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Abstract: The article formulates the classical three-body problem in conformal-Euclidean space
(Riemannian manifold), and its equivalence to the Newton three-body problem is mathematically
rigorously proved. It is shown that a curved space with a local coordinate system allows us
to detect new hidden symmetries of the internal motion of a dynamical system, which allows
us to reduce the three-body problem to the 6th order system. A new approach makes the
system of geodesic equations with respect to the evolution parameter of a dynamical system
(internal time) fundamentally irreversible. To describe the motion of three-body system in different
random environments, the corresponding stochastic differential equations (SDEs) are obtained.
Using these SDEs, Fokker-Planck-type equations are obtained that describe the joint probability
distributions of geodesic flows in phase and configuration spaces. The paper also formulates the
quantum three-body problem in conformal-Euclidean space. In particular, the corresponding wave
equations have been obtained for studying the three-body bound states, as well as for investigating
multichannel quantum scattering in the framework of the concept of internal time. This allows us to
solve the extremely important quantum-classical correspondence problem for dynamical Poincaré systems.

Keywords: classical three-body problem; conformal-geodesic equations; non-integrable classical
system; irreversible classical dynamics; equation of geodesic flows; quantum three-body problem;
irreversible quantum dynamics; multichannel quantum scattering; scattering S-matrix

1. Introduction

One geometry cannot be more accurate than another, it may only be more convenient... A. Poincaré

The general three-body classical problem is one of the oldest and most complex problems in
classical mechanics [1–6]. Briefly, the meaning of the task is to study the motion of three bodies in
space under the influence of pairwise interactions of bodies in accordance with Newton’s theory
of gravitation.

As Bruns [7] showed, the problem under consideration is described in an 18-dimensional phase
space and has 10 integrals of motion. Note that this property does not allow to solve the problem
in the same way as it does for two bodies, and therefore it is believed that it belongs to the class of
non-integrable classical systems or the so-called Poincaré systems. Recall that the three-body problem
in Euclidean space has well-defined symmetries, which in general case generate only 10 integrals of
motion. The procedure for reducing the number of equations of a dynamical system is based on the
use of these integrals of motion, which allows us to reduce the three-body problem to the system of 8th
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order. Recall that the latter means that the evolution of a dynamical system in phase space is described
using 8th ordinary differential equations of 1st order.

It is important to note that the three-body problem has served as the most important source for
the development of scientific thought in many areas of mathematics, mechanics and physics since
Newton. However, it was Poincaré who opened a new era, developing geometric, topological and
probabilistic methods for studying a nontrivial and highly complex behavior of this dynamical problem.
The three-body problem arising from celestial mechanics [8–10], remains extremely urgent even now
in connection with the search for stable new periodic trajectories that cannot be calculated by analytical
methods [11–14]. Note that analysis of current trends in technology development indicates that there
is increasing need for accurate data on elementary atomic-molecular collisions occurring in various
physicochemical processes [15–20]. This fact additionally motivates a comprehensive theoretical and
algorithmic studies of this problem. It is important to note that significant number of elementary
atomic-molecular processes, including a large number of different chemical reactions that take into
account external effects, are described and can be described in the framework of this seemingly simple
classical model.

Thus, new mathematical studies are fundamentally important for the creation of effective
algorithms allowing to calculate complex multichannel processes from the first principles of classical
mechanics. It should be noted that the problems of atomic-molecular collisions have their own quit
subtle features, which can stimulate the development of fundamentally new ideas in the theory of
dynamical systems. In particular, one of the important and insufficiently studied problems of the
theory of collisions is the accurate account of the contribution of multichannel scattering to a specific
elementary atomic-molecular process.

Another unsolved problem, which is of great importance for modern chemistry, is to take
into account the regular and stochastic effects of the medium on the dynamics of elementary
atomic-molecular processes, the ultimate goal of which is to control these processes.

When solving complex dynamical problems, it is important not only to perform convenient
coordinate transformations, but also to choose the appropriate geometry for solving a specific problem.
In this sense, Krylov made one of the first successful attempts to study the dynamics of N classical
bodies on a Riemannian manifold, which is the hypersurface of the energy of the system of bodies [21].
Recall that the main goal of the study was to substantiate statistical mechanics based on the first
principles of classical mechanics. Note that later this method was successfully used to study the
statistical properties of the non-Abelian Yang-Mills gauge fields [22] and the relaxation properties of
stellar systems [23,24].

In this work we significantly develop the above geometric and other ideas for studying the classical
and quantum three-body problem in order to find new theoretical and algorithmic possibilities for
the effective solution of these problems. Unlike previous authors, we solved the complex problem of
mapping Euclidean geometry to Riemann geometry, which allowed us to make the theory consistent
and mathematically rigorous [25]. In other words, we prove the equivalence of the original Newton
three-body problem to the problem of geodesic flows on a Riemannian manifold.

As shown in a series of works [25–28], a representation developed on the basis of Riemannian
geometry allows one to detect new hidden internal symmetries of dynamical systems. The latter allows
one to realize a more complete integration of the three-body problem, which in the general case in the
sense of Poincaré is a non-integrable dynamical system. However, more importantly, this formulation
of the problem allows us to answer the following fundamental question concerning the foundations
of quantum physics, namely: is the irreversibility fundamental for describing the classical world [29]?
In particular, the proof of the irreversibility of the general three-body problem with respect to the
internal time of the system allows us to solve the fundamentally important problem of quantum-classical
correspondence for dynamical Poincaré systems.

In the work, classical and quantum three-body problems are considered in a more general
formulation. In particular, in addition to the potentials of two- and three-particle interactions,
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the contribution of external regular and random forces to elementary processes is also taken into
account. The latter creates new opportunities and prospects for studying the three-body problem,
taking into account its wide application in various applied problems of physics, chemistry and
material science.

The manuscript is organized as follows:
Section 2 briefly describes the general classical three-body problem and proves that it reduces to

the problem of the motion of an imaginary point with effective mass µ0 in the configuration space 6D
under the influence of an external field.

In Section 3, the classical three-body problem is formulated as the problem of geodesic flows on a
6D Riemannian manifold. A system of six geodesic equations is obtained, three of which are exactly
solved. As a result of this, the problem was reduced to the system of order 6th, and in the case of fixed
energy, to the system of 5th order. In this section, the reduced Hamiltonian of the three-body system
is obtained, which is defined in the 6D phase space. This Hamiltonian is later used to formulate the
quantum three-body problem in the framework of the concept of internal time in Section 10.

In Section 4, the proposition on homeomorphism between the subspace E6 ∈ R6 and
the 6D Riemannian manifold M in detail is proved, which plays a key role in proving the
equivalence of the developed representation with the Newtonian three-body problem. This section
analyzes the connection of the above proposition with the well-known Poincaré conjecture
(see Millennium Challenges [30]).

In Section 5, transformations between the global and local coordinate systems in differential form
are obtained. The peculiarities of internal time are discussed in detail, as a result of which its key role in
the occurrence of irreversibility even in a closed classical three-body system is revealed, contrary to the
well-known Poincaré’s return theorem.

In Section 6, the restricted classical three-body problems with holonomic connections are studied.
The possibility of finding all families of stable solutions by algebraic and geometrical methods
is proved.

In Section 7, an equation for deviation of the geodesic trajectories of one family is obtained, which
makes it possible to study the important characteristics of the motion of a dynamical system.

In Section 8, the three-body problem in a random environment is considered, taking into account
various conditions. Various equations of the Fokker–Planck type are obtained, which describe the
evolution of geodesic trajectories flows in the phase and configuration spaces.

In Section 9, a new criterion for assessing chaos in the classical statistical system is substantiated
using the Kullback–Leibler idea of the distance of two continuous distributions (in considered case,
between two tubes of probabilistic currents). An expression is constructed for the deviation of two
different tubes of probability currents in phase space. The mathematical expectation of the transition
between two asymptotic states (in) and (out) is constructed using rigorous probabilistic reasoning.

In Section 10, the quantum problem is formulated for the case of a three-particle bound state and
scattering with rearrangement of particles. The corresponding equations are obtained that describe
the evolution of the wave state of a quantum system with the possibility of occurrence quantum-wave
chaos both for a coupled system and for a scattering one. To describe the scattering process with
rearrangement of particles, S-matrix elements of transitions are constructed. The necessity of additional
averaging of S-matrix elements in connection with the quantum-chaotic behavior of the system in the
case of multichannel scattering is substantiated.

In Section 11, the obtained results are discussed in detail and further ways of development of the
problems under consideration are indicated.

In Appendix part which includes Appendices A–G, provides important proof supporting the
mathematical rigor of the developed approaches.
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2. The Classical Three-Body Problem

As already mentioned, the classical three-body problem is still rather associated with the problems
of celestial mechanics, the purpose of which studying the relative motion of three bodies interacting
according to Newton’s law (for example, the Sun, Earth and the Moon) [1]. Recall that for celestial
mechanics, the solutions that lead to the appearance of periodic or spatially bounded trajectories are
especially interesting and important, and are currently and being intensively studied (see [14]).

However, if we consider the three-body problem for an atomic-molecular collision, then this is
a typical problem of multichannel scattering, where interactions between particles can be arbitrary.
On this basis, the three-body collision in the most general case, taking into account a number of
possible asymptotic results, can be represented schematically as:

1 + (23) −→



1 + (23),

1 + 2 + 3,

(12) + 3,

(13) + 2,

(123)? −→



1 + (23),

1 + 2 + 3,

(12) + 3,

(13) + 2,

(123)?? →
{

... ,

Scheme 1. Where 1, 2 and 3 indicate single bodies, the bracket (· · ·) denotes the two-body bound state, while ”?”
and “??” denote, respectively, some short-lived bound states of three bodies, which in the chemical literature are
also called transition states.

