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Abstract: The relativistic mean field (RMF) model of the nuclear matter equation of state was modified
by including the effect of Pauli-blocking owing to quark exchange between the baryons. Different
schemes of a chiral enhancement of the quark Pauli blocking was suggested according to the adopted
density dependence of the dynamical quark mass. The resulting equations of state for the pressure are
compared to the RMF model DD2 with excluded volume correction. On the basis of this comparison
a density-dependent nucleon volume is extracted which parameterizes the quark Pauli blocking
effect in the respective scheme of chiral enhancement. The dependence on the isospin asymmetry
is investigated and the corresponding density dependent nuclear symmetry energy is obtained in
fair accordance with phenomenological constraints. The deconfinement phase transition is obtained
by a Maxwell construction with a quark matter phase described within a higher order NJL model.
Solutions for rotating and nonrotating (hybrid) compact star sequences are obtained, which show the
effect of high-mass twin compact star solutions for the rotating case.

Keywords: pauli blocking; six-quark state; quark exchange; nucleon excluded volume; symmetry
energy; high-mass twin stars
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1. Introduction

The behavior of baryons in a dense, strongly interacting medium and the resulting properties of
dense baryonic matter are highly interesting questions because of their relevance for explaining the
interior of compact astrophysical objects like pulsars and their mergers as well as heavy-ion collision
experiments in the NICA-FAIR energy range. The main problem, which awaits a better theoretical
formulation and understanding, is to treat the baryon as a bound state of quarks and to study the
effects of this quark substructure as a function of density. In particular, it is expected that at a critical
value of the density the many-baryon system will change its character and get transformed to the
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new state of deconfined quark matter. Already before this transition occurs, the effective interaction
between baryons will be strongly modified due to the fact that the effects of quark exchange between
different baryons need to be taken into account as a requirement following from the Pauli principle on
the quark level of description. These quark substructure effects will eventually dominate over other
effects due to, e.g., the meson exchange interaction. The resulting quark exchange contribution to the
baryon self-energy entails an increase of the energy per baryon and thus lead to a stiffening of dense
baryonic matter. On the other hand, the quark exchange between two baryons involves already a
six-quark wave function, which is a partial delocalization of quarks and can be seen as a precursor of
the transition to deconfined (i.e., delocalized) quark matter. In this transition from a many-baryon to a
many-quark system, the matter is effectively softened, due to the appearance of a mean field emerging
from the attractive two-quark interactions. The value of the critical density for deconfinement is crucial
for applications in heavy-ion collisions and compact stars.

The aspect we wanted to consider in this work was to investigate the influence of quark exchange
on the self energies of baryons and the equation of state of dense baryonic matter on the one hand
and on the phase transition to delocalized quark matter on the other. For quantitative estimates we
employed a relativistic mean field theory for baryonic matter (the linear Walecka model) as well as for
quark matter (the NJL-type model with higher order quark interactions) and superimpose the quark
exchange contribution to the baryon self-energy obtained within a nonrelativistic quark potential
model of the baryon structure and the six-quark wave function. The quark mass in this calculation has
a density dependence (even inside the baryon) and is taken, e.g., from the NJL model calculation.

The effect of Pauli blocking in systems of composite particles can be discussed from the quark
and nuclear level to that of atomic clusters. The relationship between Pauli blocking and excluded
volume is known from the fact that the hard-sphere model of molecular interactions is based on the
electron exchange interaction among atoms (see, e.g., Ebeling et al. [1]) which is captured, e.g., in the
Carnahan–Starling EoS [2]. Note that the Carnahan–Starling form of the EoS for multicomponent
mixtures [3] has recently been reproduced for a hadron resonance gas model with induced surface
tension when the packing fraction is not too large [4]. A recent application of the Pauli blocking
effect has been found in [5] where its role for explaining the ionization potential depression accessible
in high-pressure experiments with warm dense plasmas has been demonstrated. The temperature,
density and momentum dependence of the Pauli blocking depends on the generic form of bound state
wave functions and therefore concepts developed for atomic systems could thus be taken over to the
case of dense hadronic systems. Detailed parameterizations of the Pauli shift for nuclear clusters in
warm, dense nuclear matter are given in [6] (see also references therein). In [7] it has been demonstrated
that the repulsive part of effective density-dependent nucleon–nucleon interactions of the Skyrme
type (e.g., the one by Vautherin and Brink [8]) can be reproduced by the quark exchange interaction
between nucleons.

On the other hand, for the description of repulsive interactions in dense hadronic systems the
concept of an excluded volume has been successfully applied [9] and extended to the case of light
nuclear clusters [10], but this application requires a medium dependence of the excluded volume
parameter [11] and thus hints to a microscopic origin from the composite nature of hadrons and
clusters. We therefore use the present approach to quantify such a relationship between quark Pauli
blocking in dense nuclear matter and the medium dependence of the excluded volume parameter by
comparing the EoS of the present approach to the relativistic mean field approach DD2 with excluded
volume [12]. We would like to point out that the inclusion of the Pauli-blocking effect within a quantum
statistical description of light cluster formation and dissociation in nuclear matter at subsaturation
densities [13–15] has important consequences for the equation of state and the composition of matter
as seen, e.g., in the nuclear symmetry energy [16] that is successfully compared to experiments and
in the description of supernova matter [17,18] where otherwise excluded volume approaches are
commonly used [19].
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In the present investigation, we also consider the role that the quark exchange interaction can play
for the nuclear symmetry energy. Here the interesting question arises inasmuch the quark exchange
contribution can make the contribution from isovector meson exchange obsolete. Our present study
suggests that the ρ-meson mean field may not have any contribution for densities up to the onset of
baryon dissociation.

Recently, the question of the softening of dense baryonic matter due to the appearance of strange
baryons became very popular and led to the hyperon puzzle: a lowering of the maximum mass of
compact stars so that the existence of pulsars with masses as high as 2 M� could not be explained.
In principle, the approach can be extended to obtain results on the baryon self-energy shifts also in
the case that the strange quark flavor will be included. In that case the presented approach can make
a contribution to solving the question: Which effect will dominate when increasing the density: the
occurrence of strange baryons or of deconfined strange quark matter? In this present work we want to
consider as a first step only the question of nonstrange quark-nucleon matter.

