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Abstract: The report presents the results of using the nonperturbative kinetic approach to describe
the excitation of plasma oscillations in a graphene monolayer. As examples the constant electric field
as well as an electric field of short high-frequency pulses are considered. The dependence of the
induced conduction and polarization currents characteristics on the pulse intensity, pulse duration,
and polarization is investigated. The characteristics of secondary electromagnetic radiation resulting
from the alternating currents is investigated. The nonlinear response to the external electric field
characterizes graphene as an active medium. Qualitative agreement is obtained with the existing
experimental result of measurements of currents in constant electric fields and radiation from
graphene in the case of excitation by means of the infrared and optical pulses.
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1. Introduction

Graphene is a unique real material, promising for microelectronics and described by a fairly
simple quantum field model (massless D = 2 + 1 QED). These features of graphene and the possibility
of the experimental verification of the theoretical predictions explain the great interest in theoretical
studies in the electrodynamics of graphene. A specifics here is the lack of analyticity in the coupling
constant. This makes the use of nonperturbative approaches relevant here.

One of these directions is associated with the adaptation of general methods of QED for strong
fields based on exact solutions of the main QED equations for some simple models of the external
electric field [1–3]. In graphene, this approach allows a detailed study of the electrodynamics in the
case of a constant [4] and pulsed (Sauter) electric field [5]. For the case of a constant field, satisfactory
agreement with experiment was obtained [6–8].

Another recently proposed line of research in graphene is based on the use of methods of
nonperturbative kinetic theory, which in the simplest case is valid for spatially homogeneous
nonstationary electromagnetic fields. Within the framework of standard QED, such an approach
was proposed in several papers [9–12] and is currently successfully applied in various problems
of QED in strong external fields (for example, [13,14]) in describing the vacuum production and
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evolution of an electron – positron plasma. A promising field of application of this approach is also
in QCD, where problems of the creation and evolution of a quark-gluon plasma in the initial stage
of the collision of ultrarelativistic heavy ions can be considered (for a review of the early works in
this direction, see [15]). This universal approach was recently adapted to the model of single-layer
graphene in [16–18].

The work consists of two interdependent parts. Sections 2–5 contain an account of nonperturbative
kinetic theory and electrodynamics of graphene based on the quasiparticle representation. On this
foundation the analysis of currents and plasma oscillations is performed in Sections 6–8 for the cases
of a constant and pulsed external fields. These results are compared with the existing experimental
data. Finally, some actual perspectives on forthcoming investigations are discussed in Section 9.

2. Statement of the Problem

The aim of this work is the construction and subsequent study of the extended kinetic theory of
carriers and radiation in single-layer plane graphene excited by the action of an external semiclassical
field Aµ

ex. Internal currents in turn generate internal fields Aµ
in. Before making more realistic

approximations, the quasiclassical fields are assumed to be spatially homogeneous, arbitrarily
depending on time and acting in the graphene plane, so that in the Hamiltonian gauge A0 = 0
the structure of the acting field is as follows:

Aµ
ex,in(t) =

(
0, A1

ex,in(t), A2
ex,in(t), 0

)
. (1)

These limitations already mean that the radiation of graphene at the frequencies of plasma
oscillations is an isolated problem related to the extension of D2→ D3 electrodynamics. Quasiclassical
fields can be strong and are nonperturbatively taken into account, while possible quantum fields are
described in the framework of the relevant perturbation theory and can be spatially inhomogeneous
and leave the limits of the graphene plane. Thus, the effective fields in graphene will be equal (k = 1, 2)

Ak(t) = Ak
ex(t) + Ak

in(t). (2)

In the nonperturbative part of the problem, the methods and terminology of the kinetic theory
based on the quasiparticle representation are used. Supplementing this system with the Maxwell
equation for the internal field, we obtain a closed self-consistent system of equations describing at the
kinetic level the dynamics of carriers and fields in graphene.

Below we consider the simplest low-energy model of graphene in the presence of an external
field (1), which describes the excitations in the vicinity of one of the two Dirac points at the boundaries
of the Brillouin zone [19–21]. A generalization of the formalism to a tight-binding model can be found
in [17].

We write the equation of motion and the Hamiltonian of the basic model in an effective
semiclassical field Ak(t) (2)

ih̄Ψ̇(~x, t) = vF ~̂P~σΨ(~x, t). (3)

H(t) = vF

∫
d2xΨ†(~x, t)~̂P~σΨ(~x, t), (4)

where P̂k = −ih̄∇k − (e/c)Ak(t) is the quasimomentum (k = 1, 2), σk are the Pauli matrices,

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, (5)
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and vF = 106 m/s is the Fermi velocity. The charge of an electron is −e, e > 0. The wave function in
(5), (6) is a two-component spinor.

