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Abstract: We discuss two new density of states approaches for finite density lattice QCD (Quantum
Chromo Dynamics). The paper extends a recent presentation of the new techniques based on Wilson
fermions, while here, we now discuss and test the case of finite density QCD with staggered fermions.
The first of our two approaches is based on the canonical formulation where observables at a fixed
net quark number N are obtained as Fourier moments of the vacuum expectation values at imaginary
chemical potential θ. We treat the latter as densities that can be computed with the recently developed
functional fit approach. The second method is based on a direct grand canonical evaluation after
rewriting the QCD partition sum in terms of a suitable pseudo-fermion representation. In this form,
the imaginary part of the pseudo-fermion action can be identified and the corresponding density may
again be computed with the functional fit approach. We develop the details of the two approaches
and discuss some exploratory first tests for the case of free fermions where reference results for
assessing the new techniques may be obtained from Fourier transformation.
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1. Introduction

One of the major open challenges for numerical lattice field theory is the treatment of QCD
(Quantum Chromo Dynamics) at finite density. The central problem is the fact that at finite density,
the fermion determinant is complex and cannot be used as a probability in Monte Carlo simulations.
Density of states (DoS) techniques have been among the possible strategies for overcoming the complex
action problem since the pioneering days of lattice QCD [1–6]. The key challenge for DoS techniques
is accuracy, since for computing observables, the density needs to be integrated over with a highly
oscillating factor. A simple sampling of the density with histogram techniques will allow one to access
only very low densities.

An important step for the further development of DoS techniques was presented in [7] where,
based on ideas from statistical mechanics [8], a suitable parameterization of the density combined
with restricted vacuum expectation values was used to improve the accuracy for the determination of
the density of states considerably. In a subsequent series of papers, this so-called LLR method was
developed further and assessed for several test cases [9–16]. A related DoS technique, the so-called
functional fit approach (FFA), was proposed in [17] and successfully tested in [18–21].

However, all these DoS techniques were formulated for bosonic systems, and no approach to finite
density lattice QCD with modern DoS techniques had been presented. Finally, in [22], two possible
formulations of DoS techniques for lattice field theories with fermions were suggested. One of the two
formulations is the canonical DoS approach (CanDoS) where the density is computed as a function of
the imaginary chemical potential µ ≡ iθ/β, where β is the inverse temperature. The canonical partition
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sum and observables are then obtained as Fourier moments of the density, and the FFA can be used to
obtain sufficient accuracy also for the highly oscillating integrals for the higher Fourier modes at large
net particle numbers.

The second DoS approach presented in [22] is a direct grand canonical DoS formulation (GCDoS)
based on rewriting the grand canonical partition sum of lattice QCD with a suitable pseudo-fermion
representation and identifying the imaginary part of the action in this representation. Subsequently,
FFA can be applied to evaluate the density as a function of the imaginary part, and again, suitable
integrals over the density give rise to vacuum expectation values of observables.

In [22], the two new DoS approaches were presented for the formulation of lattice QCD with
Wilson fermions, and the first tests were presented for free Wilson fermions at finite density. In this
paper, we now discuss the CanDos formulation and the direct GCDoS approach for the formulation of
lattice QCD with staggered fermions. For the CanDos approach, we also present some exploratory
tests in the free case, which allows one to assess the accuracy of the method with exact results and to
explore the parameters of the new techniques.

2. The Canonical Density of States Approach

In this section, we present the basic formulation of the canonical DoS approach (CanDos) for
finite density lattice QCD. We stress, however, that the CanDoS approach can easily be implemented
for other fermionic theories, e.g., theories with four Fermi interactions generated with auxiliary
Hubbard–Stratonovich fields.

2.1. Canonical Ensemble and Density of States

We study lattice QCD in d dimensions with two degenerate flavors of quarks. The canonical
partition sum at a fixed net quark number N is given by:

ZN =
∫ π

−π

dθ

2π

∫
D[U] e−SG [U] det D[U, µ] 2

∣∣∣∣
µ= i θ

β

e−iθN , (1)

where SG[U] is the Wilson gauge action (we dropped the constant additive term),

SG[U] = − βG
3 ∑

x,ν<ρ

Re Tr Uν(x)Uρ(x + ν̂)Uν(x + ρ̂)† Uρ(x)†. (2)