2. Quark Exchange in Nuclear Matter

2.1. Quark Substructure Effect on the Self-Energy of the Nucleons

The quark substructure of nucleons becomes apparent for higher densities, when the nucleon
wave functions have a finite overlap so that the effects of quark exchange between nucleons due
to the Pauli principle on the quark level are no longer negligible. A quantitative estimate for this
effect has been made within a potential model for the nucleons as three-quark bound states [7,20],
see the Appendix for details of the derivation, and we employ the resulting contribution to the nucleon
self-energy as the basis for our work. The result has been obtained in the form of a Pauli blocking
energy shift for a nucleon with momentum P, given spin and the isospin projection τ = n, p in nuclear
matter at T = 0,

∆EPauli
τP (PF,n, PF,p) = ∑

τ′=n,p
∑

α=1,2
c(α)ττ′Wα(P, PF,τ′) , (1)

where PF,τ is the Fermi momentum of a medium nucleon with the isospin projection τ = n, p, which is

directly related to the medium density by PF,τ = (3π2 nτ)1/3. The coefficients for the c(α)ττ′ are given
in Table 1, and their superscript index α = 1, 2 indicates whether they apply for the one-quark or the
two-quark exchange in the two-nucleon system. The functions Wα(P, PFτ′) are the contributions due
to the Pauli-shift in the energy spectrum of three quark bound states. Their analytic derivation within
a harmonic oscillator confinement model for the ground state nucleons according to the [20] is detailed
in the Appendix A. The resulting expression for Wα(P, PFτ′) is

Wα(P, PFτ′) =
9
√

3
64
√

π

b
m

1
λ3

α

{
12
√

π [erf (λα(PFτ′ − P)) + erf (λα(PFτ′ + P))]

+
1

λαP

{[
11− 2λ2

α PFτ′(PFτ′ + p)
]

e−λ2
α(PFν′+P)2

−
[
11− 2λ2

α PFτ′(PFτ′ − P)
]

e−λ2
α(PFτ′−P)2

}}
. (2)

Table 1. Quark exchange coefficients c(α)nτ in spin-flavor-color space. These coefficients entail the
symmetry relation ∆EPauli

pP (PF,n, PF,p) = ∆EPauli
nP (PF,p, PF,n).

τ c(1)
n τ c(2)

n τ

n 15
81 − 16

81
p 12

81 − 14
81
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Here m is the constituent quark mass and b is the width parameter of the nucleon wave function
that describes the quark substructure by a product of two Gaussian functions of the relative (Jacobi)
coordinates in the three-quark system with b−2 =

√
3mω;λα = bα/(2

√
3) denote the ranges for one-

and two-quark exchange processes. Values for b and ω are given below.
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Figure 1. Exact Pauli-shifts for symmetric nuclear matter (solid line) and pure neutron matter (dashed
line) as function of the Fermi momentum, together with their power law expansion up toO(P5

F) (dotted
and dash-dotted thin lines, resp.).

We want to consider as examples the two special cases:

1. Symmetric nuclear matter (SNM), for which PF,n = PF,p = PF and

∆EPauli
nPF

(PF, PF) = c(1)nn W1(λ1PF) + c(2)nn W2(λ2PF) + c(1)np W1(λ1PF) + c(2)np W2(λ2PF). (3)

The Pauli shift for protons is obtained using the symmetry relation ∆EPauli
pP (PF,n, PF,p) =

∆EPauli
nP (PF,p, PF,n) that is encoded in the coefficients of Table 1. With these coefficients and

the low-density expansion (A29) up to fifth order in the Fermi momentum, we obtain

∆EPauli
nPF

(PF, PF) =
5

8
√

3π

b
m

(
−P3

F +
1054
225

b2P5
F

)
. (4)

This energy shift can be identified with a shift in the chemical potential and thus be used to derive
a contribution to the equation of state, see [7].

In order to give numerical results for the Pauli shift (4), we adopt the values m = 350 MeV and
b = 0.59 fm according to [20], which reproduce quite well the single nucleon properties. With the
relation P3

F = (3π2/2)n, the Pauli blocking shift can be given as a function of the nuclear matter
density ρ

∆EPauli(n) = a1n + a2n5/3, (5)

with a(SNM)
1 = −197.77 MeV fm3 and a(SNM)

2 = 1944.45 MeV fm5. As has been discussed already
in [7], this density dependent energy shift is in good agreement with the repulsive part of the
Skyrme Hartree–Fock shift in nuclear matter obtained by Vautherin and Brink [8].

2. Pure neutron matter (PNM), for which PF,p = 0, PF,n = PF and

∆EPauli
nPF

(PF, PF) = c(1)nn W1(λ1PF) + c(2)nn W2(λ2PF) . (6)
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Inserting the coefficients from Table 1 and the low-density expansion (A29) up to fifth order in
the Fermi momentum, we obtain

∆EPauli
nPF

(PF, PF) =
5

24
√

3π

b
m

(
−P3

F +
1666
225

b2P5
F

)
. (7)

Inserting the relation P3
F = 3π2n between Fermi momentum and density for PNM, we obtain the

energy shift in the form (5) with the coefficients a(PNM)
1 = −131.85 MeV fm3 and a(PNM)

2 = 3252.57
MeV fm5.

Figure 1 shows the Pauli blocking shift for the SNM and PNM cases as function of the
Fermi momentum.

2.2. Chiral Improvement of the Quark Pauli Blocking

One of the main shortcomings when applying the results for the quark Pauli blocking obtained
within the nonrelativistic quark model to the equation of state of dense nuclear and neutron star matter
up to the deconfinement phase transition is the fact that the quark mass is a medium-independent
constant in this model. From chiral perturbation theory it is known that the chiral condensate 〈q̄q〉
melts in a dense hadronic matter environment so that the constituent quark mass shall be reduced
towards its value in the QCD Lagrangian which obeys approximate chiral symmetry.