The corresponding current density is equal

jk(~x, t) = evFΨ†(~x, t)σkΨ(~x, t). (6)

3. Transition to the Quasiparticle Representation

Standard quantum field theory is based on the transition to the representation of second
quantization in momentum space, which allows for the usual physical interpretation, where the
key element is the concept of particles, real or virtual, which are considered as excitations of the
physical vacuum. As a result, in the case of free fields, all necessary quantities become state-additive
in momentum space with a certain population determined by the statistics of the fields.

The introduction of interaction with an external field violates the additivity of the observables
in the Fock space and complicates the interpretation of the formalism in terms of particles
and antiparticles.

The transition to the quasiparticle representation [9] to a certain extent allows us to solve this
problem and restore clarity in the description of processes in strong fields.

In graphene, the entire scheme for constructing the kinetic theory of vacuum particle production
in the standard QED in the quasiparticle representation is preserved, but it is much simplified when
constructing the dynamics when implementing the canonical Bogolyubov transformation. The reason
for the simplification is the absence of a mass and the reduction in the number of spatial dimensions.
This leads to the fact that the spin degrees of freedom are hidden and degenerate. Their existence is
reflected only in the flavor number Ns = 2. The inclusion of real spin degrees of freedom requires a
D2→ D3 generalization of the theory.

The transition to the quasiparticle representation in graphene was used, for example,
in [5,16,17,22]. Below we follow the works [5,16,17].

We suppose that graphene is located in a region bounded by a square with side L and go to the
momentum representation,

Ψ(~x, t) =
1
L ∑

~p
Ψ(~p, t)ei~p~x/h̄ (7)

In this representation, we write the basic Hamiltonian (4)

H(t) = vF
1
L2 ∑

~p
Ψ†(~p, t)~P~σΨ†(~p, t) (8)

where ~P = ~p− e
c
~A(t) is the quasi-momentum, and the equation of motion (3) is

ih̄Ψ̇ (~p, t) = vF ~̂P~σΨ (~p, t) , (9)

The diagonalization of the Hamiltonian (8) can be done explicitly using the unitary transformation
Ψ = UΦ with the matrix [22]

U (t) = 1√
2

(
exp(−iκ/2) exp(−iκ/2)
exp(iκ/2) − exp(iκ/2)

)
. (10)

The parameter tanκ = P2/P1 is fixed here by the equality

U †(t)vF~P~σU (t) = ε(~p, t)σ3 = H~p(t), (11)
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where ε(~p, t) is the quasienergy

ε(~p, t) = vF
√

P2 = vF

√
(P1)2 + (P2)2. (12)

According to the selected low-energy model, the dispersion law (12) is valid in the vicinity of the
Dirac point p2 = 0 at the boundaries of the Brillouin zone.

The equation of motion in the quasiparticle representation will have the form

ih̄Φ̇ = H~p(t)Φ +
1
2

λh̄σ1Φ, (13)

where the function

λ (~p, t) = κ̇ =
ev2

F[E1P2 − E2P1]

ε2(~p, t)
. (14)

describes the transition between states with positive and negative energies and can be found from
the equality

2iU †U̇ = λσ1. (15)

In the formula (14) Ek(t) = − 1
c Ȧk(t) is the electric field strength.

If we now write the spinor Φ(~p, t) taking into account expansion (7) in the form

Φ(~p, t) =

[
a(~p, t)

b†(−~p, t)

]
, (16)

then the Hamiltonian of the system in the new representation will be equal to:

H(t) =
1
L2 ∑

~p
ε(~p, t)Φ†(~p, t)σ3Φ(~p, t) =

1
L2 ∑

~p
ε(~p, t)

[
a†a(~p, t)− b(−~p, t)b†(−~p, t)

]
. (17)

The spinor (16) can be associated with the field operator

Φ(~x, t) =
1
L ∑

~p

{
a(~p, t)û + b†(−~p, t)v̂

}
ei~p~x/h̄, (18)

where

û =

[
1
0

]
, v̂ =

[
0
1

]
(19)

are the unit spinors.
We now turn to the representation of occupation numbers and define the creation and annihilation

operators of electrons and holes over the instantaneous vacuum state |t〉, demanding for these operators
the standard anticommutation relations,{

a(~p, t), a†(~p′, t)
}
+
=
{

b(~p, t), b†(~p′, t)
}
+
= δ~p~p′ . (20)