βG is the inverse gauge coupling, and the path integral measure D[U] in (1) is the product of Haar
measures for the link variables Uν(x) ∈ SU(3). We already integrated out the fermions and obtained
the fermion determinants for the two flavors. D[U, µ] is the Dirac operator at finite chemical potential
µ. In this study of the canonical DoS approach, we use the staggered Dirac operator, but stress that it is
straightforward to implement the formalism also for different discretizations of the Dirac operator,
e.g., for Wilson fermions (compare [22]). The staggered Dirac operator D[U, µ] is given by:

D[U, µ]x,y = m δx,y 13 +
1
2

d

∑
ν=1

ην(x)
[
e µ δν,d Uν(x) δx+ν̂,y − e−µ δν,d Uν(x− ν̂)† δx−ν̂,y

]
, (3)

where ην(x) = (−1)x1+ ...+xν−1 are the staggered sign factors and 13 is the unit matrix in color space.
We work on a d-dimensional lattice of size Nd−1

S × NT , where the temporal (ν = d) extent NT gives the
inverse temperature in lattices units, i.e., β = NT . All boundary conditions are periodic, except for the
anti-periodic temporal (ν = d) boundary conditions for the fermions. m denotes the bare quark mass
and µ the chemical potential.

In order to project the partition function ZN to fixed net quark number N, in (1), the chemical
potential µ is set to µ = iθ/β = iθ/NT and subsequently integrated over the angle θ with a Fourier
factor e−iθN . This Fourier transformation with respect to the imaginary chemical potential sets the



Particles 2020, 3 89

net quark number to N and thus generates ZN . The corresponding free energy density is defined as
fN = − ln ZN/V, where V = Nd−1

S NT denotes the d-dimensional volume.
Bulk observables and their moments can be obtained as derivatives of fN with respect to couplings

of the theory. A simple example, which we also will consider in our numerical tests below, is the chiral
condensate 〈ψ(x)ψ(x) 〉N = ∂ fN/∂m,

〈ψ(x)ψ(x) 〉N = − 2
V

1
ZN

π∫
−π

dθ

2π

∫
D[U] e−SG[U] det D[U, µ] 2 Tr D−1[U, µ]

∣∣∣∣
µ= i θ

β

e−iθN . (4)

The mass derivative leads to the insertion of Tr D−1[U, µ] in the path integral. Similarly, general
vacuum expectation values of some observable O at fixed net quark number N have the form:

〈O〉N =
1

ZN

π∫
−π

dθ

2π

∫
D[U] e−SG [U] det D[U, µ]2O[U, µ]

∣∣∣∣
µ= i θ

β

e−iθN . (5)

The partition sum (1) and the expressions for the vacuum expectation values (5) can be written
with suitable densities ρ

(J)
(θ), which we define as:

ρ
(J)
(θ) =

∫
D[U] e−SG [U] det D[U, µ] 2 J[U, µ]

∣∣∣∣
µ= i θ

β

, (6)

where J[U, µ] is set to J[U, µ] = 1 for the partition sum and to J[U, µ] = O[U, µ] for the vacuum
expectation values of observables. With the densities ρ

(J)
(θ), we may express 〈O〉N and ZN as:

〈O〉N =
1

ZN

π∫
−π

dθ

2π
ρ
(O)
(θ) e−iθN , ZN =

π∫
−π

dθ

2π
ρ
(1)
(θ) e−iθN . (7)

Note that charge conjugation symmetry can be used to show that ρ
(1)
(θ) is an even function such

that ρ
(1)
(θ) needs to be determined only in the range θ ∈ [0, π], which cuts the numerical cost in half

(see, e.g., [22]). A general observable O[U, µ] can be decomposed into even and odd parts under
charge conjugation such that also here, the corresponding densities ρ

(J)
(θ) need to be evaluated only

for θ ∈ [0, π].
Having defined the densities ρ

(J)
(θ) and expressed observables in the canonical ensemble as

integrals over the densities, we now have to address the problem of finding a suitable representation
of the density and how to determine the parameters used in the chosen representation.

2.2. Parametrization of the Density

We need to determine the densities ρ
(J)
(θ) for different operator insertions J as discussed

in the previous section. For notational convenience, in this section, where we now discuss the
parameterization of the densities, we denote all densities as ρ(θ), but stress that we need to determine
the parameters of the different ρ(θ) independently for every choice of J.

