 . (14)

Moreover, we can define a number density for photons in a given frequency range in between ki

and k f . This number density ρ(p)

(
ki, k f , ϑ, ϕ

)
is obtained after integration of Equation (14) over this

frequency range taking into account the volume element k2:

ρ(p)

(
ki, k f , ϑ, ϕ

)
=

1

(2π)3

∫ k f

ki

dk
∣∣∣k S(p) (k)

∣∣∣2 . (15)

For an energy insensitive measurement of the signal photons we thus have ρ(p) (ϑ, ϕ) ≡
ρ(p) (0, ∞, ϑ, ϕ). Finally, we sum over both polarizations and integrate over the solid angles. This leads
us to the total number of signal photons per shot

Ntot =
2

∑
p=1

∫ ∞

0
dϕ

∫ 1

−1
dcos ϑ ρ(p) (ϑ, ϕ) . (16)

4.2. Semi-Analytic Results

In the next step, we want to use the above-mentioned formulae Equations (14) and (15) to derive
results which can be measured in an actual experiment. The main focus lies on the distinguishability
of the predicted signal photons from the background photons of the driving laser beams. First we
provide estimates for the differential numbers of driving laser photons. Afterwards, we present the
attainable numbers of signal photons encoding the signature of quantum vacuum nonlinearity based
on the results derived in Section 4.1.

4.2.1. Driving Laser Beams

In Section 3, we introduced a specific laser beam configuration allowing creating a narrow spatially
confined scattering center of high intensity. This configuration is based on petawatt class lasers reaching
strong electromagnetic field strengths. As we assumed Gaussian beam profiles, the far-field angular
decay of the differential number of laser photons per shot constituting a given driving laser beam
follows as a Gaussian distribution. For the ith laser this quantity is given by [46–48]

d2Ni = dϕ d cos ϑ νi A2
i N?e−2ν2

i π2ϑ2
i (ϑ,ϕ) . (17)

Here, ϑi (ϑ, ϕ) parameterizes the angular decay of the laser photons with respect to the unit wave
vector eki . The factor N? = 2πW/ω0 is determined by the laser properties.
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4.2.2. Signal Photons

To obtain the total number of signal photons per shot Ntot, we have to combine the results for
both polarizations; see Equation (16). Furthermore, we use the parameters encoding geometric and
laser properties introduced in Sections 3 and 4.1 to determine the analytical expressions of d3N(1,2)

and ρ(1,2)

(
ki, k f , ϑ, ϕ

)
. Using ρ (ϑ, ϕ) = ∑2

p=1 ρ(p) (ϑ, ϕ) we perform the integral over the solid angle
numerically, which yields the total number of signal photons in the all-optical regime. We find
Ntot = 325.29 signal photons per shot for the considered setup.

For an enhanced analysis we subdivide the frequencies of the resulting signal photons into several
intervals, allowing for a spectrally resolved analysis of the signal. To this end, we use a frequency
range ki to k f in the number density and integrate over the solid angles. We are in particular interested
in the number of signal photons emitted in the frequency ranges of the driving laser beams. In Table 1
we summarize the total numbers of signal photons per shot associated with different frequency ranges.

Table 1. Total number of signal photons per shot attainable with the suggested setup based on three
pump laser beams of frequencies ω0 = 1.55 eV, 2ω0 = 3.1 eV and 4ω0 = 6.2 eV and one probe beam
of frequency ω0 = 1.55 eV. All beams are pulsed and feature a pulse duration of τ = 25 fs. Moreover,
they are focused to a beam waist of wi = λ = 800 nm. We assume a one petawatt and a two petawatt
laser at our disposal: one generates the pump fields (two petawatt) and one the probe (one petawatt).
This table provides the number of signal photons for different frequency ranges ki to k f .

Initial Frequency ki in eV Final Frequency kf in eV Number of Signal Photons Ntot

0.97 2.13 192.69
2.52 3.68 81.23
5.62 6.78 51.27
0.00 ∞ 325.29

Moreover, we study the angularly resolved signal photon emission characteristics. A Mollweide
projection allows us to transform the spherical data onto a flat chart. Because Mollweide projections
do not change the areas of objects they are particularly suited to illustrate the spatial distribution of
the signal photons. Please note, however, that these projections are not conformal and thus do not
conserve angles.

We present results for the spatial distribution of the signal photons for three frequency regimes,
namely ki,1 = 0.97 eV to k f ,1 = 2.13 eV, ki,2 = 2.52 eV to k f ,3 = 3.68 eV, and ki,3 = 5.62 eV to

k f ,3 = 6.78 eV. For each regime we determine ρ
(

ki, k f , ϑ, ϕ
)

. Figure 2 shows these number densities.
Here, the colors distinguish between different frequency regimes and the brightness indicates the
relative number density. As signal photons of different frequencies are emitted into complementary
directions, they can be depicted in one plot.