The remaining elementary anticommutators are equal to zero.
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The equations of motion (13) can be written using (16) in terms of amplitudes

ih̄ȧ(~p, t) = ε(~p, t)a(~p, t)− i
2

h̄λ(~p, t)b†(−~p, t),

ih̄ḃ(−~p, t) = ε(~p, t)b(−~p, t) +
i
2

h̄λ(~p, t)a†(−~p, t) (21)

or in the form of Heisenberg-type equations with respect to the operator ϑ

ih̄ϑ̇ = [ϑ, H f (t)], (22)

where

H f (t) = H(t) + Hpol(t) (23)

is the Hamiltonian of the fermion subsystem, including the Hamiltonian H(t) (17) and the Hamiltonian

Hpol(t) = −i
h̄

2L2 ∑
~p

λ(~p, t)
[

a†(~p, t)b†(−~p, t)− b(−~p, t)a(~p, t)
]

(24)

describing the effects of vacuum polarization under the influence of the field.

4. Basic Kinetic Equation

Below, in the quasiparticle representation, under kinetic equation (KE) will be understood the
closed integro-differential equations for the distribution functions of electrons and holes

f e(~p, t) = 〈in|a+(~p, t)a(~p, t)|in〉, (25)

f h(~p, t) = 〈in|b+(−~p, t)b(−~p, t)|in〉. (26)

Subsequently, these functions are considered equal,

f e(~p, t) = f h(~p, t) = f (~p, t) , (27)

by virtue of the assumption of electroneutrality of the system at each moment of time. The averaging
in (25), (26) is performed over the in-vacuum state.

To get a closed system of KE, we differentiate f (~p, t) with respect to time and use the equations of
motion (21)

ḟ (~p, t) =
1
2

λ(~p, t)
[

f (+)(~p, t) + f (−)(~p, t)
]

, (28)

where anomalous averages are introduced by

f (+)(~p, t) = 〈in|a+(~p, t)b+(−~p, t)|in〉, (29)

f (−)(~p, t) = 〈in|b(−~p, t)a(~p, t)|in〉 . (30)

Differentiating them in time, we obtain

ḟ (+)(~p, t) =
2i
h̄

ε(~p, t) f (+)(~p, t)− λ(~p, t)
2

[1− 2 f (~p, t)] (31)

ḟ (−)(~p, t) =
−2i

h̄
ε(~p, t) f (−)(~p, t) +

λ(~p, t)
2

[1− 2 f (~p, t)]. (32)
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As a result of the integration of these equations over time and substitution in (28), we obtain the
desired KE of non-Markovian type

ḟ (~p, t) =
1
2

λ (~p, t)
t∫

t0

dt′λ(~p, t′)
[
1− 2 f (~p, t′)

]
cos θ(t, t′), (33)

where the dynamic phase is introduced by

θ(t, t′) =
2
h̄

t∫
t′

dt′′ε(~p, t′′). (34)

The Equation (33) should be supplemented with an initial condition compatible with the
requirement of electroneutrality (27). The simplest option f0(~p) = f (~p, t = t0) = 0 corresponds
to the absence of excitations at the initial moment of time t0.

For the first time, KE of this type were obtained in independent works [9–11] in the framework of
standard QED. The specifics of the quantum field system under consideration consists in the ability to
perform canonical Bogolyubov transformations in an explicit form (Section 3). Note that the KE (33) is
valid in the case of an arbitrary polarization of the external field (1). The integro-differential KE (33)
can be written in the form of an equivalent system of ordinary differential equations

ḟ =
1
2

λu, u̇ = λ (1− 2 f )− 2ε

h̄
v, v̇ =

2ε

h̄
u (35)

with appropriate initial conditions

f0(~p) = u0(~p) = v0(~p) = 0 . (36)

The auxiliary functions u(~p, t) and v(~p, t) in the ODE system (35) describe vacuum polarization
effects and can be written in terms of anomalous averages (29), (30)

v = i
[

f (+) − f (−)
]

, u = f (+) + f (−). (37)

The KE system (35) has an integral of motion

(1− 2 f )2 + u2 + v2 = 1, (38)

compatible with the initial conditions (36). An interesting property of the KE (33) (or its equivalent
system (35)) is the preservation of the non-negativity of the distribution function f (~p, t) ≥ 0 in the
entire domain of its definition.