The densities ρ(θ) are general functions of θ in the interval [0, π], which for a numerical
determination, we need to describe with only a finite number of parameters. To obtain a suitable
parameterization, we divide the interval [0, π] into M subintervals as,

[0, π] =
M−1⋃
n=0

In, with In = [θn, θn+1], (8)
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where θ0 = 0 and θM = π. Introducing ∆n = θn+1 − θn for the length of the intervals In, we find
θn = ∑n−1

j=0 ∆j for n = 0, 1, ... M. For the densities ρ(θ), we now make the ansatz:

ρ(θ) = e−L(θ), (9)

where the L(θ) are continuous functions that are piecewise linear on the intervals In. We use the
normalization L(0) = 0, which in turn implies ρ(0) = 1. Introducing a constant an and a slope kn for
the linear function in every interval In, we may write L(θ) in the form:

L(θ) = an + kn
[
θ − θn

]
, for θ ∈ In = [θn, θn+1]. (10)

Since the functions L(θ) are normalized to L(0) = 0 and are required to be continuous, we can
uniquely determine the constants an as functions of the slopes kn and write L(θ) in the following
closed form:

L(θ) = dn + θ kn, θ ∈ In, dn =
n−1

∑
j=0

[
k j − kn

]
∆j for n = 0, . . . M, (11)

and express the densities ρ(θ) as:

ρ(θ) = An e− θ kn , θ ∈ In, An = e−dn . (12)

Obviously, the parameterized density ρ(θ) depends only on the kn, i.e., the set of slopes of the
linear pieces in the intervals In. We point out that our parametrization allows one to work with
intervals In of different sizes ∆n such that in regions where the density ρ(θ) varies quickly, one may
choose small ∆n, while in regions of slow variation, one may save computer time by working with
larger ∆n.

2.3. Evaluation of the Parameters of the Density

To compute the slopes kn that determine the densities, we introduce so-called restricted
expectation values 〈 θ 〉n(λ) that are defined as:

〈 θ 〉n(λ) ≡
1

Zn(λ)

θn+1∫
θn

dθ
∫
D[U] e−SG [U] θ e θλ det D[U, µ] 2 J[U, µ]

∣∣∣∣
µ= i θ

β

, (13)

where again either J[U, µ] = 1 or J[U, µ] = O[U, µ] is chosen, depending on whether the slopes
of the density for the partition sum ZN or the vacuum expectation 〈O〉N are being computed.
The corresponding restricted partition sums Zn(λ) we use in (13) are given by:

Zn(λ) ≡
θn+1∫
θn

dθ
∫
D[U] e −SG [U] e θλ det D[U, µ] 2 J[U, µ]

∣∣∣∣
µ= i θ

β

. (14)

In the restricted expectation values 〈 θ 〉n(λ) and the partition sum Zn(λ), the phase angle θ is
integrated only over the interval In. We have also introduced a free real parameter λ, which couples to
θ and enters in exponential form. Varying this parameter allows one to explore the θ-dependence of the
density in the whole interval In fully. Since for imaginary chemical potential µ = iθ/β, the fermion
determinant is real and after squaring also positive, the expectation values 〈 θ 〉n(λ) can be evaluated
without complex action problem in a Monte Carlo simulation as long as the insertions J are real and
positive (for general insertions, J needs to be decomposed into pieces that obey positivity). This is
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a technical issue that may be solved also in other ways, e.g., for a bounded observable, the addition of
a positive constant is a simple option.

The important observation now is that for the parameterization (12) we have chosen for the
densities, 〈 θ 〉n(λ) and Zn(λ) can be computed also in closed form. Writing the partition sum with the
density and then inserting the form (12), one obtains:

Zn(λ) =
∫ θn+1

θn
dθ ρ(θ) e θλ = e− dn

∫ θn+1

θn
dθ e−θ kn e θλ = e− dn

e θn [λ−kn ]

λ− kn

(
e ∆n [λ−kn ] − 1

)
. (15)

From a comparison of (13) and (14), one finds that the restricted vacuum expectation value
〈 θ 〉n(λ) can be computed as the derivative 〈 θ 〉n(λ) = d ln Zn(λ)/dλ, such that also 〈 θ 〉n(λ) can be
found in closed form:

〈 θ 〉n(λ) ≡
d ln Zn(λ)

d λ
= θn +

∆n

1− e−∆n [λ−kn ]
− 1

λ− kn
. (16)

Using a multiplicative and an additive normalization, we bring 〈 θ 〉n(λ) into a standard form
Vn(λ) where the result is expressed in terms of a simple function h(s),