Definition 1. The classical three-body dynamics in the laboratory coordinate system is described by the
Hamiltonian of the form:

H
(
{r}; {p}

)
=

3

∑
i=1

||pi||2
2mi

+ V
(
{r}
)
, (1)

where r = (r1, r2, r3) ∈ R3 ×R3 ×R3 and p = (p1, p2, p3) ∈ R∗3 ×R∗3 ×R∗3 are the sets of radius vectors
and momenta of bodies with masses m1, m2 and m3, respectively, here the sign above the symbol “*” denotes the
transposed space, || · · · || is the Euclidean norm, and “×” denotes a direct product of subspaces.

We will consider the most general form of the total interaction potential, depending on the relative
distances between the bodies:

V({r}) = V̄
(
||r12||, ||r13||, ||r23||

)
, (2)

where r12 = r1 − r2, r13 = r1 − r3, and r23 = r2 − r3 are relative displacements between the bodies,
in addition, the set of radius vectors (r12, r13, r23) ∈ R3 ×R3 ×R3 \ � (where � denotes an empty set),
which means the impossibility of a situation where two bodies occupy the same position. Note that
the potential (2), in addition to two-particle interactions, can also taking into account the contribution
of three-particle interactions and as well as the influence of external fields. The latter circumstance
significantly expands the range of problems studied related to the classical three-body problem.
Obviously, the configuration space for describing the dynamics of three bodies without any restrictions
should be R9. In this regard, it is important to note that; V : R9 → R1 and V̄ : R3 → R1, in addition,
H : R18 → R1. Recall that the full Hamiltonian of three-body problem (1) is a function of the
18-dimensional phase space R18.
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The three-body Hamiltonian (1), after the Jacobi coordinate transformations [31] acquires the form:

H̆ =
3

∑
i=1

P2
i

2µi
+ V̆

(
||r− λ−R||, ||R||, ||r + λ+R||

)
, (3)

where the radius vector R denotes the relative displacement between 2 and 3 bodies (see Figure 1),
r = r1 − r0 is the relative displacement between the particle 1 and center of mass of the pair of particles
(2, 3), while r0 = (m2r2 + m3r3)/(m1 + m2) is the radius vector of the center of mass of the pair (2, 3).
In addition, the following notations are made in the Equation (3) (see also [26]):

P1 = p1 + p2 + p3, P2 =
m3p2 −m2p3

m2 + m3
, P3 =

(m2 + m3)p1 −m1(p2 + p3)

µ1
,

µ1 = m1 + m2 + m3, µ2 =
m2m3

m2 + m3
, µ3 =

m1(m2 + m3)

µ1
, λ− =

µ2

m2
, λ+ =

µ2

m3
.

Figure 1. The Cartesian coordinate system where the set of radius vectors r1, r2 and r3 denote positions
of the 1, 2 and 3 bodies, respectively. The circle “◦” denotes the center of mass of pair (23) which in the
Cartesian system is denoted by r0. The radius vectors R and r determine the Jacobi coordinate system,
and ϑ denotes the scattering angle.

Removing the motion of the center of mass of the three-body system, that is equivalent to the
condition P1 = 0, leads the Equation (3) to the form (see [27]):

H̃ =
1

2µ0

(
P̃2

2 + P̃2
3

)
+ V̆

(
||r− λ−R||, ||R||, ||r + λ+R||

)
. (4)

In the Equation (4) the following notations are made:

µ0 =
(m1m2m3

µ1

)1/2
, P̃2 =

√
µ2µ0Ṙ, P̃3 =

√
µ3µ0ṙ,

where ẋ = dx/dt and x = (R, r).
Finally, the Hamiltonian (4) can be written as:

H(r, p) =
1

2µ0
p2 +V(r), (5)
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where V(r) = V̆
(
||r− λ−R||, ||R||, ||r + λ+R||

)
.

Note that (5) can be interpreted as a single-particle Hamiltonian with effective mass µ0 in a 12D
phase space. In addition (5) the following notations are made:

r = r⊕R ∈ R6, p = P̃2 ⊕ P̃3 ∈ R∗6, (6)

where “⊕” denotes the direct sum of the 3D vectors and, accordingly, r and p are the radius vector and
the momentum of an imaginary point in the 6D configuration space. It is obvious that; V : R3 → R1

and H : R12 → R1.
Let us consider the following system of hyper-spherical coordinates:

ρ1 = r = ||r||, ρ2 = R = ||R||, ρ3 = ϑ, ρ4 = Θ, ρ5 = Φ, ρ6 = Ω, (7)

where the first set of three coordinates (coordinates of the internal space or the internal coordinates) {ρ̄} =
(ρ1, ρ2, ρ3) determines the position of the effective mass µ0 (imaginary point) on the plane formed by
three bodies. Note that the domain of definition of these coordinates, respectively, are (ρ1, ρ2) ∈ [0, ∞]

and ϑ ∈ [0, π]. The set of coordinates {ρ} = (Θ, Φ, Ω) will be called external coordinates. The domain
of definition of these coordinates, respectively, are Θ ∈ (−π,+π], Φ = (−π,+π] and Ω ∈ [0, π].
Note that the external coordinates are the Euler angles describing the rotation of the plane in 3D space.

As was shown [32–39], it is convenient to represent the motion of a three-body system as
translational and rotational motion of a three-body triangle4(1, 2, 3), and also deformation of sides of
the same triangle [25,27,28]. In particular, the kinetic energy in this case can be written in the form [40]:

T =
µ0

2
{

Ṙ2
+ ṙ2} =

µ0

2

{
Ṙ2

+ R2[ω× k
]2

+
(
ṙ + [ω× r]

)2
}

, (8)

where the direction of the unit vector k in the moving reference frame {ρ} is determined by the
expression R||R||−1 = ±k. Below we will assume that the vector k = (0, 0, 1) is directed toward the
positive direction of the axis OZ (below will be designated as the axis z ), and the angular velocity ω

describes the rotation of the frame {ρ̄} relative to the laboratory system.
Having carried out simple calculations in the expression (8) it is easy to find:

T =
µ0

2

{
Ṙ2

+ ṙ 2 + r2ϑ̇2 + AR2 + Br 2
}

, (9)

where the following notations are made:

A = ω2
x + ω2

y, B = ω2
y +

(
ωx cos ϑ−ωz sin ϑ

)2.

Note that when deriving the expression (9) we used the definition of a moving system {$̄},
suggesting that the unit vector γ = r||r||−1 lies on the plane OXZ at the angle ϑ relative to the axis OZ,
that is; γ = (sin ϑ, 0, cos ϑ). As for angular velocity projections, they satisfy the following equations:

ωx = Φ̇ sin Θ sin Ω + Θ̇ cos Ω,

ωy = Φ̇ sin Θ cos Ω− Θ̇ sin Ω,

ωz = Φ̇ cos Θ− Ω̇. (10)

Taking into account (9) and (10), the kinetic energy of the three-body system in Euclidean space
can be written in the tensor form:

T =
µ0

2
γαβ dρα

dt
dρβ

dt
, α, β = (1, 2, ..., 6) = 1, 6,

where γαβ is the metric tensor, which has the form:
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γαβ =



γ11 0 0 0 0 0
0 γ22 0 0 0 0
0 0 γ33 0 0 0
0 0 0 γ44 γ45 γ46

0 0 0 γ54 γ55 γ56

0 0 0 γ64 γ65 γ66


, (11)

in addition, the following notations are made (see Appendix A):

γ11 = γ22 = 1, γ33 = r2, γ44 = R2 + r2(1 − sin2 ϑ cos2 Ω
)
, γ55 = R2 sin2 Θ +

r2{sin2 Θ(1− sin2 ϑ sin2 Ω) + sin2 ϑ cos2 Θ + (1/2) sin 2ϑ sin 2Θ sin Ω
}

, γ66 = r2 sin2 ϑ,

γ45 = γ54 = −(1/2)r2 (sin2 ϑ sin Θ sin 2Ω + sin 2ϑ cos Θ cos Ω
)
, γ46 = γ64 = (1/2)×

r2 sin 2ϑ cos Ω, γ56 = γ65 = −(1/2)r2(sin 2ϑ sin Θ sin Ω− 2 sin2 ϑ cos Θ
)
.

Using the metric tensor (11), one can write a linear infinitesimal element of Euclidean space in
hyperspherical coordinates:

(ds)2 = γαβ({ρ})dραdρβ, α, β = 1, 6. (12)

Definition 2. Let (F, G) : R12 → R1 be functions of 12 variables (rα, pα), where α = 1, 6. The Poisson bracket
on the phase space P ∼= R12 is defined by the following form:

{F, G} =
6

∑
α=1

(
∂F
∂rα

∂G
∂pα
− ∂F

∂pα

∂G
∂rα

)
. (13)

Note that the variables rα and pα denote the projections of 6D radius vector r ∈ R6 and the momentum
p ∈ R∗6, respectively (see Equation (6), and also the Definition 1).

Definition 3. Let H : R12 → R1 be the Hamiltonian of the imaginary point with the mass µ0 in the
12-dimensional phase space. The Hamiltonian vector field XH : R12 → R12 satisfies the equation:

XH(z) = {z,H}, z ∈ R12. (14)

Definition 4. The Hamiltonian equations in the phase space P ∼= R12 will be defined as follows:

ż = XH, ż =
dz
dt
∈ R12, (15)

or, equivalently:

ṙα =
∂H
∂pα

, ṗα = − ∂H
∂rα

. (16)

Without going into well-known details, we note that the problem under consideration, having in
the general case 10 independent integrals of motion, reduces to the system of 8th order. In the case
when the total energy is fixed, the reduction of the problem leads to the system of 7th order system
(see [2], and also [3]).