5. Macroscopic Averages

Since, due to the uncertainty relation, the description of the system in terms of time-dependent
quasienergy (12) is conditional and acquires physical meaning only in the asymptotic region t→ ∞,
the distribution function itself is rather conventional. This feature of the quasiparticle approach
was noted in the literature (for example, [23]). On the other hand, it is understood that under
certain conditions (for example, in the case of systems located in a limited region of space, V < ∞),
the evolution of a macroscopic quantum field system in time-dependent external conditions can
be controlled at any time in various ways (using radiation into the external region or various
responses to weak external probes). Such, for example, are experiments on graphene samples in
the optical excitation range [24,25] or planned experiments to detect an e−e+ plasma in the focal spot
of computer-propagating powerful laser beams [26–28].
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In such a situation, macroscopic averages obtained by taking the expectation value with |in〉 states
and integrating the dynamic characteristics of quasiparticles over the momentum space, statistically
weighted with the distribution function f (~p, t) playing the role of time-dependent functions mediating
between the dynamic characteristics of quasiparticles and physical observables.

The density of excited electron-hole (e− h) pairs is the simplest quantity of this type.

n(t) =
N f

L2 ∑
~p

f (~p, t), (39)

where N f = NSND = 4 is the total number of flavors in the model under consideration.
From the full Hamiltonian of the fermionic subsystem (23) follows the expression for the total

energy density of the electron - hole subsystem, which consists of the sum of the quasiparticle and
polarization parts

E f (t) = Eeh(t) + Epol(t), (40)

where

Eeh(t) = 2
N f

L2 ∑
~p

ε(~p, t) f (~p, t), (41)

Epol(t) = −1
2

N f

L2 ∑
~p

h̄λ(~p, t)v(~p, t), (42)

where v(~p, t) is the vacuum polarization function (37).
The current density can also be represented as the sum of the conduction and polarization currents

Jk(t) = Jcond
k (t) + Jpol

k (t), (43)

where

Jk(t) =
1
L2

∫
d2xjk(~x, t). (44)

To write these currents in terms of the functions f , u, v, we use the Formula (6) and perform a
unitary transition to the quasiparticle representation there (Section 3),

Jk(t) = evF
N f

L2 ∑
~p

Φ†U †σkUΦ. (45)

Using formulas (10), (16) and the definition (37) here, we obtain the expression for the conduction
current density as a result

Jcond
k (t) = 2e

N f

L2 ∑
~p

vk
q(~p, t) f (~p, t) (46)

where

vk
q(~p, t) =

∂ε(~p, t)
∂Pk =

v2
FPk

ε(~p, t)
(47)
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is the propagation velocity of the quasiparticle excitation. In the derivation of formula (46), the vacuum
unit was omitted 2 f − 1→ 2 f . The polarization current density is

Jpol
k (t) = −e

N f

L2 ∑
~p

ṽk
q(~p, t)u(~p, t), (48)

where the vector of “conjugate velocity” ṽk
q(~p, t) is determined through the components of the

vector vk
q(~p, t)

ṽk
q = (v2

q ,−v1
q). (49)

Using this definition, one can write the amplitude (14) in the following form:

λ =
e
ε
~E~̃vq. (50)

Thus, the functions u(~p, t) and v(~p, t) determine the energy and current due to the polarization
of the medium. We now obtain the law of conservation of energy in the quasiparticle subsystem.
Differentiating in time the density of quasiparticle energy (41) and using the Formulas (46)–(49) for the
current density and relation (50), we obtain

Ėeh(t) = ~E(t)~J(t), (51)

where~J(t) is the total current density (43). This relation allows a different formulation. We write the
Maxwell equation for the internal plasma field

~̇Ein(t) = −~J(t) (52)

and write in Equation (51) the total electric field as a sum

~E(t) = ~Ein(t) + ~Eex(t). (53)

As a result, we obtain

d
dt

[
~Eeh(t) +

1
2
~E2

in(t)
]
= ~J(t)~Eex. (54)

Similarly, relation (42) implies the relation describing the energy balance of vacuum polarization

Ėpol(t) = −~E(t)~Jpol(t)− h̄
2

N f

L2 ∑
~p

λ̇(~p, t)v(~p, t). (55)

In the next sections the electrodynamics of graphene as well as some features of the inner plasma
field will be considered. Section 6 details the case of a constant electric field, and Section 7 the case of
an alternating field.

6. Constant Field

We begin the demonstration of the opportunities of the developed approach with the case of a
constant external electric field:

~E(t) = const. (56)

Constant is both the absolute value of the field strength and its direction. Further, the first
axis of the used two-dimensional coordinate system is associated with this direction. In this
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case, it is convenient to compare with the results of using the Landauer approximation (or the
Landauer-Datta-Lundstrom (LDL) model) [29–31] for calculating the characteristics of the current
arising in graphene samples with the results of the presented approach. Some nontriviality is that quite
different methods and different spaces of description are used here: the considered kinetic approach is
formulated in the t-representation, while the LDL method based on the WKB approximation uses the
x-representation. Both approaches are equivalent in the case of a constant electric field.