Vn(λ) ≡
〈 θ 〉n(λ)− θn

∆n
− 1

2
= h

(
∆n[λ− kn]

)
with h(s) ≡ 1

1− e−s −
1
s
− 1

2
. (17)

The function h(s) obeys h(0) = 0, h′(0) = 1/12, and lims→±∞ h(s) = ±1/2.
The determination of the slope kn for the interval In now consists of the following steps:

For several values of λ, one computes the corresponding restricted vacuum expectation values 〈 θ 〉n(λ)
defined in (14) and brings them into the normalized form Vn(λ) defined in Equation (17). Fitting
the corresponding data with h

(
∆n[λ − kn]

)
allows one to determine the kn from a simple stable

one-parameter fit. From the sets of the slopes kn, we can determine the densities ρ(θ) using (11) and
(12) and finally compute the observables via the integrals (7).

3. An Exploratory Test of the Canonical DoS Approach in the Free Case

As a first assessment of the new canonical density of states approach, we tested the new method
for the case of free fermions at finite density in two dimensions. This served to verify the method
and the program and allowed for exploring the parameters of the method, such as the number of
intervals In and suitable choices for the values of λ. In addition, for the free case, all steps of the
CanDoS approach could be cross-checked with exact results obtained from Fourier transformation.

3.1. Setting and Reference Results from Fourier Transformation

For this first test, we used the chiral condensate at fixed particle number 〈ψ(x)ψ(x) 〉N = ∂ fN/∂m
as our main observable. For the free case, the corresponding expression (4) reduces to:

〈ψ(x)ψ(x) 〉N = − 2
V

1
ZN

π∫
−π

dθ

2π
det D[µ] 2 Tr D−1[µ]

∣∣∣∣
µ= i θ

β

e−iθN , (18)

where all links in the Dirac operator (3) were set to Uν(x) = 1. For implementing the CanDoS approach
for the condensate, we need the two densities,

ρ
(1)
(θ) = det D[µ] 2

∣∣∣∣
µ= i θ

β

and ρ
(Tr D−1)

(θ) = det D[µ] 2 Tr D−1[µ]

∣∣∣∣
µ= i θ

β

. (19)

For determining the slopes kn of these two densities, we thus have to compute the restricted
expectation values (13) for J = 1 and J = Tr D−1. Normalizing the corresponding Monte Carlo data
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according to (17) and fitting them with h
(
∆n[λ− kn]

)
gives rise to the slopes kn. From the respective

sets of slopes, we find the densities ρ
(1)
(θ) and ρ

(Tr D−1)
(θ) using (11) and (12), and finally, the vacuum

expectation value 〈ψ(x)ψ(x) 〉N is obtained as:

〈ψ(x)ψ(x) 〉N = − 2
V

1
ZN

π∫
−π

dθ

2π
ρ
(Tr D−1)

(θ) e−iθN , ZN =

π∫
−π

dθ

2π
ρ
(1)
(θ) e−iθN . (20)

In the free case, the reference results can be obtained with the help of Fourier transformation.
Furthermore, for the case of two flavors in two dimensions, which we are using for our test, we can
explore the relation det D[µ]2 = det Dnaive[µ] between the determinant of the staggered Dirac operator
D[µ] and the determinant of the naive Dirac operator Dnaive[µ], which in two dimensions is given by:

Dnaive[µ]x,y = m δx,y 12 × 13 +
1
2

2

∑
ν=1

σν × 13

[
e µ δν,2 δx+ν̂,y − e−µ δν,2 δx−ν̂,y

]
, (21)

where σ1 and σ2 are the first two Pauli matrices acting on the Dirac indices of the two-component
spinors used in the naive discretization and 12 is the corresponding unit matrix. All link variables
were set to their trivial values, i.e., they were replaced by the 3× 3 unit matrix 13. The determinant of
the naive Dirac operator can be computed by first diagonalizing Dnaive[µ] in space-time with the help
of Fourier transformation and then taking the product of the corresponding momentum space Dirac
operator determinants over all momenta.

The density ρ
(1)
(θ) then was simply obtained via numerically evaluating det Dnaive[µ] for µ = iθ/β.