Note that only in very few specific cases, the problem of the gravity of three bodies is
exactly integrated.
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3. Three-Body Problem as a Problem of Geodesic Flows on Riemannian Manifold

The classical three-body system moving in the Euclidean 3D space continuously forms a triangle,
and, therefore, Newton’s equations describe a dynamical system on the space of such triangles [40].
The latter means that we can formally divide the motion into two parts, the first of which is the
rotational motion of the triangle of bodies in 3D Euclidean space, and the second is the internal motion
of bodies in the plane of the triangle.

As well-known, the configuration space of the solid body R6, as a holonomic system, can be
represented as a direct product of two subspaces [41]:

R6 :⇔ R3 × S3, (17)

where :⇔ denotes equivalence by definition, R3 is a manifold that is defined as the orthonormal space
of relative distances between bodies and S3 is the space of the rotation group SO(3).

A completely different situation in the case of the problem under consideration. The three-body
system in the process of motion in phase space can pass from any given state to any other state,
which is a characteristic feature of nonholonomic systems. The latter means that the system under
consideration is nonholonomic and the representation (17) for the configuration space is incorrect.

Definition 5. LetM be a 6D Riemannian manifold on which the local coordinate system is defined:

x1, x6 = {x} = (x1, ..., x6) ∈ M, (18)

where the set {x̄} = (x1, x2, x3) will be called the internal coordinates, and the set {x} = (x4, x5, x6),
respectively, the external coordinates.

It is assumed thatM is a conformal-Euclidean manifold or Weyl space (see [42]) immersed in the Euclidean
space R6, which is determined by the metric tensor:

gµν({x̄}) = g({x̄})δµν, g({x̄}) =
[
E−U({x̄})

]
U−1

0 6= 0, µ, ν = 1, 6, (19)

where δµν denotes the Kronecker symbol, E is the total energy of three-body system, U({x̄}) is the total
interaction potential between bodies and U0 = max|U({x̄})|.

Proposition 1. If 6D manifoldM is described by the metric tensor (19), then it can be represented as a direct
product of two subspaces:

M :⇔M(3) × S3
Mk

. (20)

whereM(3) denotes 3D Riemannian manifold defined as follows:

M(3) =
[
{x̄} = (x1, x2, x3) ∈ M(3)

t ; gij({x̄}) = g({x̄})δij; g({x̄}) 6= 0
]
.

In addition,M(3)
t
∼=
⋃

k Mk denotes the atlas of the manifoldM(3) (internal space) and Mk 3 (x1, x2, x3)k

is the k-th card. Note that the atlasM(3)
t , immersed in the manifoldM, is invariant under the local rotations

group SO(3)Mk (external space S3
Mk
3 (x4, x5, x6)Mk ).

Proof. Using the Maupertuis’ variational principle, one can derive equations for geodesic trajectories on
the Riemannian manifoldM (see [41,43]):

ẍµ + Γµ
νγ({x̄})ẋ ν ẋ γ = 0, µ, ν, γ = 1, 6, (21)

where

ẋ µ =
dxµ

ds
, ẍ µ =

d 2xµ

ds2 , s =
∫ √

gµν({x̄})dxµdxν. (22)
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Recall that “s” denotes the length of the curve along the geodesic trajectory, while ẋµ and ẍ µ

denote the velocity and acceleration along the corresponding coordinates. Note that “s” plays the role
of a chronological parameter of the dynamical system, and below we will call it internal time.

In the Equation (21) Γµ
νγ({x}) denotes the Christoffel symbol:

Γµ
νγ({x̄}) =

1
2

gµµ
(
∂γgµν + ∂νgγµ − ∂µgνγ

)
, ∂µ ≡ ∂xµ .

Taking into account (19) and (21), one can obtain the following equations for geodesic
trajectories [28]:

ẍ1 = a1

{(
ẋ1)2 −

6

∑
µ 6=1, µ=2

(
ẋµ
)2
}
+ 2ẋ1

{
a2 ẋ2 + a3 ẋ3

}
,

ẍ2 = a2

{(
ẋ 2)2 −

6

∑
µ=1, µ 6=2

(
ẋµ
)2
}
+ 2ẋ2

{
a3 ẋ3 + a1 ẋ1

}
,

ẍ3 = a3

{(
ẋ3)2 −

6

∑
µ=1, µ 6=3

(
ẋµ
)2
}
+ 2ẋ3

{
a1 ẋ1 + a2 ẋ2

}
,

ẍ4 = 2ẋ4
{

a1 ẋ1 + a2 ẋ2 + a3 ẋ3
}

,

ẍ5 = 2ẋ5
{

a1 ẋ1 + a2 ẋ2 + a3 ẋ3
}

,

ẍ6 = 2ẋ6
{

a1 ẋ1 + a2 ẋ2 + a3 ẋ3
}

, (23)

where ai({x̄}) = −∂xi ln
√

g({x̄}), and ∂xi ≡ ∂/∂xi, in addition, the metric gµν is the
conformal-Euclidean and, therefore, g({x̄}) = g11({x̄}) = ... = g66({x̄}).

It is easy to show that in the system (23) the last three equations can be exactly integrated:

ẋµ = Jµ−3/g({x̄}), Jµ−3 = constµ−3, µ = 4, 6. (24)

Note that J1, J2 and J3 are integrals of the motion of the problem. They can be interpreted as

projections of the total angular momentum of the three-body system J =
√

∑3
i=1 J2

i = const on the

corresponding three orthogonal local axes
(
x1, x2, x3). Recall that for the classical problem these

projections can continuously change and take arbitrary values.
Substituting (24) into the Equation (23), we obtain the following system of second-order nonlinear

ordinary differential equations:

ẍ1 = a1
{
(ẋ1)2 − (ẋ2)2 − (ẋ3)2 −Λ2}+ 2ẋ1{a2 ẋ2 + a3 ẋ3},

ẍ2 = a2
{
(ẋ2)2 − (ẋ3)2 − (ẋ1)2 −Λ2}+ 2ẋ2{a3 ẋ3 + a1 ẋ1},

ẍ3 = a3
{
(ẋ3)2 − (ẋ1)2 − (ẋ2)2 −Λ2}+ 2ẋ3{a1 ẋ1 + a2 ẋ2}, (25)

where ai ≡ ai({x̄}) and Λ2 ≡ Λ2({x̄}) =
(

J/g({x̄})
)2.

The system of Equation (25) describes motion of geodesic flows on an oriented 3D submanifold
M(3)
{ J̄} (the set of projections { J̄} = (J1, J2, J3) defines the submanifold orientation), which is immersed in the

6D manifold (space)M.
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The system of Equation (25) can be represented as a 6th order system, that is, a system consisting of
six first order differential equations:

ξ̇1 = a1
{
(ξ1)2 − (ξ2)2 − (ξ3)2 −Λ2}+ 2ξ1{a2ξ2 + a3ξ3}, ξ1 = ẋ1,

ξ̇2 = a2
{
(ξ2)2 − (ξ3)2 − (ξ1)2 −Λ2}+ 2ξ2{a3ξ3 + a1ξ1}, ξ2 = ẋ2,

ξ̇3 = a3
{
(ξ3)2 − (ξ1)2 − (ξ2)2 −Λ2}+ 2ξ3{a1ξ1 + a2ξ2}, ξ3 = ẋ3. (26)

Thus, we proved that the last three equations in (23) describing the external three coordinates {x}
are exactly integrated and form a local rotation group SO(3)Mi . The latter means that the 6D manifold

M can be continuously filled with the submanifoldM(3)
{ J̄}, rotating it according to the law of the local

symmetry group SO(3)Mi and therefore the representation (20) is true.
Proposition 1 is proved.

Reduced Hamiltonian in the Internal Space E3 ⊂ R3

Taking into account (19) and (24), we can reduce the Hamiltonian and obtain the following
representation for it:

H
(
{x̄}; { p̄}

)
=

1
2µ0

gµν({x̄}pµ pν =
1
2

µ0g({x̄})
{

3

∑
i=1

(
ẋi)2

+

(
J

g({x̄})

)2
}

, (27)

where { p̄} = (p 1, p 2, p 3) and µ, ν = 1, 6.
Note that the reduced Hamiltonian (27) is clearly independent of the mass of the bodies. If we

analyze the stages of obtaining the expression (27), we will see that the representation contains a
dependence on the masses, however it is hidden in coordinate transformations (see transformations
above (3)). The system of geodesic Equation (25) can be obtained using the Hamilton equations:

ẋi =
∂H
∂pi

= gik({x̄})pk, ṗi = −
∂H
∂xi = − 1

2µ0

∂gkl({x̄})
∂xi pk pl , (28)

where i, k, l = 1, 3.
Finally, assuming that in the three-body system the total energy is fixed:

E = H
(
{x̄}; { p̄}

)
= const, (29)

the problem can be reduced to the 5th order system.
Thus, the system of Equation (26) is the 6th order system, which describes the dynamics of

an imaginary point with an effective mass µ0 on the 3D Riemannian manifoldM(3)
{ J̄}. Note that the

system of Equation (26) can also be obtained from the Hamilton Equation (28) using the reduced
Hamiltonian (27). Using the system of Equation (26), we can study in detail the behavior of geodesic
flows of various elementary atom-molecular processes in the internal space E3 ⊂ R3.