4.2.3. Signal-to-Background Separation

In the previous sections, we studied the far-field distributions of both the driving laser photons
and the signal photons encoding the signature of quantum vacuum nonlinearities. If we naively
compare their total numbers, the signature of QED vacuum nonlinearity seems to be undetectable
in an experiment. The driving laser pulses consist of the order of 1020 photons; the signal is made
up of 325 photons per shot. However, taking into account additional properties of the signal we find
possibilities to distinguish the signal from the background of the driving laser photons.

One possibility is the analysis of the spatial distribution of the photons constituting the driving
laser pulses and the signal photons per shot. The Mollweide projection in Figure 3 highlights where
the signal dominates over the driving laser photons. The driving laser photons dominate in the red
shaded areas, while the signal dominates in the green shaded areas. Hence, in all green colored regions
of Figure 3 it is in principle possible to distinguish the signal photons from the background. In all
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frequency ranges, the main peaks in the signal photon distribution coincide with the directions of the
driving laser beams. Besides, the signal photon distribution exhibits additional peaks. These peaks can
be attributed to effective photon-photon interactions. With the suggested setup we manage to scatter
signal photons into areas of lower driving laser intensity, i.e., areas with a much lower background.
Using Figure 2 we identify the frequency regime of the detectable signal photons. Our analysis implies
that especially for the scattered signal photons of frequencies around 4ω0 = 6.2 eV the differential
signal photon number surpasses the background. Correspondingly, focusing, e.g., on the far-field solid
angle regime delimited by ϑ ∈ [80◦, 88◦] and ϕ ∈ [40◦, 52◦] the signal photos should dominate over
the background. We count 3.26 signal photons per shot in this regime. With a repetition rate of one
shot per minute this should result in 195.6 discernible signal photons per hour. Taking into account
the energy distribution in Figure 2 we know that in this region the energy of the detected photons
will be of the order of 4ω0 = 6.2 eV. Besides this region, Figure 3 shows that there are further angular
regimes where the signal dominates over the background. This implies that state-of-the-art petawatt
lasers collided and superimposed in a suitable configuration can induce signatures of photon-photon
scattering accessible under realistic experimental conditions.

Figure 2. Mollweide projection of the differential signal photon number ρ
(

ki, k f , ϑ, ϕ
)

. The longitude
gives the coordinate ϕ and the latitude ϑ. The three different colors denote the considered frequency
regimes, i.e., ki,1 = 0.97 eV to k f ,1 = 2.13 eV (red), ki,2 = 2.52 eV to k f ,3 = 3.68 eV (green) and
ki,3 = 5.62 eV to k f ,3 = 6.78 eV (blue). The color scale is linear and normalized to the maximum values
ρmax of each frequency regime. Next to the main peaks coinciding with the propagation directions of
the driving beams, there are additional, less pronounced peaks in other directions.

Figure 3. Mollweide projection of the differential number of signal photons and driving laser photons
in the all-optical regime. The longitude gives the coordinate ϕ and the latitude ϑ. In the red shaded
areas the driving laser photons dominate, while in the green shaded areas the signal photons dominate.
The color scale is logarithmic and normalized to the maximum values ρmax of each type of signal.



Particles 2020, 3 231

5. Conclusions and Outlook

We used the theoretical basis of QED in strong fields to derive analytical expressions for the
differential numbers of signal photons encoding the signatures of quantum vacuum nonlinearity
in experiments. To achieve a measurable result we introduced a special configuration based on
two optical state-of-the-art petawatt lasers with frequency ω0 = 1.55 eV, pulse duration τ = 25 fs,
and field energies W = 25 J and Wpump = 50 J. The pump laser beam was split into three different
beams, two of which are transformed to higher frequencies 2ω0 and 4ω0 by means of higher harmonic
generation accounting for experimentally realistic losses. Upon aligning these beams in a right
triangular pyramid with an angle of 90◦ between each unit wave vector they form the pump field.
The second laser acts as a probe beam and propagates against the tip of that pyramid. We derived
analytical expressions accounting for the experimental parameters and loss factors and obtained the
differential number of signal photons per shot and the number density. After numerical evaluation
we compared these results with the background of the driving laser beams. We could in particular
identify angular regimes where the differential signal photon number dominates the background,
thereby constituting a prospective signature of QED nonlinearity in experiments.

The results discussed in this article represent the current state of the analysis. Further analyses of
the properties of the signal are under investigation and will be published in the foreseeable future.
One example is the spectral differential number, containing additional information beside the spatial
distribution. In the latter, a widening of the spectral signal can be observed. The spectral width of
the signal photons surpasses the spectral width of the driving lasers. In addition, we can change the
beam properties and geometries for prospective studies, e.g., we can account for different loss factors.
Another interesting modification is to use different pulse durations or beam widths in the focus for the
beams with different frequencies. Both of these quantities sensitively influence the scattering behavior
of the signal photons.
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