A constant field does not have any characteristic time scales. Those can only be sought in the
characteristics of the material itself or of the simulated sample. For a material (graphene), the natural
unit of the time scale is the ratio of the lattice constant to the Fermi velocity a/vF ≈ 2.46× 10−16 s.
It makes no sense to consider processes on a smaller time scale. The upper boundary of the time scale
is determined by the condition of applicability of the assumption of spatial homogeneity of the system.
It depends on the characteristic size of the sample and can be determined by the ratio L/vF.

The system of Equation (35) allows only a numerical investigation. For each point of the
momentum space {p1, p2}, it is solved independently. The region in which the distribution function is
localized and the required density of its coverage by the computational grid at the nodes of which
solutions for (35) will be sought is determined by the necessary accuracy in calculating the integral
characteristics. This is realized by a sequential iterative procedure with stepwise control of the accuracy
of the results obtained.

Figure 1 shows the form of the distribution function for two consecutive points of time at a
field strength of 0.1 V/µm. The “natural” value h̄/a is used hereinafter as a unit value for the p1, p2.
Such kind of accumulative behavior of the distribution function is in agreement with the results
of [32,33]. The latter work based on the Greens function method takes into account the dissipative
mechanism of inelastic scattering of optical phonons.

f(p1,p2;t1)
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Figure 1. The distribution function in the 2D momentum space for two consecutive points of time at
the field strength 0.1 V/µm. Left panel: t1 = 0.5× 10−12 s, Right panel: t2 = 1.0× 10−12 s.

The distribution function of the excitation on the initial stage is formed and reaches the maximum
value fmax = 1 very rapidly. Figure 2, left panel, shows the transversal sections of this distribution for
different values p1 at early time of the evolution, corresponding to the right edges of the distribution
functions in Figure 1. In the case of the ballistic regime the following accumulation of population
is a result of the increase of the longitudinal momentum p1 in the direction of the acting electric
field at invariable Gauss-like distribution on the transversal momentum p2. The halfwidth of the
p2-distribution is defined by the field strength E (Figure 2). As a result, the number density of carriers
grows proportionally to the action time T of the field, n(T) ∝ T, as in the case of standard QED (see,
e.g., [9]).
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Figure 2. Left panel: The section of the distribution function f (p1, p2) for several values of p1 at the
field strength 0.1 V/µm; Right panel: The shape of the section f (p1, p2) for p1 = −0.0018 for different
field strength E.

In the LDL approach, the problem of calculating the current density through the sample of a
material of finite width L� a = 0.246 nm limited by two parallel electrodes is solved by calculating
the transmission probability T(ε, p2, U) in the presence of a given potential difference U (for dispersion
of graphene ε = vF

√
(p1)2 + (p2)2) [6]:

jLDL =
4e

(2πh̄)2

∫
dp2

∫ εF

εF−eU
dεT(ε, p2, U). (57)

Therefore, the momentum component p2 does not change its value during tunneling. In spite
of the fact that graphene is a gapless semiconductor, the presence of finite conserved values p2 leads
to the appearance of an energy gap with the width ∆ = 2vF p2. In the considered case of a vacuum
the initial state temperature and chemical potential are equal to zero, the Fermi energy εF = 0 and
there are no free carriers in the interelectrode space. Under these conditions the process of carrier
transmission can proceed only by Zener-Klein tunneling. The probability of this tunneling in the WKB
approximation is (taking into account the relationship of ε and p2):

T(ε, p2, U) = TZK = exp

(
−πp2

2vFL
eh̄U

)
. (58)

In this case from (57) and (58) one obtains [6]:

jLDL = 2
Ue2

π3h̄L

√
π2eUL
4h̄vF

×
(

erf

[√
πeUL
4h̄vF

]
+ exp

[
−πeUL

4h̄vF

]
− 1

)
. (59)

First of all, let us note that the distribution (58) of carriers over the transverse momentum p2

reproduces the result (Figure 2, right panel) obtained in the kinetic approach to the permille accuracy,
i.e., within the thickness the lines.

The basic problem is that the conduction current density (46) in the absence of dissipation and
spatial boundaries depends on the time after switching on the field and increases continuously, which,
obviously, is not observed in the experiment, where each value of the potential difference corresponds
to its steady-state current density. So, under the conditions of the real experiment [6] it is necessary
to take into account the presence of the electrodes, which limit the lifetime of the carriers. From this
point of view the process of carrier generation must permanently continue throughout the entire
measurement process and be uniform in the area of the sample. Knowing the strong anisotropy of
the carrier spectrum, it is possible to assume in the first approximation that all of them move towards
the electrode of the corresponding polarity with the velocity vF. In this case, the average lifetime
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of carriers is τ = L/2vF 0.5× 10−12s for L = 1.0 µm. At the end of this time after switching on the
field, the rate of generation of carriers becomes equal to the rate of their escape through the electrodes.
The steady-state current values will be constant and can be calculated in both approaches (Table 1).