For the density ρ
(Tr D−1)

(θ), one may use Jakobi’s formula (d det M/dx = det M Tr[M−1 dM/dx]) for
the derivative of a determinant and the fact that dD/dm = 1 to obtain:

ρ
(Tr D−1)

(θ) = det D[µ] 2 Tr D−1[µ]

∣∣∣∣
µ=i θ

β

=
1
2

d
dm

det D[µ] 2
∣∣∣∣
µ=i θ

β

=
1
2

d
dm

det Dnaive[µ]

∣∣∣∣
µ=i θ

β

. (22)

The vacuum expectation value 〈ψ(x)ψ(x) 〉N can be obtained from (20) by numerically integrating
over θ. For the reference data in the plots below, we implemented this integration with Mathematica.

3.2. Numerical Results for CanDos in the Free Case

Having discussed the observables and the corresponding densities for the free case, as well as
the evaluation of reference data with the help of Fourier transformation, we now come to a brief
exploratory numerical test for the free case in d = 2 dimensions. The results in the plots below were
computed on 16× 16 lattices at a mass parameter of m = 0.1. We used 50 intervals In of equal size to
parameterize the density in the range [0, π]. For each interval, we computed the restricted expectation
values (16) for 20 different values of λ using Monte Carlo simulations based on 106 measurements,
where in the simulation, the fermion determinant was evaluated exactly with Fourier transformation.
The restricted expectation values were then normalized to the form (17) and the slopes kn determined
from the corresponding fits with h

(
∆n[λ− kn]

)
. From the slopes, the densities were computed using

(11) and (12).
In Figure 1, we show the results for the densities ρ(1)(θ) (lhs plot) and ρ( Tr D−1)(θ) (rhs). The thin

blue curves are the results from the CanDos determination and the thick magenta curves the reference
data computed with Fourier transformation as discussed in the previous subsection. Obviously,
the CanDos densities matched the reference data very well.
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1.0

ρ
(cond)

(θ)

Figure 1. The densities ρ(1)(θ) (lhs) and ρ(Tr D−1)(θ) (rhs figure; denoted as ρ(cond)(θ) in the plot).
We compare the data from the canonical DoS (CanDoS) determination (thin blue curves) to the analytic
results obtained with Fourier transformation (thick dashed magenta curves). The data are for 16× 16
lattices with m = 0.1 and densities are normalized to ρ(0) = 1.

Having determined the densities, we can compute the canonical partitions sums ZN and vacuum
expectation values at fixed net fermion number using (7). In the lhs plot of Figure 2, we show our
results for the canonical partition sums ZN normalized by Z0 as a function of N. The results from
the CanDos determination are shown as red dots, the reference data from Fourier transformation as
black diamonds. Here as well, we observed essentially perfect agreement for all values of the net
fermion number N we considered. A more physical quantity is the corresponding free energy density
fN = − ln ZN/V (here normalized to f0 = 0), which in the rhs plot of Figure 2, we show as a function
of N. Again, we compared the CanDos results (red dots) to the corresponding reference data (black
diamonds) and found very good agreement, and only for the largest net particle number N = 10
shown in the plot, we observed a slight deviation, indicating that for net quark numbers N > 10,
the accuracy of the determination of the density would have to be improved, e.g., by using more and
finer intervals In.
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Figure 2. The canonical partition sums ZN/Z0 (lhs) and the corresponding free energy densities
fN = − ln(ZN/Z0)/V (rhs) as a function of the net fermion number N. The parameters are V = 16× 16
with m = 0.1, and we compare the results from the CanDoS determination (red dots) to the analytic
results obtained with Fourier transformation (black diamonds).
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We conclude our exploratory study with discussing the vacuum expectation value of
an observable, i.e., a case where the ratio of two integrals over two different densities needs to
be computed. The quantity we considered was the chiral condensate, and the two corresponding
densities ρ(1)(θ) and ρ( Tr D−1)(θ) were the ones already shown in Figure 1. For both of them, we found
very good agreement with the reference data, and the crucial question now was if this translated also
into the corresponding physical observable matching the reference data well. In Figure 3, we show the
CanDos results (red dots) for the condensate 〈ψ(x)ψ(x) 〉N as a function of the net quark number N.
Indeed, we found a very satisfactory agreement with the results from Fourier transformation (black
diamonds) up to N = 7 where the first deviations became visible. Again, for higher values of N,
a more precise determination of the involved densities will be necessary.
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 <
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Figure 3. The chiral condensate 〈ψ(x)ψ(x)〉N (in the plot denoted as 〈cond〉N and normalized by the
N = 0 value) as a function of the net fermion number N. The parameters are V = 16× 16 with m = 0.1,
and we compare the results from the CanDoS determination (red dots) to the analytic results obtained
with Fourier transformation (black diamonds).