4. The Mappings between 6D Euclidean and 6D Conformal-Euclidean Subspaces

Now the main problem is to prove that the 6th order system (26) is equivalent to the original
three-particle Newtonian problem (16). Recall, that both representations will be equivalent, if we prove
that there exists continuous one-to-one mappings between the two following manifolds E6 andM,
where E6 ⊂ R6 is a subspace allocated from the Euclidean space R6 taking into account the condition:

ğ({ρ̄}) = E−V({ρ̄}) 6= 0. (30)
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In other words, we must prove that between two sets of coordinates ρ1, ρ6 = {ρ} ∈ E6 and
x1, x6 = {x} ∈ M, there are continuous direct and inverse one-to-one mappings.

In this regard, it makes sense to consider three cases:

a. When ğ({ρ̄}) < 0, the system of Equation (26) obviously describes a restricted three-body problem.
b. When ğ({ρ̄}) > 0, we are dealing with a typical scattering problem in a three-body system.
c. When ğ({ρ̄}) = 0. This is a special and very important case, which, generally speaking, requires

an extension of the Maupertuis-Hamilton principle of least action on the case of complex-classical
trajectories. In this article, we will touch upon this problem problem when considering a restricted
three-body problem.

On a Homeomorphism between the Subspace E6 ⊂ R6 and the ManifoldM

Proposition 2. If the interaction potential between the three bodies has the form (2) and, moreover, it belongs to
the class V({ρ̄}) ∈ C1(R6), then the Euclidean subspace E6 ⊂ R6 is homeomorphic to the manifoldM.

Proof. Let us consider a linear infinitesimal element (ds) in both coordinate systems {ρ} ∈ E6 and
{x} ∈ M. Equating them, we can write:

(ds)2 = γαβ({ρ̄})dραdρβ = gµν({x̄})dxµdxν, α, β, µ, ν = 1, 6, (31)

from which one can obtain the following system of algebraic equations:

γαβ({ρ̄})ρα,µρβ,ν = gµν({x̄}) = g({x̄})δµν, (32)

where it is necessary to prove that the coefficients ρα,µ({x}) = ∂ρα/∂xµ have the meaning of derivatives.
In this regard, we must prove that the function ρα({x}) is twice differentiable and continuous in the
whole domain of its definition and satisfy the symmetry condition:

ρα,µν({x}) = ρα,νµ({x}), ∀ µ, ν = 1, 6, (33)

(Schwartz’s theorem on the symmetry of second derivatives [44]).
Recall that the set of coefficients ρα,µ({x}) allows us to perform coordinate transformations

{ρ} 7→ {x}, which we shall call direct transformations.
Similarly, from (31), one can obtain a system of algebraic equations defining

inverse transformations:

γαβ({ρ})g−1({x̄}) = xµ
, αxν

, β δµν, (34)

where xµ
, α({ρ}) = ∂xµ/∂ρα and γαβ({ρ}) = γαᾱ({ρ}) γββ̄({ρ}) γᾱβ̄({ρ}).

At first we consider the system of Equation (32), which is related to direct coordinate
transformations. It is not difficult to see that the system of algebraic Equation (32) is underdetermined
with respect to the variables ρα,µ({x}), since it consists of 21 equations, while the number of unknown
variables is 36. Obviously, when these equations are compatible, then the system of Equation (32)
has an infinite number of real and complex solutions. Note that for the classical three-body problem,
the real solutions of the system (32) are important, which form a 15 -dimensional manifold. Since the
system of Equation (34) is still defined in a rather arbitrary way we can impose additional conditions
on it in order to find the minimal dimension of the manifold allowing a separation of the baseM(3)

{ J̄}
from the layer

⋃
i S3

Mi
(see expression (20)).

Let us make a new notations:

αµ = ρ1,µ, βµ = ρ2,µ, ζµ = ρ3,µ, uµ = ρ4,µ, vµ = ρ5,µ, wµ = ρ6,µ. (35)
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We also require that the following additional conditions be met:

α4 = α5 = α6 = 0, β4 = β5 = β6 = 0, ζ4 = ζ5 = ζ6 = 0,

u1 = u2 = u3 = 0, v1 = v2 = v3 = 0, w1 = w2 = w3 = 0. (36)

Using (11), (35) and conditions (36) from the Equation (32) we can obtain two independent systems
of algebraic equations:

α2
1 + β2

1 + γ33ζ2
1 = ğ({ρ̄}), α1α2 + β1β2 + γ33ζ1ζ2 = 0,

α2
2 + β2

2 + γ33ζ2
2 = ğ({ρ̄}), α1α3 + β1β3 + γ33ζ1ζ3 = 0,

α2
3 + β2

3 + γ33ζ2
3 = ğ({ρ̄}), α2α3 + β2β3 + γ33ζ2ζ3 = 0, (37)

and, correspondingly:

γ44u2
4 + γ55v2

4 + γ66w2
4 + 2(γ45u4v4 + γ46u4w4 + γ56v4w4) = ğ({ρ̄}),

γ44u2
5 + γ55v2

5 + γ66w2
5 + 2(γ45u5v5 + γ46u5w5 + γ56v5w5) = ğ({ρ̄}),

γ44u2
6 + γ55v2

6 + γ66w2
6 + 2(γ45u6v6 + γ46u6w6 + γ56v6w6) = ğ({ρ̄}),

a4u4 + a5v4 + a6w4 = 0,

b4u5 + b5v5 + b6w5 = 0,

c4u6 + c5v6 + c6w6 = 0. (38)

In Equation (38) the following notations are made:

ai = γi4u5 + γi5v5 + γi6w5, bj = γj4u6 + γj5v6 + γj6w6, ck = γk4u4 + γk5v4 + γk6w4,

where i, j, k = 4, 6.
It should be noted that the solutions of algebraic systems (37) and (38) form two different

3D manifolds S(3) and R(3), respectively. Since the manifold S(3) play a key role in the proofs
and the theoretical constructions of representation, the features of its structure are studied in detail
(see Appendix B). Note that the manifold S(3) is in a one-to-one mapping on the one hand with the
subspace E3 3 {ρ̄} (where E3 ⊂ E6 the internal space in the hyperspherical coordinate system), and on
the other hand with the submanifoldM(3)

{ J̄} (see Figure 2). Note that this statement follows from the fact

that all points of the submanifoldM(3)
{ J̄} and the subspace E3 ⊂ R3, are pairwise connected through the

corresponding derivatives (see (32)), which, as unknown variables, enter the algebraic Equation (37),
and, in addition, as shown there exist also inverse coordinate transformations (see Appendix C).   

Figure 2. In this diagram all spaces are homeomorphic to each other, i.e., E3 ' S(3) 'M(3).
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Now we prove continuity of these mappings. Recall that the unknowns in the Equation (37) are
in fact functions of coordinates {ρ̄}. By making infinitely small coordinate shifts {ρ̄} → {ρ̄}+ {δρ̄}
in (37), we get the following system of equations:

ᾱ2
1 + β̄2

1 + γ̄33ζ̄2
1 = ḡ({ρ̄}), ᾱ1ᾱ2 + β̄1 β̄2 + γ̄33ζ̄1ζ̄2 = 0,

ᾱ2
2 + β̄2

2 + γ̄33ζ̄2
2 = ḡ({ρ̄}), ᾱ1ᾱ3 + β̄1 β̄3 + γ̄33ζ̄1ζ̄3 = 0,

ᾱ2
3 + β̄2

3 + γ̄33ζ̄2
3 = ḡ({ρ̄}), ᾱ2ᾱ3 + β̄2 β̄3 + γ̄33ζ̄2ζ̄3 = 0, (39)

where
ḡ({ρ̄}) = ğ

(
{ρ̄}+ {δρ̄}

)
, {δρ̄} = (δρ1, δρ2, δρ3).

Assuming that the offsets || δ{ρ̄}|| � 1, in the Equation (39) the functions can be expanded in a
Taylor series and, further, with consideration (37), we obtain:

δρi{2(α1α1 i + β1β1 i + γ33ζ1ζ1 i) + γ33
, i ζ2

1 − ğ, i({ρ̄})
}
+ O(|| δ{ρ̄}||2) = 0,

δρi{2(α2α2 i + β2β2 i + γ33ζ2ζ2 i) + γ33
, i ζ2

2 − ğ, i({ρ̄})
}
+ O(||δ{ρ̄}||2) = 0,

δρi{2(α3α3 i + β3β3 i + γ33ζ3ζ3,i) + γ33
, i ζ2

3 − ğ, i({ρ̄})
}
+ O(||δ{ρ̄}||2) = 0,

δρi{α1α2 i + α2α1 i + β1β2 i + β2β1 i + γ33(ζ1ζ2 i + ζ2ζ1 i) + γ33
, i ζ1ζ2

}
+O(|| δ{ρ̄}||2) = 0,

δρi{α1α3 i + α3α1 i + β1β3 i + β3β1 i + γ33(ζ1ζ3 i + ζ3ζ1 i) + γ33
, i ζ1ζ3

}
+O(|| δ{ρ̄}||2) = 0,

δρi{α2α3, i + α3α2 i + β2β3 i + β3β2 i + γ33(ζ2ζ3 i + ζ3ζ2 i) + γ33
, i ζ2ζ3

}
+O(|| δ{ρ̄}||2) = 0, (40)

where i = 1, 3 and, in addition, summation is performed by dummy indices.
If we require that the expressions with the same increments be equal to zero, then from (40)

one can obtain an underdetermined system of algebraic equations, i.e., 18 equations for finding 27
unknowns variables:

2(α1α1 i + β1β1 i + γ33ζ1ζ1 i) + γ33
, i ζ2

1 − ğ, i({ρ̄}) = 0,

2(α2α2 i + β2β2 i + γ33ζ2ζ2 i) + γ33
, i ζ2

2 − ğ, i({ρ̄}) = 0,

2(α3α3 i + β3β3 i + γ33ζ3ζ3 i) + γ33
, i ζ2

3 − ğ, i({ρ̄}) = 0,

α2α1 i + α1α2 i + β2β1 i + β1β2 i + γ33(ζ2ζ1 i + ζ1ζ2 i) + γ33
, i ζ1ζ2 = 0,

α3α1 i + α1α3 i + β3β1 i + β1β3 i + γ33(ζ3ζ1 i + ζ1ζ3 i) + γ33
, i ζ1ζ3 = 0,

α3α2 i + α2α3 i + β3β2 i + β2β3 i + γ33(ζ3ζ2 i + ζ2ζ3 i) + γ33
, i ζ2ζ3 = 0. (41)

Recall that the set of coefficients {σ} = (σ1, ..., σ9) = [α = (α1, α2, α3), β = (β1, β2, β3), ζ =

(ζ1, ζ2, ζ3)] belongs to the 3D manifold S(3).
Now, we can require that the second derivatives be symmetric σij = σji, where {σ} = (α, β, ζ)

and i, j = 1, 3. This, as can be easily seen, allows us to reduce the number of unknown variables and
make the system of equations definite, i.e., 18 equations for 18 unknowns variables.