Effective chiral quark models for the low-energy sector of QCD are capable of addressing the
aspect of dynamical chiral symmetry breaking and its restoration in a hot and dense medium, but
have a problem with modeling confinement of quarks in hadrons. Here we suggest a compromise.
We adopt a density dependence for the dynamically generated quark mass and thus achieve a chiral
improvement of the quark Pauli blocking shift. We discuss in the following three schemes for this
density-dependent quark mass: (i) a constant quark mass, (ii) a linear density dependence (called
Brown–Rho scaling [21]) and (iii) a density dependence according to the calculation within a higher
order Nambu–Jona-Lasinio model [22]. These density dependences of the quark mass are illustrated
in Figure 2. In Figure 3 we show the energy shifts ∆τ(n) = ∆EPauli

τPF
(PF, PF) resulting from the insertion

of the density dependencies for the Fermi momenta and the quark mass as shown in Figure 2 into
Equations (4) and (7) for SNM and PNM, respectively.
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Figure 2. Dependence of the quark masses on density: constant quark mass (solid line), Brown–Rho
scaling (dotted line), Nambu–Jona-Lasinio (hNJL) model in β-equilibrium for u-quarks (dashed line)
and for d-quarks (dash-dotted line).
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Figure 3. The quark exchange contributions to self-energy for symmetric nuclear matter (black lines)
and for pure neutron matter (red lines) as a function of the baryon density. Constant quark mass case
(dashed lines), Brown–Rho scaling (dotted lines) and hNJL model case (solid lines).

In order to arrive at a model for dense (asymmetric) nuclear matter with quark substructure
effects at supranuclear densities, we adopt a combined approach consisting of a relativistic mean-field
(RMF) approach to nuclear matter which in its simplest form is the well-known linear Walecka (LW)
model [23,24], to which we add the repulsive quark Pauli blocking interaction, which should then
partly replace the vector meson exchange at high densities and play the role of a precursor of the
delocalization of the nucleon wave functions in the quark deconfinement transition. Such a combined
approach has been very successfully employed before in the description of light nuclear clusters
in nuclear matter by Typel et al. [15], where self-energy effects for nucleons were treated within a
relativistic mean-field theory while the cluster formation is described within a nonrelativistic quantum
statistical approach that allowed to account for the reduction of the binding energy of the clusters
due to nucleonic Pauli blocking, leading to the Mott dissociation of the clusters and the formation of
uniform nuclear matter around the saturation density.

In the present work, the role of the clusters is played by the nucleons as three-quark bound states,
subject to a quark Pauli blocking effect that triggers their Mott dissociation into deconfined quark matter
described in a relativistic mean-field model for which we adopt the higher order Nambu–Jona-Lasinio
(hNJL) model of [22]. At lower densities, in order to make contact with the phenomenology of nuclear
matter saturation properties, the Fermi gas model of nucleons three-quark bound states with a hard
core repulsion from quark Pauli blocking has to be augmented with additional attraction and repulsion
as described, e.g., by the coupling to scalar and vector mean fields in the σ−ω (LW) model.

3. Equation of State of Cold, Dense Matter with Deconfinement Transition

3.1. Relativistic Mean Field Model with Quark Exchange Contribution

The modification of the LW model to account for quark exchange (Pauli blocking) effects among
nucleons is introduced by additional contributions to the pressure (pex) and to the energy density
(εex) as

P =
1

8π2 ∑
τ=n,p

[
−E∗τm∗2τ PF,τ +

2
3

E∗τ P3
F,τ + m∗4τ log

(
E∗τ + PF,τ

m∗τ

)]
+

1
2

Gωn2 − 1
2

Gσn2
s + Pex, (8)

ε =
1

8π2 ∑
τ=n,p

[
2 E∗3τ PF,τ − E∗τm∗2τ PF,τ −m∗4τ log

(
E∗τ + PF,τ

m∗τ

)]
+

1
2

Gωn2 +
1
2

Gσn2
s + εex, (9)
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where n = nn + np is the baryon density, ns = ns,n + ns,p the scalar density, and for each baryon species
we have

ns,τ =
m∗τ
2π2

[
E∗τ PF,τ −m∗2τ log

(
E∗τ + PF,τ

m∗τ

)]
, (10)

E∗τ =
√

m∗2τ + P2
F,τ (11)

nτ =
P3

F,τ

3π2 , (12)

m∗τ = mτ − Gσns,τ , (13)

µτ = E∗τ + Gωnτ + µex,τ . (14)

The effective coupling constants Gσ = (gσ/mσ)2 and Gω = (gω/mω)2 are adjusted in order to
fit the saturation point of symmetric nuclear matter with the phenomenological binding energy per
nucleon, see Table 2 and the section with the results.

In the relativistic mean-field EoS of Equations (8) and (9) we also introduce the contribution to the
thermodynamical quantities that originate from the quark exchange self-energy via

µex,τ = ∆τ(n, x) = ∆EPauli
τPF,τ

(PF,n, PF,p), (15)

εex =
∫ n

0
dn′{x∆p(n′, x) + (1− x)∆n(n′, x)}, (16)

Pex = ∑
τ=n,p

µex,τ nτ − εex, (17)

where np (nn) denotes the proton (neutron) density and x = np/n is the proton fraction.

3.2. NJL Model with Higher Order Quark Interactions

In order to describe cold quark matter that is significantly stiffer than the ideal gas, we employ a
recently developed generalization of the NJL model, which includes higher order quark interactions in
both Dirac scalar and Dirac vector channels (hNJL), see [22] and references therein. The thermodynamic
potential density of the 2-flavor hNJL model for a homogeneous quark matter system in the mean-field
approximation is given by

Ω = −2Nc ∑
q=u,d

{∫ Λ

0

dp p2

2π2 Eq −
1

16π2

[
(

2
3

EF,q p3
F,q −M2

q EF,q pF,q + M4
q ln

(EF,q + pF,q

Mq

)]}
+U −Ω0 , (18)

where

U =
g20

Λ2 σ2 + 3
g40

Λ8 σ4 − 3
g22

Λ8 σ2ω2 − g02

Λ2 ω2 − 3
g04

Λ8 ω4 (19)

is the potential energy density and the quark quasiparticle dispersion relation is Eq =
√

p2 + M2
q , with

Mq = mq + 2
g20

Λ2 σ + 4
g40

Λ8 σ3 − 2
g22

Λ8 σω2 , (20)

EF,q = µq − 2
g02

Λ2 ω− 4
g04

Λ8 ω3 − 2
g22

Λ8 σ2ω . (21)

The model parameters are the 4-quark scalar and vector couplings g20, and g02, the 8-quark scalar
and vector couplings g40 and g04 as well as the current quark mass m and the momentum cutoff Λ



Particles 2020, 3 484

placed on the divergent zero-point energy. Furthermore, the subtraction of the constant Ω0 ensures
zero pressure in the vacuum.