Table 1. Comparison of calculated current density values for a sample with L = 1.0µm in the range of
potential differences from 0.1 V to 0.5 V.

U[V] j in WKB Approach j in Kinetic Approach
(E= U/L [V/µm]) [µA/nm] [µA/nm]

0.1 0.02904 0.02964
0.2 0.028344 0.028457
0.3 0.15435 0.15557
0.4 0.23861 0.24003
0.5 0.33440 0.33601

The results of these calculations coincide with high degree of accuracy in the considered range
of parameters. Indirectly this shows a good coincidence with experiment [6]. The given list of
values strictly corresponds to the law I ∼ U3/2 ∼ E3/2. This dependence is corroborated by other
sources [4,5].

The kinetic method presented here can be a valid outside the framework of the applicability of the
WKB approach, for example, in alternating electric fields in the region of sufficiently high frequencies.
An indirect confirmation of this is the difference in the results for a thinner (tenfold) sample with a
correspondingly shorter carrier lifetime (Figure 3). In this case the difference reaches almost 10%. Both,
the kinetic and the WKB approach, predict superlinear growth of the current density with almost
coinciding exponents ∼ 1.70.
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Figure 3. Comparison of calculated conduction current density for a sample with L = 100 nm in the
range of electrical field strengths E from 0.1 V/µm to 1.0 V/µm (potential differences from 0.01 V
to 0.1 V).

Above, we limited ourselves to considering only the conduction current in the situation of a
stationary process, when the number of carriers born compensates for their departure from the sample.
In the kinetic approach, the behavior of the conduction current (46) and the polarization current (48)
can be reproduced at times t� L/vF, when carrier losses at the sample boundaries can be neglected.
The change in the surface density of the conduction current, polarization current and their sum after
turning on the constant field of 0.3 V/µm directed along the x-axis is shown in Figure 4.
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function of time for t� L/vF.

The behavior of the polarization current is fundamentally different from conduction current
behavior and has the form of damped oscillations asymptotically reaching a constant negative value.
Nevertheless, the contribution of the conduction current becomes dominant quite quickly.

7. Short High Frequency Pulses

Next, we consider the field model of pulses with a cyclic carrier frequency ω and a Gaussian
envelope with duration parameter τ,

E(t) = Ea cos(ωt + ϕ)e−t2/2τ2
. (60)

The phase shift ϕ sets the position of the absolute maximum of the field relative to the maximum
value of the envelope (which will be associated with the time t = 0). The spatial direction of the field
is constant. Below we stay within the limitations of the low-energy model and consider the region
of rather small field strengths and frequencies. In the case of strong fields it is necessary to use some
generalizations of this model. For example, a corresponding generalization of the kinetic theory was
developed in the work [17] for the tight binding model of the nearest neighbour interaction [21,34,35].

We choose the characteristics of the field so that they correspond to the parameters of the
experiments described in [36]. These are very short pulses with ω = 2π× 2 THz carrier frequency and
duration parameter τ = 3/ω ≈ 2.4× 10−13 s, which almost coincides with the constant-field action
time considered above. But since in this case the field turns on and off relatively slowly, to accurately
reproduce the behavior of the model, we will consider a several times longer interval. The electric field
amplitude is Ea = 3.0 V/µm, which is an order of magnitude greater than that considered above for a
constant field. To accurately reproduce the parameters, we used a nonzero value of the carrier phase
shift ϕ = 0.85 π. An explicit form of the dependence of the field on time is shown in Figure 5. The field
is formed by a linearly polarized electromagnetic wave and is assumed to be directed along the x-axis.
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The field strengths are expressed as E(t)/Eg, where Eg = h̄vF/ea2 = 1.088× 104 V/µm.
The distribution function formed under the action of such a field through 6.0× 10−13 s after

passing the maximum (maximum envelope, since in this case ϕ 6= 0), is presented in the following
Figure 6.
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Figure 6. Distribution function f (p1, p2) formed under the action of the field (60) shown in Figure 5 at
6.0× 10−13 s after passing the maximum of the field strength.