The system of Equation (41) can be written in canonical form:

AX = B, A = (dµν), µ, ν = 1, 18, (42)

where A ∈ R18×18 is the basic matrix of the system, B ∈ R18 and X ∈ R18 are columns of free terms
and solutions of the system, respectively (see Appendix D). Note that, for an arbitrary point {ρ̄i} ∈ E3,
the system of Equation (37) generates sets of solutions {σ} that continuously fill a region of E3 space,
forming 3D manifold S(3). As for the system of Equation (42), it has a solution if the determinant of
the basic matrix A is nonzero:

det(dµν) 6= 0, µ, ν = 1, 18.
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On the other hand, the algebraic system (42) does not have a solution when det(dµν) = 0. In this
case, at each point {ρ̄i} there exists a countable set W consisting of the coefficients {σ} = [α, β, ζ], on
which the matrix degenerates. It is easy to verify that the measure of this set in comparison with the
measure of the S(3) for which det(dµν) 6= 0, is equal to zero, i.e., W = {0}. In other words, for the
case under consideration Schwartz’s theorem holds, and σς, where ς = 1, 9, and dµν (see (41)) have the
sense of the first and second derivatives, respectively.

The same is easy to prove for inverse mappings (see Appendix C).
Let us consider the open set ∀G = ∪αGα, consisting of the union of cards Gα arising at

continuously mappings f : {ρ̄} 7→ {x̄} using algebraic Equation (37). Proceeding from the foregoing, it
is obvious that the maps can be chosen so that the immediate neighbors have intersections comprising
at least one common point, that is a necessary condition for the continuity of the mappings. Using the
above arguments, we assert that the atlas G can be widened up to G ∼=M(3).

Thus, all the conditions of the theorem on homeomorphism between the metric spaces E3 and
M(3)
{ J̄} are satisfied, and therefore we can say that these spaces are homeomorphic or topologically

equivalent, which means f : E3 7→ M(3)
{ J̄} and f−1 :M(3)

{ J̄} 7→ E3 (see Appendix B).
As for the system of algebraic Equation (38), then at each point of the internal space

Mk(x1, x2, x3)k ∈ M(3), it generates 3D manifold R(3) that is a local analogue of the Euler angles and,
consequently, ∪kS3

Mk
' R(3). The layer, R(3) continuously passing through all points of the basis

M(3)
{ J̄}, fills the subspace E6.

Finally, taking into account the above, we can conclude that the Euclidean subspace E6 ⊂ R6 and
the Riemannian manifoldM, are also homeomorphic.

Proposition 2 is proved.

5. Transformations between Global and Local Coordinate Systems and Features of Internal Time

To complete the proof of the equivalence of the developed representation (25) and (26) with the
original Newtonian problem, it is necessary to clearly define coordinate transformations between two
sets of coordinates {x̄} and {ρ̄}.

As the analysis shows, the transformations between the noted two sets of coordinates can be
represented only in differential form [28]:

dρ1 = α1dx1 + α2dx2 + α3dx3,

dρ2 = β1dx1 + β2dx2 + β3dx3,

dρ3 = ζ1dx1 + ζ2dx2 + ζ3dx3, (43)

where the coefficients (α1, ..., β1, ..., ζ3) are defined from the system of underdetermined algebraic
Equation (37).

A feature of this representation is that when choosing a local coordinate system, it is necessary
to take into account the system of algebraic Equation (37). As for the timing parameter “s” (see (22)),
it can be interpreted as some trajectory in the internal space E3 3 (ρ1, ρ2, ρ3), which stretches from
the initial (in) asymptotic subspace, where the bodies form the configuration 1 + (23), to one of the
finite (out) asymptotic scattering subspaces (see Scheme 1). Note that this parameter characterizes the
measure and nature of elementary atomic-molecular processes occurring in the system and indicates
the directions of their development, that is, it is characterized by time arrow. As can be seen from this
diagram, in the scattering of three bodies, four types of elementary processes are possible, each of
which is characterized by its own internal time si.

Depending on which particular elementary process is being implemented, the corresponding
internal time si is localized around one of the four smooth curves si ' R1(i = 1, 4 ) connecting two
asymptotic scattering subspaces (see Figure 3).
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Figure 3. The set of smooth curves s = (s1, ..., s4) connecting (in) asymptotic subspace, where the
three-body system is in a state 1 + (23), with (out) asymptotic subspaces, where the following
configurations of bodies are formed; 1 + (23), 2 + (13), 3 + (12) and 1 + 2 + 3, respectively.
The rij({ρ̄}) (i, j = 1, 3, i 6= j) denotes distance between i and j bodies, and r0

ij—the average distance
between bodies in the corresponding pair. Note that all the curves s1, s4 in the subspace (in) merges,
which in the figure is shown by continuous blue.

Now, regarding the behavior of a dynamical system depending on the internal time “s”. Formally,
when we replace s → −s in the system of Equation (25), it does not change. However, this does
not mean at all that the system of equations is invariant with respect to this transformation and,
accordingly, is invertible with respect to the timing parameter “s”. The fact is that the internal time “s” in
its structure and sense is very different from ordinary time t, the arrow of which is directed forward all
the time, connecting the events of the past with the future through the present. In particular, it follows
from the above that the points of the internal time, generally speaking, are not equivalent. This is due
to the fact that not only the distances from the origin, but also on which branches of the internal time
they are located are important for their determination. Recall that the internal time of a dynamical
system “s”, after leaving a region where all bodies interact strongly with each other, as a result of
bifurcation, it can evolve along one of four possible branches s = (s1, s4) each of which characterizes
a specific elementary process. It should be noted that the choice between the marked branches of
further evolution of system occurs randomly, for well-known reasons (see the system of Equation (37)).
In other words, with respect to the transformation s→ −s, the system of Equation (25) in the general
case cannot be invariant due to complex structure of the internal time.

Finally, to answer the question, the system of Equation (25) with respect to the parameter “s”
is reversible or not, we will analyze the evolution of the dynamical system from the point of view
of the Poincaré’s recurrence theorem [45–47]. To do this, we consider two possible cases g({x}) > 0
and g({x}) ≤ 0.

The case a. (see Section 4) g({x}) > 0 or is equivalently to ğ({ρ}) > 0 (see Section 4), as known
corresponds to the three-body scattering problem for which the configuration space E3 is unrestricted,
i.e., infinite. Note that for this case, Poincaré’s recurrence theorem is clearly not applicable.

When g({x}) ≤ 0 (or ğ({ρ}) ≤ 0), as mentioned above, we are dealing with a restricted
three-body problem. In this case, it it would be natural to expect that the Poincaré’s theorem should
be satisfied. Namely, the system should have returned to a state arbitrarily close to its initial state
(for systems with a continuous state), after a sufficiently long but finite time. However, even in this
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case, the Poincaré theorem cannot be is satisfied if we assume the possibility of the existence of various
metastable states characterized by distinct groupings of bodies (see Scheme 1). In this case, we can
only say with some probability that the dynamical system will return close to the initial state for a long,
but finite time.

Thus, analyzing the above arguments, it can be stated that irreversibility lies in the very nature of
internal time s = (s1, s4), and therefore the system of Equation (25) with respect to the timing parameter
“s”, generally speaking, is irreversible.

6. The Restricted Three-Body Problem with Holonomic Connections

An important class of solutions of the classical three-body problem describes the bound state of
three bodies (123), when the motion of bodies occurs in a restricted space. In particular, for gravitating
bodies, an exact solutions from this class were founded by a number of outstanding researchers of
the 19th and 20th centuries, such as Euler [48–50], Lagrange [51], Hill [52]. In the mid-1970s, the new
Brooke-Heno-Hadjidemetriu family of orbits was discovered [53–55], and in 1993 Moore showed
the existence of stable orbits, eights, in which three bodies always catch up with each other. In 2013,
by numerical search, 13 new particular solutions were found for the three-body problem, in which
the movement of a system of three bodies of the same mass occurs in a repeating cycle [11]. Finally,
in 2018, more than 1800 new solutions to the restricted three-body problem were calculated on a
supercomputer [14].

As we will see below, the developed representation has new features and symmetries,
which allows us to obtain important information about the restricted three-body problem by analyzing
systems of algebraic equations.