The model is solved by minimizing the thermodynamic potential density with respect to the
mean-fields X = σ, ω, i.e.,

∂Ω
∂X

= 0 , (22)

and the pressure is obtained from the relation P = −Ω.
In this work we use the parameter set of [25] with g20 = 2.104, g40 = 3.069, mq = 5.5 MeV, and

Λ = 631.5 MeV. The vector channel strengths are quantified by

η2 =
g02

g20
, η4 =

g04

g40
. (23)

We concentrate on the parameter space where η2 is small and use η4 to control the stiffness of the
EoS. With small η2 we do not delay the onset of quark matter. Additionally, we put g22 = 0 [22].

This approach allows us to calculate partial pressures Pq and partial densities nq = ∂Pq/∂µq for
q = u, d. In a cold stellar environment, the processes d → u + e− + ν̄e and u + e− → d + νe result in
the β- equilibrium relation for the chemical potentials µd = µu + µe, since the neutrinos leave the star
and do not take part in the chemical equilibration. Local charge neutrality requires

2
3

nu −
1
3

nd − ne = 0 . (24)

The total pressure in the quark phase is given as P = Pu + Pd + Pe, where Pe is the electron
pressure given by the relativistic ideal gas formula. The baryon chemical potential in the quark phase
can be calculated from

µ = µu + 2µd . (25)

and the respective baryon number density is

n =
∂P
∂µ

=
nu + nd

3
. (26)

3.3. Quark Deconfinement Phase Transition

To construct a thermodynamically consistent hybrid EoS, we use the Maxwell construction, which
is tantamount to assuming a large surface tension at the hadron–quark interface. The critical baryon
chemical potential is obtained by matching the pressures from the low density and the high density
phase. The first order phase transition obtained by the Maxwell construction generates a jump in the
density and the energy density. Illustrative examples for this are shown and discussed in the following
Section for the parametrization that is introduced there.

4. Results

4.1. Parameterization of the Model

For the calculations, we fixed the parameters of our models on the properties of symmetric nuclear
matter at the saturation density n0 = 0.153 fm−3, at which the binding energy is E/A = ε/n−mn =
−15.8 MeV. The parameters are given in the Table 2.

In Figure 4, we demonstrate the properties of symmetric nuclear matter as a function of the baryon
density. As it can be seen from the values of coupling constants of mesons in Table 2 in comparison
with those of the LW model the repulsion of the ω-meson is partially replaced by the inclusion of
Pauli-blocking via quark exchange mechanism. At low densities, the binding energy per baryon goes
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to zero since no nuclear cluster formation is included here. For a detailed discussion of this aspect,
see [15,16].

Table 2. Parameter sets for vector (Gω = (gω/mω)2) and scalar (Gσ = (gσ/mσ)2) meson couplings,
the compressibility K and symmetry energy Es at the nuclear saturation density as well as radius R1.4

of the neutron star with mass 1.4 M� for the relativistic mean-field (RMF) linear Walecka (LW) model
and for modified LW models with quark exchange contributions for different density-dependences of
the quark mass: constant quark mass (LW + Qex), Brown–Rho scaling (LW + MQex) and hNJL model
(LW + MhNJL).

(gω/mω)2 [fm2] (gσ /mσ)2 [fm2] K [MeV] Es [MeV] R1.4 [km]

RMF (LW) 11.6582 15.2883 608.874 21.58 13.22
LW + Qex 6.11035 9.91197 331.958 32.04 13.70

LW + MQex 8.59170 13.29118 481.713 34.12 14.40
LW + MhNJL 9.25683 13.9474 582.831 31.55 14.29
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Figure 4. Energy per nucleon of symmetric matter for relativistic mean-field (RMF) (LW) (solid lines),
LW + Qex (dashed lines) and LW + MQex (long-dashed lines) models.

4.2. Equation of State

The EoS for the nuclear matter is obtained and in Figure 5 the pressure as a function of the density
is shown for symmetric matter (left panel) and for pure neutron matter (right panel). The symmetry
energy is shown and discussed below in Section 4.4 for all our models.
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Figure 5. (Left panel): Pressure as a function of number density for symmetric nuclear matter. (Right
panel): EoS for pure neutron matter for all models.
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4.3. Comparison with Nucleonic Excluded Volume

It is interesting to compare the effect of accounting for the compositeness and finite extension of
the nucleon wave function by the Pauli blocking effect with the phenomenological improvement of
nuclear matter models by implementing a nucleonic excluded volume like in the van-der-Waals gas.
In Figure 6 we show the equations of state for pressure vs. density that results from our LW model
with chirally enhanced Pauli blocking and the RMF model DD2 for different values of the nucleonic
excluded volume parameter [12].

Figure 6. Same as the left panel of Figure 5 on a logarithmic pressure scale and compared to a set of
EoS for the DD2 EoS with excluded volume corrections from [12]. From this comparison one could
read-off a density dependent excluded volume corresponding to the quark Pauli blocking effect in the
equation of state. The hatched region corresponds to the constraint derived from the analysis [26] of
flow data from heavy ion collision experiments.

Also shown is the flow constraint derived from the analysis of heavy ion collision experiments [26].
From comparing the Pauli-blocking improved LW models with excluded-volume corrected DD2
models, we extracted a density-dependent excluded volume parameter and the corresponding
hard-core radius for nucleons. We note that these results compare very well with nucleonic hard-core
radii obtained within the induced surface tension approach reported in [9]. A thorough analysis of the
critical temperature of symmetric nuclear matter, the incompressibility of the normal nuclear matter
and the proton flow constraint clearly shows [9,27] that a hard-core radius of nucleons up to 0.45 fm is
still consistent with the available experimental data. Therefore, the short dashed curve in Figure 7 is
perfectly consistent with the known symmetric nuclear matter properties.

It should be stressed that smaller values of r ≈ 0.35 fm for the nucleon hard-core radius are
obtained from fits to heavy-ion collision data for hadron production at LHC and RHIC energies so that
a dependence of the hard-core radius on the chemical freezeout temperature was conjectured in [9].
Extending the present approach to finite temperatures, such a temperature dependence is expected to
result from the temperature dependence of the quark Pauli-blocking energy shift.
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Figure 7. Density dependence of the nucleonic eigenvolume parameter v that would reproduce the
quark Pauli blocking EoS of the present approach for the DD2 EoS with excluded volume from [12].
Identifying the eigenvolume parameter with the van-der-Waals excluded volume v = 16πr3/3 one can
extract a nucleon radius parameter r shown on the alternative axis.