The distribution function is localized in the vicinity of the Dirac point. The distribution of
populated states is much more complicated than in the case of a constant field. Thus reproduction of
integral characteristics in this case may be more time consuming. The figure is based on the results of
solving kinetic equations on a maximally simplified 222× 46 grid. The carrier density (39) evolution
reproduced from these data for a time interval from −6.0× 10−13 s to 6.0× 10−13 s is shown in the
following Figure 7.
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to 6.0× 10−13 s.

Starting from zero, the carrier density is quite difficult to evolve and reaches a final constant
value, which is the residual carrier density. A short field pulse generates several carriers, which, in the
absence of dissipation, continue to exist even after the field is turned off.

We consider one more variant of a field of the form (60). This will be a relatively long infrared pulse,
similar in parameters to those considered in [25]. We define its cyclic frequency as ω = 2π × 96.7 THz,
which corresponds to a wavelength of 3.1µm and a photon energy of 0.4 eV. The duration parameter
is τ ≈ 26/ω ≈ 4.28× 10−14 s. The phase shift was chosen equal to zero. The maximum electric field
strength was determined based on the declared energy flux density in the focal spot of 7 GW/cm2 and
reaches ≈2.2 ×102 V/µm and exceeds by almost two orders of magnitude the corresponding value
from the previous example. The impulse with these characteristics has the form shown in Figure 8.
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Figure 8. Time dependence of the field strength for the Gaussian envelope harmonic pulse (60) for
Ea = 2.2× 102 V/µm, ω = 2π × 96.7 THz, ϕ = 0 and τ ≈ 26/ω ≈ 4.28× 10−14 s.

The form of the distribution function at the final stage of the action of the external field is shown
in Figure 9.
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Figure 9. Momentum space distribution function f (p1, p2) at the final stage of the action of the
external field.

The region in which non-zero values of the distribution function are observed in this case is
approximately −0.30 ≤ p1 ≤ 0.30,−0.25 ≤ p2 ≤ 0.25. The distribution of occupied states has a
characteristic ring structure. Due to the great computational complexity in this case, the results are
presented for a 64× 64 grid. It allows getting a general idea about the structure of the distribution
function. The evolution of the carrier density is shown in Figure 10:

At the stage of increasing field amplitude, an increase in the density of carriers with small
oscillations is observed. At the stage of turning off the field, a drop to a certain residual value
takes place.

Conduction and polarization currents for a pulsed alternating field with a cyclic frequency
ω = 2π × 2 THz (Figure 5) are shown in Figure 11.

For the conduction current, one can note some qualitative analogy with the time dependence of the
acting field.The nature of the dependence on the time of the polarization current is more complicated.

For an infrared pulse, the dependence of currents on time are shown in Figure 12.
The conduction current demonstrates a very good reproduction of the general nature of the

acting field: it is alternating, the period of polarity change obviously coincides with the period of
the carrier of the simulated pulse. The amplitude of the conduction current increases and decreases
along with an increase and decrease in the amplitude of the acting field. Obviously, there is a phase
shift between it and the external field, because at the time t = 0, when the field reaches its maximum
value (and this is the absolute maximum), the conductivity current is close to zero. The behavior
of the polarization current is fundamentally more complex. Over the entire time interval presented,
in which the conduction current has time to increase by several of orders of magnitude and then also
to decrease its amplitude, the polarization current does not show obvious signs of a regular change in
its amplitude, but only irregular changes in the current value. In the initial section of the time interval
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presented, one can try to associate its behavior with the current values of the external field, but then a
complex interference pattern is observed, which is characteristic for superposition of oscillations with
different frequencies. We can draw an analogy with the slow relaxation of the polarization current
already after the completion of the action of a short unipolar pulse, which was noted in [37].
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Figure 12. Time dependence of the conduction and polarization currents for a pulsed alternating field
with a cyclic frequency ω = 2π × 96.7 THz.

8. Plasma Field

The appearance of currents, by virtue of Maxwell’s Equation (52), leads to the generation of a
plasma field, which will add to the external field and in the general case will affect the process of
further evolution of the system. We use the well-known solution to the problem of the field of a
time-dependent current on an infinite plane (see, for example, Ref. [38]):

E(t, z) = −µ0c
2

J
(

t− z
c

)
. (61)

Here µ0 is the magnetic susceptibility of vacuum, c is the speed of light and z is the distance of
the observation point from the graphene plane. It follows from this expression that in the case under
consideration, the plasma field is determined by the current density. From the expression (61) it follows
that the alternating current will generate radiation that carries information about its characteristics.
When considering a real sample with a characteristic finite size L, all of the above will be true only for
a distance z from its surface that satisfies the condition z� L.