Note that the state which will be spatially restricted regardless of the length of time the interaction
of bodies cannot be formed as a result of scattering (see Scheme 1) due to the lack of a mechanism
for removing energy from the system. Nevertheless, it is clear that the character of the motions of
bodies in the states (123) and (123)? in many of features should be similar. In any case, the solutions
of the system (26) must satisfy the energy conservation law (29) that defines 5D hypersurface in the
6D phase space.

Some important properties of this problem can be studied by algebraic methods without solving
the equations of motion (25) or (26). In particular, it is very interesting to find solutions for which the
connections between bodies remain holonomic throughout the movement. Recall that this situation is
especially interesting for three gravitating bodies.

Proposition 3. The three-body system can forms a stable configuration with holonomic connections, if in the
equations system (26) all projections of geodetic acceleration are equal to zero ẍi = 0 (i = 1, 3 ), and if there is
non-empty continuous set E3 ⊃ Ξ 6= �, on which the determinant of the obtained algebraic system is equal
to zero.

Proof. Let consider the case when the center of mass (imaginary point) of a system of bodies moves
along the manifoldM(3)

{ J̄} without acceleration, i.e., ẍi = 0 (i = 1, 3 ). This means, we can simplify the
system of Equation (26) by writing their in the form:

a1
{
(ξ1)2 − (ξ2)2 − (ξ3)2 −Λ2}+ 2ξ1{a2ξ2 + a3ξ3} = 0,

a2
{
(ξ2)2 − (ξ3)2 − (ξ1)2 −Λ2}+ 2ξ2{a3ξ3 + a1ξ1} = 0,

a3
{
(ξ3)2 − (ξ1)2 − (ξ2)2 −Λ2}+ 2ξ3{a1ξ1 + a2ξ2} = 0. (44)

From the conditions of the absence of acceleration it follows that the projections of the geodetic
velocity ξ1, ξ2 and ξ3 are constants and, accordingly, Equation (44) can be solved with respect to three
unknown coefficients:

ai({x̄}) = ∆i({x̄})∆−1({x̄}), i = 1, 3, (45)
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where the determinant ∆({x̄}) has the form:

∆({x̄}) =

∣∣∣∣∣∣∣
K1 2ξ1ξ2 2ξ1ξ3

2ξ1ξ2 K2 2ξ2ξ3

2ξ1ξ3 2ξ2ξ3 K3

∣∣∣∣∣∣∣ ,
K1({x̄}) = (ξ1)2 − (ξ2)2 − (ξ3)2 −Λ2({x̄}),
K2({x̄}) = (ξ2)2 − (ξ3)2 − (ξ1)2 −Λ2({x̄}),
K3({x̄}) = (ξ3)2 − (ξ1)2 − (ξ2)2 −Λ2({x̄}).

(46)

As for the determinant ∆i({x̄}), they can be found from the third-order determinant (46), replacing
the elements of the i-th column with zeros. In other words; ∆1({x̄}) = ∆2({x̄}) = ∆3({x̄}) = 0, and,
respectively, the system of Equation (44) will have a non-trivial solution if the determinant of the
system (44) is equal to zero too, i.e., ∆({x̄}) = 0. More precisely, the system of Equation (44) will
have solutions if in expressions (45), uncertainties of the type 0/0 can be eliminated. As the study
shows, there always exists a non-empty continuous set Ξ 6= �, on which the determinant of algebraic
Equation (44) is equal to zero and, accordingly, the above uncertainty is eliminated (see Appendix E
for details).

Proposition 3 is proved.

7. Deviation of Geodesic Trajectories of One Family

Studying the linear deviations of the geodesic trajectories of one family, one can get valuable
information about the properties of a dynamical system and, very importantly, about the relationship
between the behavior of a dynamical system and the geometric features of a Riemannian space.

Definition 6. Let xi = xi(s, η) be the equation of a one-parameter family of geodesics on the Riemannian
manifoldM(3)

J̄ , where s is an affine parameter along geodesic the trajectory, whereas the symbol η denotes the
family parameter. The vector j({ζ}) in the direction of the normal of the geodesic l({x̄}) with components:

δxi(s, η)

δη
= ζ i(s, η), {ζ} = (ζ1, ζ2, ζ3), i = 1, 3, (47)

will be called the linear deviation of close geodesics.

The components of the deviation vector j({ζ}) satisfy the following equations [43]:

D2ζ i

Ds2 = −Ri
jkl({x̄})xjζkxl , i, j, k, l = 1, 3, (48)

whereRi
jkl({x̄}) is the Riemann tensor, which has the form:

Ri
jkl = Γi

l j, k − Γi
jk, l + Γi

kλΓλ
l j − Γi

lλΓλ
jk, Γi

jk, l({x̄}) = ∂Γi
jk({x̄})/∂xl . (49)

The Equation (48) can be written in the form of an ordinary second-order differential equation:

ζ̈ i + 2Γi
j l ẋ

j ζ̇ l +
(
Γ̇i

j l ẋ
j − Γi

j lΓ
j
k p ẋk ẋp + Γi

j nΓn
k p ẋj ẋkδ

p
l
)
ζ l = −Ri

jkl xjζkxl , (50)

The explicit form of specific terms of the Equation (50) can be found in the Appendix F.
Solving Equation (50) together with the equations systems (25) and (37), we can get a full view
on deviation properties of close geodesic trajectories of a one-parameter family, which is a very
important characteristic of a dynamical system.

8. Three-Body System in a Random Environment

Let us suppose that a three-body system is subject to external influences that have regular and
random components. The causes of such impacts can be different. For example, when a system of
bodies is immersed in the environment—gas, liquid, etc. In this case, the total energy of the system of
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bodies changes due to random collisions. Given the new conditions, the three-body problem can be
mathematically generalized if to assume that in the system of Equation (26) the metric tensor gij({x̄})
is random.

When studying atomic-molecular processes even in a vacuum, it is often important to take into
account the influence of quantum fluctuations on the classical dynamics of interacting bodies.

In the simplest case, when an external random force acts on the dynamical system without
deformation of the metric tensor gij({x̄}), using the system of Equation (26), we can write the following
system of stochastic differential equations (SDE) to describe the motion of three bodies:

χ̇µ = Aµ({χ}) + ηµ(s), µ = 1, 6, (51)

where the independent variables {χ} =
(
{x̄}, {ξ̄}

)
= χ1, χ6 form the Euclidean 6D space, in addition,

the following notations are made:

χ1 = ξ1, χ2 = ξ2, χ3 = ξ3, χ4 = x1, χ5 = x2, χ6 = x3.

In addition, in (51), the coefficients Aµ({χ}) are defined by the expressions:

A1({χ}) = a1
{
(ξ1)2 − (ξ2)2 − (ξ3)2 −Λ2}+ 2ξ1(a2ξ2 + a3ξ3), A4({χ}) = ξ1,

A2({χ}) = a2
{
(ξ2)2 − (ξ1)2 − (ξ3)2 −Λ2}+ 2ξ2(a3ξ3 + a1ξ1), A5({χ}) = ξ2,

A3({χ}) = a3
{
(ξ3)2 − (ξ2)2 − (ξ1)2 −Λ2}+ 2ξ3(a1ξ1 + a2ξ2), A6({χ}) = ξ3.

Recall that Aµ({χ}) are regular functions.
For simplicity, we assume that the stochastic functions ηµ(s) satisfy the correlation relations of

white noise:
〈ηµ(s)〉 = 0, 〈ηµ(s)ηµ(s′)〉 = 2εδ(s− s′), (52)

where ε denotes the power of random fluctuations and δ(s− s′) is the Dirac delta function.
Now we can move on to the problem of deriving the equation of joint probability density (JPD) for

the independent variables {χ}.
For further analytical study of the problem, it is convenient to present JPD in the form:

P
(
{χ}, s

)
=

6

∏
µ=1

〈
δ
[
χµ(s)− χµ

]〉
. (53)

Using a well-known technique (see [56,57]), we can differentiate the expression (53) by internal time
“s” and taking into account (51) and (52) get the following second-order partial differential equation (PDF):

∂P
∂s

=
6

∑
µ=1

∂

∂χµ

[
Aµ
(
{χ}

)
+ ε

∂

∂χµ

]
P. (54)

It is easy to see the function (54) determines the probability of the position and momentum
of imaginary point characterizing the three-body system in the 6D phase space. In the case when
ε = h̄, the function P

(
{χ}, s

)
in principle play the same role as the Wigner quasi-probability

distribution [58,59]. However, unlike the Wigner function, which in some regions of the phase space
can take negative values, and therefore is not a probability distribution, the solution of the Equation (54)
is positive definite in the entire phase space. In other words, the function P

(
{χ}, s

)
really has the

meaning of a probability distribution, which describes the probabilistic evolution of the classical
three-body system in phase space taking into account the influence of quantum fluctuations.
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Developing the same ideology, we can obtain the equation of probability distribution of an
elementary process in momentum and coordinate representations, taking into account the influence of
the environment.

In particular, for the probability current in the momentum representation P(m)
{x̄}
(
{ξ̄}

)
, at the point

{x̄} 3 E3 we obtain the following second-order PDF:

Ṗ(m)
{x̄} =

3

∑
i=1

∂

∂ξ i

[
Ai({x̄}, {ξ̄})+ ε

∂

∂ξ i

]
P(m)
{x̄} , Ṗ(m)

{x̄} = ∂P(m)
{x̄} /∂s. (55)

In other words, by calculating Equation (55) at a given point {x̄}, we can find the distribution of
the velocity (momentum) {ξ̄} of the imaginary point depending on the internal time “s”. We can also
trace the evolution of the momentum distribution along the trajectory by substituting {x̄} → {x̄(s)} in
the Equation (55). Note that in this case the Equation (55) is solved in combination with the system of
Equation (26).