We close the discussion of our numerical test by stressing once more that the results presented
here could only be considered a very preliminary assessment of the new CanDos approach. The tests
were done in two dimensions, and only the free case was considered (although this already
constituted a non-trivial test of the method). Currently, we are extending the assessment of CanDos
by implementing a study in 2-dQCD, but also started to explore lattice field theories with four
Fermi interactions.

4. Direct Grand Canonical DoS Approach

In this section, we now briefly discuss our second DoS approach, which is based on a suitable
pseudo-fermion representation of the grand canonical QCD partition sum (GCDoS approach). We will
determine the imaginary part of the pseudo-fermion action and set up the FFA to compute the density
as a function of the imaginary part.

4.1. Pseudo-Fermion Representation and Introduction of Densities

The starting point was the grand canonical partition sum of QCD. We again considered two
flavors of staggered fermions such that the grand canonical partition sum at chemical potential µ is
given by:

Zµ =
∫
D[U] e−SG [U] det D[U, µ] 2, (23)

where SG[U] is again the Wilson gauge action (2), and the staggered Dirac operator D[U, µ] is specified
in (3).
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We first identically rewrite the fermion determinant and subsequently express the part with the
complex action problem in terms of pseudo-fermions,

det D[U, µ] = det(D[U, µ]D[U, µ]†)
1

det D[U, µ]†
= C det(D[U, µ]D[U, µ]†)

∫
D[φ]e−φ†D[U,µ]†φ, (24)

where C is an irrelevant numerical constant and φ(x) are complex-valued pseudo-fermion fields
that have three color components. The measure

∫
D[φ] simply is a product measure where at

every site of the lattice, each component is integrated over the complex plane. The overall factor
det(D[U, µ]D[U, µ]†) is obviously real and positive and can be treated with standard techniques [23,24].
The exponent of the pseudo-fermion integral on the other hand has a non-vanishing imaginary part
and thus requires a strategy for dealing with the corresponding complex action problem.

To set up the direct DoS approach in the grand canonical formulation, we divided the exponent of
the pseudo-fermion path integral into real and imaginary parts,

φ†D[U, µ]†φ = SR[φ, U, µ]− iX[φ, U, µ], SR[φ, U, µ] = φ† A[U, µ]φ, X[φ, U, µ] = φ†B[U, µ]φ, (25)

where we defined two matrices for the kernels of the real and imaginary parts of the
pseudo-fermion action,

A[U, µ] =
D[U, µ] + D[U, µ]†

2
, B[U, µ] =

D[U, µ]− D[U, µ]†

2i
. (26)

It is straightforward to evaluate A[U, µ] and B[U, µ] explicitly,

A[U, µ]x,y = mδx,y1+
1
2

d

∑
ν=1

ην(x) sinh(µδν,d)

[
Uν(x) δx+ν̂,y + U†

ν (x− ν̂) δx−ν̂,y

]
,

B[U, µ]x,y = − i
2

d

∑
ν=1

ην(x) cosh(µδν,d)

[
Uν(x) δx+ν̂,y − U†

ν (x− ν̂) δx−ν̂,y

]
. (27)

The fermion determinant thus assumes the form:

det D[U, µ] = C det(D[U, µ]D[U, µ]†)
∫
D[φ] e−SR [φ,U] + iX[φ,U]. (28)

We already remarked that the real and positive overall factor det(D[U, µ]D[U, µ]†) could be
treated with conventional simulation techniques [23,24], which we will not address in detail here
(see [22] for a discussion of this term in the Wilson fermion formulation). Together with the Boltzmann
factor for the gauge field action, we combined this term into a new effective action Boltzmann factor
defined as:

e−Se f f [U,µ] = e−SG [U] det(D[U, µ]D[U, µ]†). (29)

The grand-canonical partition sum thus can be written as:

Zµ =
∫
D[U]

∫
D[φ] e−Se f f [U,µ] e−SR [φ,U,µ] e i X[φ,U,µ]. (30)

The next step is to introduce suitable densities for the imaginary part:

ρ
(J)
(x) =

∫
D[U]

∫
D[φ] e−Se f f [U,µ] e−SR [φ,U,µ] J[φ, U, µ] δ

(
x − X[φ, U, µ]

)
, (31)

where we again allow for the insertion of functionals J[φ, U, µ] in order to take into account different
observables. As for the CanDos approach, one may use charge conjugation symmetry to show that the
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densities are either even or odd functions of x, depending on the insertion J[φ, U, µ] (see [22]). Thus,
it is sufficient to compute the densities only for positive x.