4.4. Applications for Neutron Stars

In the left panel of Figure 8, we show the symmetry energy as a function of the density for all
considered models. In the right panel of Figure 8, we show the proton fraction as a function of the
density which results from accounting for the β-equilibrium with electrons for all considered models.
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Figure 8. (Left panel): Symmetry energy as a function of density for RMF (LW) (solid lines), LW + Qex
(dashed lines), LW + MQex (long-dashed lines) and LW + MhNJL models. (Right panel): Proton
fraction as a function of density for these models (same line styles) in comparison to standard neutron
star EoS: APR, DBHF and the DD RMF model.

For all three models we construct the thermodynamics of stellar matter in β-equilibrium fulfilling
the charge neutrality condition with electrons and protons. In Figure 9 we show the EoS in
β-equilibrium for all considered models in comparison with the LW EoS.

We consider the problem of causality in our modeling and show in the lower right panel of
Figure 9 the dependence of the squared speed of sound on density. As it is shown for models LW, LW
+ Qex and LW + MQex for all relevant densities the causality holds since c2

s < 1. For the model LW +
MhNJL the causality is violated for high densities where already the transition to quark matter has to
happen. This fact is consistent with our modeling because as a mass function for the quarks we took
the behavior corresponding to hNJL model, see Figure 2.
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Figure 9. EoS in β-equilibrium with electrons for all considered models. Clockwise: pressure as
function of baryo-chemical potential µ; pressure as function of baryon density n = dP/dµ; squared
speed of sound c2

s = dP/dε; pressure as function of energy density ε = −P + µn.

Having defined the hadronic EoS with three different scenarios of the chiral enhancement of
the quark Pauli blocking effect, and four choices for pair of free parameters of the quark matter EoS:
(η2, η4) = (0, 14.0), (0, 6.0), (0.1, 14.0) and (0.1, 6.0), we perform four Maxwell constructions for each
hadronic model, see Figure 10.

In the upper left panel of that figure, we illustrate the Maxwell construction in the
pressure-chemical potential plane. Each crossing point of a hadronic EoS PH(µ) with a quark matter
one PQ(µ) fulfills the Gibbs conditions for phase equilibrium at T = 0 because the chemical potentials
are equal to the critical value µc (chemical equilibrium) where the pressures coincide PH(µc) = PQ(µc)

(mechanical equilibrium). According to the principles of equilibrium thermodynamics, the system is at
each value of the chemical potential in the phase with the highest pressure. Therefore, at the crossing
point µc the system switches from the hadronic to the quark matter EoS. Since at µc the corresponding
pressures have a different slope, this transition is accompanied with a jump in the baryon number
density n = dP/dµ and energy density ε = −P + µn.

In the remaining three panels of Figure 10 we show the pressure as a function of the energy
density for the 12 hybrid EoS models resulting from the combination of the three hadronic EoS:
LW + Qex (upper right panel), LW + MQex (lower left panel) and LW + MhNJL (lower right panel)
with the four quark matter EoS for the model parameters of the hNJL model: η2 = {0.0, 0.1} and
η4 = {6.0, 14.0}. The other parameters of the hNJL model are fixed to values of [25], see also
Section 3.2 above.

In Figure 11 we show the mass-radius relation for compact star configurations considering
two models for the density dependence of the quark mass: constant quark mass (LW + Qex, green
short-dashed line) and Brown-Rho scaling (LW + MQex, red long-dashed line) without and with the
possible phase transition to quark matter. We do not show the M-R curves for LW + MhNJL here
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because, as we mentioned earlier when discussing Figure 9, this scenario violates causality (c2
s > 1)

at large densities in the hadronic phase and makes sense only with a phase transition that prevents
this problem to occur. The phase transition, however, is the same for LW + MQex and LW + MhNJL,
so that the lines for the latter results are indistinguishable from those for the former ones and are not
displayed separately. From the calculation we choose the hybrid EoS where quark matter is modeled
with the parameters η2 = 0 and η4 = 14. As it is shown in the figure, the differences between all three
models for the masses of stars are small, and all of them satisfying the 2 M� observational constraint
from the Shapiro-delay based mass measurement on PSR J0740 + 6220 [28].
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Figure 10. Upper left panel: Maxwell construction of the first-order phase transition in the
pressure-chemical potential plane. The crossing points of the parameterizations of the hNJL quark
matter model with the hadronic EoS models define the values for the critical pressure and the critical
chemical potential where the system switches from the hadronic to the quark matter phase, described
by the corresponding EoS. Upper right panel: first order phase transitions from the hadronic model LW
+ Qex to hNJL quark matter with four parametrizations in the pressure-energy density plane. Lower
left (right) panel: same as upper right panel, but for the hadronic model LW + MQex (LW+MhNJL).

Moreover, with this particular hybrid EoS the third family of compact stars [29] is possible because
the three conditions are fulfilled [30]: (i) a sufficiently stiff hadronic EoS, (ii) a large jump in energy
density at the transition which occurs at a low pressure P(µc) < 100 MeV/fm3, (iii) a sufficiently stiff
quark matter EoS to reach a maximum mass of∼ 2M�. Such a third family of compact stars, if it would
be discovered, would signal a strong first-order phase transition and therefore support the existence
of a critical endpoint in the QCD phase diagram [30,31]. Recently, it was shown within a Bayesian
analysis that the existence of such a class of hybrid EoS is in accordance with modern constraints from
multi-messenger astronomy [32].

We like to remark that a similar calculation, with quark Pauli blocking as a repulsive interaction
in the nuclear matter phase (for constant quark mass) and with the string-flip model for quark matter
has been performed as early as in 1989 with a similar result that stable hybrid stars with quark matter
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core are possible and have a maximum mass above 2 M� [33]. At that time, measured pulsar masses
were below 1.5 M�.

In the same plot we also show the relationship between mass and equatorial radius for stars
rotating with the maximum possible angular velocity. These calculations have been performed within
the slow-rotation approximation described in detail in [34,35].
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Figure 11. Mass-radius relation for neutron stars within the LW model (black dotted lines) modified by
quark exchange effects within two different schemes for the density dependence of the quark mass:
constant quark mass (LW + Qex, green short-dashed line) and Brown-Rho scaling (LW + MQex, red
long-dashed line). The bold lines are for nonrotating star sequences and the thin lines for the rigidly
rotating ones with maximal angular velocity. Results for a deconfinement phase transition to hNJL
quark matter core sequences are shown by solid lines.