Now we consider the case when the metric of the internal space E3 depending on the internal time
“s” is continuous, however its first derivative is already a random function. The above task will be
mathematically equivalent to random mappings of the type:

R f : ai
(
{x̄}

)
7→ ãi

(
s, {x̄}

)
=

d
dxi ln g

(
s, {x̄}

)
, i = 1, 3,

or more detail:

ãi
(
s, {x̄}

)
=

∂ ln g̃
(
s, {x̄}

)
∂xi +

∂s
∂xi

∂ ln g̃
(
s, {x̄}

)
∂s

= ãi(s, {x̄}
)
+

˙̃g(s, {x̄}
)√

g̃(s, {x̄}
) , (56)

where ãi
(
s, {x̄}

)
are regular functions, R f denotes the operator of random mappings and η̃

(
s, {x̄}

)
=

˙̃g/
√

g̃ is a random function, which will be defined below. Taking into account the above, the system of
Equation (26) can be decomposed and presented in the form of stochastic Langevin type equations:

ξ̇µ = Aµ
(
{χ}

)
+ Bµ

(
{χ}

)
η
(
s, {x̄}

)
, µ = 1, 6, (57)

where
B1({χ}) = (ξ1)2 −

(
ξ2)2 −

(
ξ3)2

+ 2ξ1(ξ2 + ξ3)−Λ2({x̄}), B4({χ}) = 0,

B2({χ}) = (ξ2)2 −
(
ξ1)2 −

(
ξ3)2

+ 2ξ2(ξ1 + ξ3)−Λ2({x̄}), B5({χ}) = 0,

B3({χ}) = (ξ3)2 −
(
ξ2)2 −

(
ξ1)2

+ 2ξ3(ξ1 + ξ2)−Λ2({x̄}), B6({χ}) = 0.

The JPD for the independent variables {χ} again can be represented in the form (53). For simplicity
we will assume that a random generator η̃

(
s, {x̄}

)
= η

(
s
)
/
√

g and, in addition, that it satisfy the
correlation properties of the white noise with fluctuation power ε (see (52)). Further, performing
calculations similar to (53) and (54) using the SDE (57), we get the following second-order PDE for JPD:

∂P
∂s

=
6

∑
µ=1

∂

∂ξµ

(
AµP

)
+ εg−1/2

3

∑
i,j=1

∂

∂ξ i

[
Bi ∂

∂ξ j

(
BjP

)]
. (58)

Finally, for the probabilistic current in the momentum representation at the given point {x̄} ∈ E3

we get the following second-order PDF:

Ṗ(m)
{x̄} =

3

∑
i=1

∂

∂ξ i

(
AiP

)
+ εg−1/2

3

∑
i,j=1

∂

∂ξ i

[
Bi ∂

∂ξ j

(
BjP(m)
{x̄}
)]

. (59)
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Substituting {x̄} → {x̄(s)} into the Equation (59), we can study the evolution of the momentum
distribution along the trajectory of a dynamical system.

Thus, we have obtained equations describing geodesic flows in the phase space (54) and (58),
as well as in the momentum space (55) and (59), which must be solved in combination with a system of
differential equations of the first order (26). Recall that the method used to obtain the noted equations
can be attributed to Nelson’s type stochastic quantization [60], with the only difference being that
internal time “s” cardinally changes the sense of the developed approach. In particular, in the limit
ε→ 0, the representation allows a continuous transition from the statistical (see (54) and (58)) to the
dynamical description (see (26)) of the problem.

9. A New Criterion for Estimating Chaos in Classical Systems

When the three-body system is in an environment that has both regular and random influences
on it, then it makes sense to talk about a statistical system. In this case, the main task is to construct
the mathematical expectations of different elementary atomic-molecular processes occurring during
multichannel scattering (see Scheme 1). Recall that the evolution Equations (54) and (58), describing
of geodesic flows depending on internal time “s” have an important feature. The latter circumstance
makes it necessary to introduce new criteria for determining the measure of deviation of probabilistic
current tubes of various elementary processes.

In particular, following the definition of Kullback-Leibler definition of the distance between two
continuous distributions, we can determine the criterion characterizing the deviation between the
corresponding tubes of probabilistic currents [61].

Definition 7. The deviation between two different tubes of probabilistic currents in the phase space will be
defined by the expression:

d(sa, sb) =
∫
P6

P
(
{χ}, sa

)
ln
∣∣∣∣P
(
{χ}, sa

)
P
(
{χ}, sb

) ∣∣∣∣√g({x̄})
6

∏
ν=1

dχν, (60)

where Pa ≡ P
(
{χ}, sa

)
and Pb ≡ P

(
{χ}, sb

)
are two different probabilistic currents, which at the beginning of

development of elementary processes are closely located or have an intersection.

In the case when the distance between two flows depending on internal times s ∼ sa ∼ sb grows
linearly, that is:

d(s) ∼ ks, k = const > 0,

there is reason to believe that a dynamical system exhibits chaotic behavior, i.e., it is chaotic.

Definition 8. Let Pi f (sn) be the transition probability between the (in) and (out) asymptotic channels with
the internal time sn, then the total mathematical expectation of the transition between two asymptotic states
Ptot

ab will be defined as:

Ptot
i f = lim

N→∞

[
1
N

N

∑
n=1

(
lim

sn→∞
Pi f (sn)

)]
, (61)

where N denotes the number of various solutions of the Cauchy problem for the system (26).

10. The Quantum Three-Body Problem on Conformal-Euclidean Manifold

If the classical three-body problem plays a fundamental role for understanding the dynamics of
complex classical systems, then a similar problem in quantum mechanics is the key to studying the
atomic and subatomic nature of matter. In this regard, it is obvious that a mathematically rigorous
description of the system of interacting atoms is a task of primary importance. Note that the first
work on this problem was carried out by Skorniakov and Ter-Martirosian [62]. Recall that they
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derived equations for determining the wave function of a system of three identical particles in
the limiting case of zero-range forces. The approach was generalized by Faddeev for arbitrary
particles and the finite-range forces [63]. Scattering in three-particle atomic-molecular systems is
characterized by both two-particle and three-particle interactions, which makes the Faddeev approach
inaccurate for describing such processes. In this regard, subsequently, various approaches and
corresponding algorithms were developed for studying atomic-molecular processes in the framework
of the three-body scattering problem (see for example [64,65]). However, on the way to the description
of quantum multichannel scattering, in our opinion, a new fundamental ideological problem arose
related to the paper of Hanney and Berry [66] (see also [67]). Namely, as the authors proved in this
paper, in the limit h̄→ 0 there is no transition from the Q system (quantum systems) to the P-system
(Poincaré systems) (see Figure 4).

P 

          

Qch 

R Q 

Bohr’s correspondence

Figure 4. The figure shows a diagram of the interconnections between the three well-known regions
of matter motion R, P, Q and the new region Qch, which is strictly defined in this paper. Recall that R
denotes classical regular systems (Newton systems), P denotes classical dynamically or chaotic systems
(Poincaré systems), Q denotes regular quantum systems and Qch-quantum chaotic systems. There is a
possibility of passing from the P system to the R system, which is ensured by the KAM-theorem [68].
From the system Q, a transition to the system R is possible, but not to the system P, while from the
system Qch there is the possibility of transition to all three R, P and Q systems.

To solve the open problem of quantum-classical correspondence, the three-body problem is an ideal
model, since this system very often exhibits strongly developed chaotic behavior in the classical limit.
Recall that by strongly developed chaos we imply a such state of the classical system, when the chaotic
region in the 2n-dimensional phase space occupies a larger volume than the volume of the quantum
cell-h̄n. Obviously, in this case the so-called quantum suppression of chaos does not occur, and we must
observe chaos in the behavior of the wave function itself.

Using the reduced classical Hamiltonian (27), we can write the following non-stationary quantum
for the three-body system in conformal-Euclidean space (internal space)M(3):

ih̄
∂Ψ
∂s

= Ĥ
(
{x̄}; { p̄}

)
Ψ, (62)

where Ĥ is the Hamiltonian of the quantum problem.
By making the following substitutions in the reduced classical Hamiltonian (27):

ẋi → −ih̄∂/∂xi and J2 → J(J + 1),
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which is equivalent to the transition to the quantum Hamiltonian (see [69]), we get:

Ĥ
(
{x̄}; { p̄}

)
=

1
2µ0

{
−h̄2g({x̄})

3

∑
i=1

∂2

(∂xi)2 +
J(J + 1)
g({x̄})

}
. (63)

In the case when the energy of the three-body system is fixed, that is, E = const, we can go to the
stationary equation for the wave function.

In particular, substituting the wave function:

Ψ
(
{x̄}, s

)
= exp

(
−iEs/h̄

)
Ψ̄
(
{x̄}

)
,

into the Equations (62) and (63), we obtain the following stationary equation:{
3

∑
i=1

∂2

(∂xi)2 +
2µ0

h̄2g({x̄})

[
E− J(J + 1)

g({x̄})

]}
Ψ̄({x̄}) = 0. (64)

Recall that J2 = ∑3
i=1 J2

i = const is the total angular momentum of the system of bodies, which in
this case is quantized.

For any fixed J, there is a countable number of submanifolds:

M(3)
{J} =

{
M(3)
{α}
}

α∈BJ
,

on which various quantum processes flow, where BJ is the family of sets with different projections of Jz.
Recall that these submanifolds differ by its orientations in the 6D manifold (space)M, which we can
determine with two commutated quantum numbers {J} = (J, Jz). In other words, in the developed
approach when quantizing a dynamical problem, a typical example of which is the three-body problem,
geometry is also quantized.