With the help of the densities vacuum, the expectation values of observables in the grand canonical
picture at chemical potential µ can be written as:

〈O〉µ =
1

Zµ

∫ ∞

0
dx ρ

(O)
(x) e ix , Zµ =

∫ ∞

0
dx ρ

(1)
(x) e ix. (32)

4.2. Evaluation of the Densities with FFA

Having defined the densities and expressed grand canonical vacuum expectation values as
suitable integrals over the densities, we now can set up the FFA approach for evaluating the densities.

First, we remark that the densities ρ
(J)
(x) are expected to be fast decreasing functions of x,

and in [22], this was indeed verified in test cases. Thus, we may cut off the integration range in (32)
to a finite interval [0, xmax] and determine the density only for this range. As for the canonical case,
we divided the interval [0, xmax] into M intervals In = [xn, xn+1], n = 0, 1, ... M − 1, with x0 = 0
and xM = xmax. As for the CanDos formulation, the densities were parameterized by the negative
exponential of a function L(x) that was continuous and piecewise linear on the intervals In. Again,
we assumed the normalization L(0) = 0, and the density thus was entirely determined by the slopes kn.

In the FFA approach, the slope kn in each interval In is determined from suitable restricted vacuum
values, which we here define as:

〈X〉n(λ) =
1

Zn(λ)

∫
D[U]

∫
D[φ]e−Se f f [U,µ]e−SR [φ,U,µ]e λ X[φ,U,µ] J[φ, U, µ] Θn

(
X[φ, U, µ]

)
, (33)

where we have defined the support function Θn(x):

Θn(x) =

{
1 for x ∈ In,

0 else.
(34)

As in the canonical case, also the generalized expectation values (33) can be expressed in
terms of the parameterized density and computed in closed form, along the lines discussed above.
After normalizing them to the form (17), the generalized expectation values are again described
by the functions h

(
∆n[λ− kn]

)
such that the slopes kn can be determined from one parameter fits.

Subsequently, the densities are constructed from the slopes using (11) and (12), with θ replaced by x.
Finally we can compute observables from the densities using (32).

The direct, grand canonical density of states approach discussed in this section for staggered
fermions was discussed for Wilson fermions in [22]. There, also first exploratory numerical results
were presented, and for free fermions it was shown that the density obtained with the FFA approach
matched exact reference data from Fourier transformation very well.

5. Summary and Outlook

In this paper, we extended our previous work [22], where we presented two new DoS techniques
for finite density lattice QCD with Wilson fermions, to the formulation of QCD with staggered fermions.
The first formulation was based on the canonical formulation where the canonical partition sum and
vacuum expectation values of observables at fixed net quark number were obtained as Fourier moments
with respect to imaginary chemical potential. The functional fit approach (FFA) could then be used
to compute the density with sufficient accuracy for reliably determining observables for reasonable
net quark numbers. We presented exploratory tests of the canonical DoS approach for the case of free
fermions in 2-dand found that observables such as the chiral condensate at finite net quark numbers
reliably matched reference data obtained from a direct calculation with Fourier transformation that
was possible in the free case.
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Our second approach was set up directly in the grand canonical ensemble. The QCD partition
sum was rewritten in terms of a suitable pseudo-fermion representation, and the imaginary part of
the pseudo-fermion action was identified. Using FFA, the density was then computed as a function
of the imaginary part, and grand canonical vacuum expectation values were again obtained as the
corresponding oscillating integrals. The tests of the new approaches presented here were done for the
staggered fermion formulation, but we would like to point out again that also the Wilson formulation
could be used and refer to our paper [22] for the discussion of the corresponding results.

Two comments are in order here: Although the first tests were encouraging, the numerical results
presented here clearly constituted only a very preliminary and exploratory assessment of the new
techniques. We are currently extending these tests towards QCD in two dimensions as the next test
case before approaching the full 4-dtheory. We furthermore stress that the techniques we presented
here were not restricted to QCD or other gauge theories with fermions. Furthermore, theories with four
Fermi interactions could be accessed after the introduction of suitable Hubbard–Stratonovich fields,
and also for this direction of possible further development we have started exploratory calculations.
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