One of the reasons for the continued interest in graphene is the observation of a nonlinear response
in it under the action of pulsed fields of the form (61) [25,36]. Does the presented model based on the
quantum kinetic equation reflect these properties of graphene? To answer this question, we study the
spectral composition of internal currents shown in Figures 11 and 12.

As a tool for studying time series, we use the discrete Fourier transform. The figures
(periodograms) below show the squares of the moduli of the coefficients of such a transformation
and reflect the contributions of various frequencies to the total field energy. The horizontal axis of the
frequencies is calibrated in THz, the vertical axis has a logarithmic scale. Since the absolute values
of the periodogram depend, inter alia, on the length of the sample that we have, only relative values
within one periodogram have a well-defined meaning. The spectrum of the acting field plays the role
of a reference point.

However, in order to have an initial reference point, we first present in Figure 13 the result
obtained from several discrete values of the external electric field shown in Figure 5.



Particles 2020, 3 473

1.0×10
−6

1.0×10
−5

1.0×10
−4

1.0×10
−3

1.0×10
−2

1.0×10
−1

1.0×10
0

1.0×10
1

1.0×10
2

 0  2  4  6  8  10  12  14

1.0×10
−3

1.0×10
−2

1.0×10
−1

1.0×10
0

1.0×10
1

1.0×10
2

1.0×10
3

1.0×10
4

1.0×10
5

|j
(ω

)|
2

|E
(ω

)|
2

ω/2π [THz]

|E(ω)|
2

|j
 cond

(ω)|
2

|j
 pol

(ω)|
2

Figure 13. Periodograms for the pulse of a periodic electric field (Figure 5) and the currents generated
by it (Figure 11).

Since the pulse is very short, its spectrum is greatly broadened. Nevertheless, the maximum for
the value of 2 THz is quite visible, and outside it there is a smooth and fairly monotonic decrease in the
intensity of the spectral components. From this background we show the results of exactly the same
processing of a sequence of conduction and polarization currents. The behavior of the spectrum of the
conduction current is similar to the behavior of the spectrum of the acting field. However, the curve
for the polarization current clearly contains local maxima for frequencies of 2, 6, 10, and 14 THz, which
should be interpreted as the appearance of odd harmonics in the spectrum of the internal field with
multiplicities of 3, 5, and 7 with respect to the fundamental frequency. If at the fundamental frequency
the contribution to the field energy from the polarization current is about three orders of magnitude
less then from the conduction current, at the third harmonic they are comparable, and at the fifth and
seventh contributions of the polarization current are almost an order of magnitude larger.

Let us now see how this looks in the case of a longer pulse, as depicted in Figure 8. The spectrum
of the latter is more localized. The spectrum of the pulse itself is shown in Figure 14. The carrier
frequency in this case is 96.7 THz. Periodograms for currents are also shown in this figure. In this
case, the spectrum of both currents clearly shows the odd harmonics with numbers 3, 5, 7, 9, ... In the
above figure, the upper frequency limit is 1000 THz, but if we raise it, we will see harmonics of a
higher order. At the carrier frequency, the contribution of the conduction current also dominates.
However, already at the next, third, the contribution of the polarization current is about one and a
half orders of magnitude greater. With increasing frequency, the contributions of the conduction and
polarization currents become almost the same. The appearance of odd harmonics was confirmed in
experiments [25,36].

The obtained results are in qualitative agreement with the existing experimental data, so that the
suggested kinetic theory is surely verified.
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Figure 14. Periodograms for the pulse of a periodic electric field (Figure 8) and the currents generated
by it (Figure 12).

9. Conclusions

In this work, we considered the application of the nonperturbative kinetic equation approach
to describe the excitation of plasma oscillations in a graphene monolayer. As examples the constant
electric field as well as an electric field of short high-frequency pulses were considered. The dependence
of the induced conduction and polarization current characteristics on the pulse intensity, pulse duration,
and polarization were investigated numerically for these examples. The characteristics of secondary
electromagnetic radiation resulting from the alternating currents was studied and a nonlinear response
to the external electric field was found which characterizes graphene as an active medium.

A perspective direction of development of the kinetic theory of graphene is a generalization
to the case of additionally accounting for the interaction with the quantized electromagnetic field.
One can proceed from the analogy with the works [39,40], where such a generalization was performed
in the standard QED on the basis of the Bogolyubov-Born-Green-Kirkwood-Yvon chain of equations
in the single photon approximation. Preliminary investigations of radiation on this basis met
large difficulties [41]. Analogous research in graphene would allow comparing the quasiclassical
radiation (Section 8) with the quantum one and to understand deeper the situation in standard QED.
Considerable interest represents a study of cascade processes in graphene (e.g., [42,43] in standard
QED) and also of spin phenomena.
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