5. Conclusions

The relativistic mean field model of the nuclear matter equation of state was modified by including
the effect of Pauli-blocking owing to quark exchange between the baryons. Different schemes of a
chiral enhancement of the quark Pauli blocking due to a density-dependent reduction of the value
of the dynamical quark mass were considered. The resulting equations of state for the pressure were
compared to the RMF model DD2 with excluded volume correction.

On this basis a density-dependent nucleon excluded volume is extracted which parameterizes
the quark Pauli blocking effect in the respective scheme of chiral enhancement. The dependence
on the isospin asymmetry of the quark Pauli blocking was investigated and the corresponding
density dependent nuclear symmetry energy was obtained in fair accordance with phenomenological
constraints.

The deconfinement phase transition was obtained by a Maxwell construction with a quark matter
phase described within a higher order NJL model. Solutions for rotating and nonrotating (hybrid)
compact star sequences were obtained, which show the effect of high-mass twin compact star solutions
for the rotating case. This result is a consequence of the stiffening of the nuclear equation of state
due to the quark Pauli blocking effect which at the same time is a precursor of the delocalization of
the quark wave function in the deconfinement transition that leads to a strong softening and thus a
large enough density jump at the phase transition to induce a gravitational instability as one of the
necessary conditions for the occurrence of a third family solution for hybrid star sequences in the
neutron star mass-radius diagram. The other one is the sufficient stiffness of deconfined quark matter
at high densities which is provided by the 8-quark interactions in the scalar and vector channels of the
higher order NJL model.
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Appendix A. Pauli Quenching for Nucleons in Nuclear Matter-a Quark Substructure Effect

At the present there is a growing interest to understand the properties of nuclear matter on the
basis of the underlying quark substructure. As long as a first principle QCD-approach to this problem
cannot be realized, semi-phenomenological quark potential mode approaches can be successfully
applied to work out the description of hadronic properties within a quark picture. Nonrelativistic
quark models have been proven remarkably useful in describing the hadron spectroscopy [36–38].
Many efforts have been made to derive the hadron–hadron interaction from say the 6-quark problem.
Phase shifts obtained from a nonrelativistic quark potential model give a good fit to the scattering data
of the nucleon–nucleon [39–46] meson–nucleon [47] and meson–meson [48–51] interaction.

Another interesting problem is the investigation of nuclear matter as a many quark system at
finite temperature and density. As a consequence of their quark substructure the nucleons are affected
by the surrounding nuclear medium. In contrast to the few-quark problem, where we have to solve
the Schrödinger equation for the isolated three-quark system, a quantum statistical approach is needed
to treat the many-quark system at finite temperature. Because of the confinement property of the
quark interaction potential, this quantum statistical approach must be modified if compared with
usual classical many-particle systems.

To formulate the Hamiltonian we consider nonrelativistic massive quarks so that the kinetic
energy is given by

KE =
N

∑
i=1

(
m +

p2
i

2m

)
. (A1)

The potential energy PE(r1 . . . rN) is constructed in the following way [7]. The configuration
(r1 . . . rN) is decomposed into color-neutral clusters qq̄ or qqq, respectively. The confining two-body
interaction among quarks is assumed here in the form of a harmonic oscillator potential

Vij =
mω2

2
(ri − rj)

2 (A2)

and shall act only within these color-neutral clusters (saturation property of the interaction). Within all
possible decompositions of the quark configurations one has to take the cluster configuration with
the minimum potential energy, this minimum value of the potential energy will be denoted by PE.
The Hamiltonian is then given by

H = KE + PE . (A3)

Of course, this Hamiltonian is able to describe isolated hadrons where the quark interaction is
confined within the color-neutral hadronic cluster. With respect to the two-nucleon problem [46], color
van-der-Waals forces do not arise because of the saturation property of the quark interaction [52].
A massive quark matter phase can be described where the potential energy is given by the distribution
function of the next neighbors [53,54].
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We consider nuclear matter as the hadronized phase where the interaction strings are confined
within the nucleons and string flips like in the quark matter phase are not likely to occur. However,
the color-neutral three-quark cluster is influenced by the surrounding clusters by reason of the
Pauli principle what demands the antisymmetrization of the hadronic quark wave functions.
The corresponding shift of the nucleon energy which may be considered as the self-energy of the
three-quark cluster should contribute to the binding energy of nuclear matter. It is the aim of this
appendix to evaluate this self-energy contribution due to Pauli blocking and to provide it in a simple
analytic form that can be used in phenomenological approaches in order to account for this quark
substructure effect when comparing with empirical values for the properties of nuclear matter.

Within a Green function approach [7] the lowest order diagram with respect to the density gives
the Pauli shift of the three-quark cluster

∆EPauli
n = ∑

n′
∆EPauli

nn′ f3(En′),

∆EPauli
nn′ = 3 ∑

1...6
ψ∗n(123)ψ∗n′(456) (KE− En − En′) [ψn(126)ψn′(453)− ψn(453)ψn′(126)] . (A4)

This Pauli blocking shift has already been evaluated for finite temperatures and densities of the
nuclear environment and leads to temperature and density dependent nucleonic properties, such as the
effective nucleon mass [55], and corresponds to the hard-core part of the effective Skyrme interaction
for nuclear matter [7].

However, at zero temperature the Pauli quenching shift (A4) obtained within a quantum statistical
treatment of the completely hadronized quark plasma may be interpreted as a contribution due
to an appropriately chosen antisymmetrization of the six-quark wave function Φnn′(1 . . . 6) of the
two-nucleon problem. In this appendix we want to show this correspondence in detail thus coacting
few-body approaches which deal with the problem of effective NN-interactions on the quark level
using the resonating-group method [41–45,56].

In the spirit of a perturbation theory, we want to represent the six-quark wave function Φnn′(1 . . . 6)
as a product of two nucleonic wave functions that behaves antisymmetrically with respect to each
exchange of quantum numbers belonging to quarks (Pij; i = 1, 2, 3; j = 4, 5, 6) or to nucleons (Pnn′ ) thus
fulfilling the Pauli principle on the nucleonic as well as on the quark level. Following this prescription
and considering only the two nucleon channel, all those permutations leading to color nonsinglet
clusters have to be excluded and we obtain

Φnn′(1 . . . 6) =

(
1−

3

∑
i=1

Pi,i+3

)
(1− Pnn′)ψn(123)ψn′(456) , (A5)

where the numbers i = 1 . . . 6 stand for the momentum, spin, flavor and color indices of the i-th quark
and n denotes the center-of-mass momentum P as well as one of the spin-isospin orientations of the
ground state nucleon (ν = p ↑, p ↓, n ↑, n ↓). The wave function ψn(123) of the nucleon can be found
as the ground state solution of the three-quark Hamiltonian

H(123) =
3

∑
i=1

(m +
p2

i
2m

) +
3

∑
i<j=2

Vij (A6)

with the harmonic oscillator confinement potential (A2). Since the Hamiltonian (A6) is independent of
spin, flavor and color (SFC) of the constituent quarks, the SFC-part χν(123) can be separated from the
orbital part ϕP(123) of the nucleon wave function according to

ψn(123) = ϕP(123)χν(123). (A7)
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The property of antisymmetry of the three-quark wave function determines the symmetry
properties of the ϕP and the χν part. In a systematic way, this decomposition can be done by using the
technique of Young tableaux. The lowest energy eigenvalue corresponds to a total symmetric orbital
part, with respect to spin and flavor the wave function has a mixed symmetry, whereas for the color
part a total antisymmetric function is needed, see also [10]. With explicit notation of the spin (↑, ↓),
flavor (u, d) and color (R, G, B) degrees of freedom, the SFC-part of the nucleon wave function reads

χν(123) =
1√
18

(2u ↑ u ↑ d ↓ +2u ↑ d ↓ u ↑ +2d ↓ u ↑ u ↑

−u ↑ u ↓ d ↑ −u ↑ d ↑ u ↓ −d ↑ u ↑ u ↓ −u ↓ u ↑ d ↑

−u ↓ d ↑ u ↑ −d ↑ u ↓ u ↑) 1√
6

det |RGB|. (A8)

By alternating the spin or isospin orientations in (A8), the four species of ground state nucleons
(ν = p ↑, p ↓, n ↑, n ↓) are described. The orbital part of the nucleonic wave function is obtained by
solving the Schrödinger equation

H(123)ϕP(123) = En ϕP(123); n = P, ν, (A9)

yielding for the ground state

ϕP(123) =
8π3

V

(√
3b2

π

)3/2

δP,PR e−(p2
ρ+p2

λ)b
2/2, (A10)

En = P2/6m + 3m + 3
√

3ω. (A11)

Here we have used the Jacobi coordinates

PR = p1 + p2 + p3,

pρ =
1√
2
(p1 − p2),

pλ =
1√
6
(p1 + p2 − 2p3), (A12)

and the width parameter of the Gaussian wave function b−2 =
√

3mω; h̄ = 1, V is the
normalization volume.

Now, the antisymmetrized two-nucleon wave function follows from (A5) with (A7), (A8) and
(A10). The normalization is given by

Nnn′ = 〈Φnn′ |Φnn′〉

= 1− δP,P′ − 3 ∑
p1 ...p6

ϕ∗P(123)ϕ∗P′(456)
[
c(1)νν′ϕP(126)ϕP′(453) + c(2)νν′ϕP(453)ϕP′(126)

]
.(A13)

Here, the c(1)νν′ and c(2)νν′ reflect the scalar products of the SFC-part with exchange according to P3,6

and Pnn′P3,6

c(1)νν′ = 〈χν(123)χν′(456)χν(126)χν′(453)〉

c(2)νν′ = −〈χν(123)χν′(456)χν(453)χν′(126)〉. (A14)

The color degrees of freedom are immediately elaborated by rearranging the color variables, a
factor 2 arises from two different variants of χν if the non exchanged variables are transposed. The
remaining SF-variables are explicitly written down and evaluated. The results for ν = n ↑ are given in
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Table A1, the equivalent results hold also for the other nucleon states, if the interaction is invariant
with respect to the isospin variables.

Table A1. The values of the matrix elements c(1)νν′ and c(2)νν′ for ν = n ↑.

ν ν′ c(1)
νν′ c(2)

νν′

n ↑ n ↑ 31/243 −31/243
n ↑ n ↓ 14/243 −17/243
n ↑ p ↑ 14/243 −17/243
n ↑ p ↓ 22/243 −25/243

∑ν′ 1/3 −10/27

The momentum variables are integrated taking into account that the exchange operator P3,6 is
different from zero only for p3 = p6. The result can be given in a closed form

Nnn′ = 1− δP,P′ −
9
√

3
8

(
b2

π

)3/2 8π3

V

[
c(1)νν′ e

−(P−P′)2b2/12 + c(2)νν′ e
−(P−P′)2b2/3

]
. (A15)

The antisymmetrization of the two-nucleon wave function with respect to the quark degrees of
freedom leads to a shift in the two-nucleon energy according to

∆EPauli
nn′ =

1
Nnn′
〈Φnn′ |H|Φnn′〉 − En − En′ , (A16)

with En given by Equation (A11). The Hamiltonian H = KE + PE contains the kinetic part,
Equation (A1), and the potential part, Equation (A2). Neglecting the antisymmetrization of the
wave function with respect to quark exchange, the kinetic energy which is in Jacobi coordinates

KE = 6m +
P2

R
6m

+
P′2R
6m

+
1

2m

(
p2

ρ + p2
λ + p′2ρ + p′2λ

)
, (A17)

and the potential energy

PE = 3
mω2

2

(
ρ2 + λ2 + ρ′

2
+ λ′

2
)

, (A18)

are immediately evaluated for the two-nucleon system with the result

〈Φnn′ |KE|Φnn′〉 ≈ 6m +
P2

R
6m

+
P′2R
6m

+ 3
√

3ω, (A19)

〈Φnn′ |PE|Φnn′〉 ≈ 3
√

3ω, (A20)

so that no energy shift arises.
Orthogonalization of the wave function by antisymmetrization will lead to a change in the

kinetic energy. In contrast to the kinetic energy, the potential energy (A2) is not determined by
the wave function but by the density distribution of the quarks. In particular, the probability of a
given quark configuration is determined by the density distribution function. It is well-known from
the Hartree–Fock theory that antisymmetrization will not change the particle density distribution
ρ(r) = ∑i δ(r− ri). For two nucleons we obtain an overlap of the quark density distributions, and the
potential energy in not significantly changed by the antisymmetrization procedure, as long as string
flip processes are not of importance. As discussed below, a variation of the wave function beyond the
scope of a Hartree–Fock type antisymmetrization will also lead to a variation of the potential energy.
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In this way, the energy shift (A16) is determined by the change of the kinetic energy with

∆EPauli
nn′ = N−1

nn′

(
En + En′ + ∆KEPauli

nn′

)
− En − En′ , (A21)

with

∆KEPauli
nn′ = −(En + En′)− 3 ∑

p1 ...p6

ϕ∗P(123)ϕ∗P′(456)

×KE
[
c(1)νν′ϕP(126)ϕP′(453) + c(2)νν′ϕP(453)ϕP′(126)

]
. (A22)

Expanding the normalization factor N−1
nn′ up to the first order with respect to the overlap integral,

see Equation (A13), the expression (A4) for the Pauli shift is recovered.
The interpretation of the energy shift due to the Pauli blocking can be given in correspondence to

atomic physics. At short interatomic distances, the energy of the two-atom system is sharply increasing
what is usually represented by a repulsive, hard core like interaction potential. Indeed, the physical
reason of this increase of energy is not the Coulombic electron–electron interaction, but the increase
of kinetic energy because of the Pauli principle which demands the orthogonalization of the electron
wave functions.

Now, let us proceed to the explicit evaluation of the Pauli-blocking shift (A21) which may be
given using the Jacobi coordinates (A12) as follows:

∆EPauli
nn′ = 3 ∑

PR ,pρ ,pλ

∑
P′R ,p′ρ ,p′λ

∂(p1 . . . p6)

∂(PR . . . p′λ)
δP,PR δP′ ,P′R

[
6
√

3ω− 1
2m

(
p2

ρ + p2
λ + p′2ρ + p′2λ

)]

×
[
c(1)νν′ δP,PR−(PR−P′R)/3+2(pλ−p′λ)/

√
6 + c(2)νν′ δP,PR+(PR−P′R)/3−2(pλ−p′λ)/

√
6

]
e−b2

(
p2

ρ+p2
λ+p′2ρ+p′2λ

)

=
9
√

3
16

8π3

V

(
b2

π

)3/2 1
mb2

{
c(1)νν′ e

−(P−P′)2b2/12
[

15
2
− b2

12
(P− P′)2

]
+c(2)νν′ e

−(P−P′)2b2/3
[

15
2
− b2

3
(P− P′)2

]}
. (A23)

Whereas this quantity (A23) measures the surplus energy arising from the antisymmetrization of
the wave function with respect to the two-nucleon problem, we are especially interested in the energy
shift for a single nucleon ∆EPauli

n in a many-nucleon system which can be obtained from (A23) by
summation over the second nucleonic index n′, whereby at T = 0 the respective distribution function
(see (A4)) is a step function restricting the momentum summation to the range of the Fermi sphere
|P′| < PF. The sum over P′ may then be evaluated as an integral yielding

∆EPauli
νP (PF,n, PF,p) = ∑

ν′
V
∫
|P′ |<PF

d3P′

(2π)3 ∆EPauli
nn′ = ∑

τ′=n,p
∑

α=1,2
cττ′Wα(P, PF,τ′) (A24)

Wα(P, PF) = Wαλ3
α

∫ PF

0
dP′ P′2

∫ 1

−1
dz
{

e−λ2
α(P2+P′2−2P P′z)

[
15
2
− λ2

α(P2 + P′2 − 2P P′z)
]}

, (A25)

where the abbreviations Wα = 9
√

3
64
√

π
b
m /λ3

α and λα = α
2
√

3
b have been used. We introduce dimensionless

momenta xα = λαP and analogous for the primed momentum as well as the Fermi momentum and
perform the angular integration over the z-variable
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Wα(xα, xα,F) = Wα
1
xα

∫ xα,F

0
dx′α x′α

{
e−(xα−x′α)2

[
13
2
− (xα − x′α)

2
]
− e−(xα+x′α)2

[
13
2
− (xα + x′α)

2
]}

= Wα
1
xα

∫ xα,F

−xα,F

dx′α x′α

{
e−(xα−x′α)2

[
13
2
− (xα − x′α)

2
]}

= Wα
1
xα

∫ −xα+xα,F

−xα−xα,F

dx′α e−x′α
2
(

13
2
− x′α

2
)
(x′α + xα)

= Wα
{

12
√

π [erf(xα,F − xα)− erf(xα,F + xα)]

+
e−(xα,F+xα)2

xα
[11− 2xα,F(xα,F + xα)]−

e−(xα,F−xα)2

xα
[11− 2xα,F(xα,F − xα)]

}
. (A26)

For the applications to symmetric nuclear matter and to pure neutron matter we just need the
case that both arguments are equal to the same Fermi momentum, i.e.,

Wα(xα,F) = Wα(xα,F, xα,F) = WαP(xα,F) , (A27)

where
P(x) = 12

√
π erf(2x) +

1
x

[
e−4x2

(11− 4x2)− 11
]

, (A28)

is the Pauli blocking function that described the momentum dependence of the quark exchange
between three-quark clusters and is depicted in Figure A1 together with its power law expansion up
to a given order,

P(x) = 40x3 − 1088
15

x5 +
608

7
x7 − 3584

45
x9 +

4436
99

x11 −O(x13) . (A29)
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Figure A1. The function P(x) defined in Equation (A28) with its polynomial expansions in different
lowest orders, as well as a fit that obeys both limits of P(x → 0) = 40x3 and P(x → ∞) = 12

√
π. In the

main panel the range of applicability of the low-density approximation is shown, a larger picture is
shown in the inset.

This divergent series is useful only in the low-density (i.e., low-momentum) limit, but it does not
display the fact that this function asymptotically approaches the constant 12

√
π ≈ 21.269.

An excellent fit to the exact result (A28) is given by

P(x) ≈ 12
√

π

[
1−

(
1 +

10
3
√

πγ
x3
)−γ

]
, γ = 0.35, (A30)
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which is a sufficiently simple function of the nucleon density n ∝ x3. Note that we need to use
this function with different arguments for the one-quark (α = 1) and two-quark (α = 2) exchange
contributions to the nucleon self-energy which have a different range in momentum space.

This function P(x) is used in the main text when the effect of quark Pauli blocking between
nucleons on the nuclear equation of state is numerically evaluated and discussed.
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