In particular, when J = 0 there is only one submanifoldM(3)
{0}, where {0} = (0, 0). In the case

when J = 1, there exists a family of three oriented submanifolds, on each of which the Schrödinger
equation is invariant:

M(3)
{1} =

{
M(3)
{α}
}

α∈B1
, B1 =

{
(1,+1), (1, 0), (1,−1)

}
,

We can combine submanifolds of a family with a given full rotational momentum J, as is done in
the case of a family of sets:

M(3)
1 =

⋃
α∈B1

M(3)
{α} =

{
{x̄}| ∃ α ∈ B1, {x̄} ∈ M(3)

α

}
.

For further analytical constructions of the problem, it is useful to introduce a new coordinate
systems on the cards Gα, arising at continuously mappings f : {ρ̄} 7→ {x̄}.

We will consider two important cases:

a. When three bodies form a bound state, i.e., g({x̄}) ≤ 0, and, accordingly,
b. when scattering in a system occurs with a rearrangement of bodies, for example; 1 + (23) →

(12) + 3 (see Scheme 1). Recall that in this case the scattering processes in the system occur under
the condition g({x̄}) > 0.
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10.1. The Three-Body Coupled States

First, consider the case a., when three bodies form a bound state. For this case, it is convenient to
use a local spherical coordinate system (LSCS) (see Figure 5):

{r̄} =
(
r, θ, ϕ

)
, r2 =

(
x1)2

+
(
x2)2

+
(
x3)2, θ ∈

[
0, π

]
, ϕ ∈

[
0, 2π

]
.

Figure 5. When constructing the representation on the atlas card, a rectangular local coordinate system
(we call the basic local coordinate system) {x̄} = (x1, x2, x3) is determined. However, for further
studies of the quantum problem it is useful to use the local spherical coordinate system {r̄} = (r, θ, ϕ)

to describe the bound quantum state, and the local cylindrical coordinate system {$̄} = ($, z, ϕ),
respectively, to describe multichannel quantum scattering.

Note that this is firstly due to the fact that, in a geometric sense, bound states are localized on 2D
closed surfaces that are homeomorphic with isolated spheres having topological features (Appendix D,
family Ă see Figure 6).

Figure 6. The set of Jacobi coordinates (Rα, rα, ϑα) is convenient for describing the asymptotic states
1 + (23)njK , whereas another set of Jacobi coordinates (Rβ, rβ, ϑβ) is convenient for describing the
asymptotic states (12)n′ j′K′ + 3.

Within the framework of LSCS, the Equation (64) can be written as:{
∆ +

2µ0

h̄2gε

(
{r̄}
)[E− J(J + 1)

gε

(
{r̄}
) ]}Ψ̄ = 0. (65)
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where ∆ denotes Laplace operator in the LSCS, in addition, f : g({x̄}) 7→ gε({r̄}):

∆ =
1
r2

∂

∂r

(
r2 ∂

∂r

)
+

1
r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1
r2 sin2 θ

∂2

∂ϕ2 .

Recall that the function gε

(
{r̄}
)

is obtained from g({x̄}; ε) =
[
E + iε−U({x̄})

]
U−1

0 6= 0, where
ε � 1 (see (19)), after transition into the LSCS. Note that the small parameter ε has a physical
meaning, namely, it characterizes the width of the energy level of the quantum state. Since the Laplace
spherical harmonics Ym

l (θ, ϕ) form an orthonormal basis of the Hilbert space of quadratically integrable
functions [70], we can use this property and write Equation (65) in the form:{

∆ +
2µ0

h̄2

∞

∑̄
l=0

l̄

∑
m̄=−l̄

Ωl̄m̄(r; E, J, ε)Ym̄
l̄ (θ, ϕ)

}
Ψ̄ = 0, (66)

where
Ωl̄m̄(r; E, J, ε) =

[
E g

(1)
l̄m̄ (r; ε)− J(J + 1)g(2)l̄m̄ (r; ε)

]
,

g−k
ε

(
{r̄}
)
=

∞

∑̄
l=0

l̄

∑
m̄=−l̄

g
(k)
l̄m̄ (r; ε)Ym̄

l̄ (θ, ϕ), k = 1, 2.

It is easy to find the functions g
(1)
l̄m̄ (r; ε) and g

(2)
l̄m̄ (r; ε). For this we need to multiply the

corresponding expressions for the functions g−1
ε

(
{r̄}
)

and g−2
ε

(
{r̄}
)

on the complex conjugation
of a spherical function Ym̄′∗

l̄′ (θ, ϕ), and then to integrate over the sphere of unit radius:

g
(k)
l̄m̄ (r; ε) =

∫ 2π

0

∫ π

0
g−k

ε

(
{r̄}
)
Ym̄∗

l̄ (θ, ϕ) sin θdθdϕ, k = 1, 2.

We can consider the problem of finding solutions in the form:

Ψ̄
(
r, θ, ϕ; ε

)
= Υ(r; ε)Ym

l (θ, ϕ). (67)

where Υ(r; ε) describes a radial wave function.
Substituting (67) into the Equation (66) and performing simple calculations, we can find the

following ordinary differential equation (ODE) (see Appendix G):

{
1
r2

d
dr

(
r2 d

dr

)
− l(l + 1)

r2 +
2µ0

h̄2

2l

∑̄
l=0

l̄

∑
m̄= 0
Wm,m̄ ; l,l̄ Ωl̄m̄

(
r; E, J, ε

)}
Υ = 0, (68)

where l = 0, 1, 2, ... is the quantum number of angular momentum in the internal spaceM(3), in addition:

Wm,m̄; l,l̄ =

√
2l̄ + 1

π

(
l +

1
2

)(
l l l̄
0 0 0

)(
l l l̄
−|m| −|m| |m̄|

)
. (69)

Thus, we have obtained a one-dimensional equation for the radial wave function of the coupled
three-body system. It is easy to see that this equation is a bit like a hydrogen-like atom and can
be quantized for certain energy values. If we solve this equation taking into account the system of
algebraic Equation (37) and coordinate transformations (43), then we obtain the full wave function of
the system of bodies as; in global {ρ̄} (see (7)), as well as in local {x̄} coordinate systems.

10.2. Quantum Multichannel Scattering in a Three-Body System

In this section, we will consider the case b., i.e., quantum scattering with particles rearrangement
(see Scheme 1). Recall that all coupled pairs in this scheme are described by two quantum numbers
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n—(vibrational quantum number), j—(rotational quantum number) and K—(z-projection of the total angular
momentum J in space-fixed coordinate system). The regrouping process, obviously, will occur through
manifolds of the family C̆ (see Figure A4), which have cylindrical symmetry. This fact dictates us to
use local cylindrical coordinates (LCC) (see Figure 5):

{$̄} =
(
$, z, ϕ

)
, r =

√
z2 + $2, $ ≤ L, z ∈

(
−∞,+∞

)
, ϕ ∈

[
0, π

]
, (70)

where x1 = $ sin ϕ and x2 = $ cos ϕ, in addition, L > 0 is some finite length.
In these coordinates, the quantum motion of bodies is described by the following PDE:{

1
$

∂

∂$

(
$

∂

∂$

)
+

∂2

∂z2 +
1
$2

∂2

∂ϕ2 +
2µ0

h̄2 g̃
(
{$̄}

)[E− J(J + 1)
g̃
(
{$̄}

) ]}Ψ̃J
K = 0, (71)

where f : g
(
{x̄}) 7→ g̃

(
{$̄}

)
.

For further study of the problem, it is convenient to represent the function; g̃−k({$̄}), (k = 1, 2)
in the form of expansion in the orthogonal Legendre functions:

g̃−k({$̄}) = ∞

∑
m=0

g̃ (k)($, z
)

Pm
(
ζ
)
, ζ = cos ϕ, (72)

and, correspondingly;

g̃
(k)
m
(
$, z
)
=
(

m +
1
2

) ∫ 1

−1
g̃−k({$̄})Pm

(
ζ
)
dζ.

Representing the solution of the Equation (71) in the form:

Ψ̃J
K
(
{$̄}

)
= Υ̃

(
$, z
)
Θj

K
(
ζ
)
, (73)

with consideration (72), we get the following second-order PDE:

{
Θj

K

[
1
$

∂

∂$

(
$

∂

∂$

)
+

∂2

∂z2 +
2µ0

h̄2 Ω̃
(
{$̄}

)]
+

1
$2

∂2Θj
K

∂ϕ2

}
Υ̃ = 0, (74)

where Ω̃
(
{$̄}

)
= ∑∞

m=0
[
Eg̃ (1)

m − J(J + 1)g̃ (2)
m
]
Θj

m
(
ζ
)
, in addition, Θj

K
(
ζ
)

denotes the associated
Legendre functions [70].

Now, having performed simple calculations, we finally obtain the following ODE for the wave
function (seel Appendix H):{[

1
$

∂

∂$

(
$

∂

∂$

)
+

∂2

∂z2

]
+

QjK

$2 +
2µ0

h̄2 Ω̃jK
(
$, z
)}

Υ̃ = 0, (75)

where the following notations are made:

QjK = Ω̃
(
{$̄}

)
=
(
Θj

k(1)
)2

+
(K + j)!
(K− j)!

[
K2

j
− 1 + 2j(j + 1)

2K + 1

]
, j 6= 0,

Ω̃jK
(
$, z
)
=

∞

∑
m=0

I j
mK
[
E g̃

(1)
m − J(J + 1)g̃ (2)

m
]
, I j

mK =
∫ 1

−1

[
Θj

K
(
ζ
)]2Θ0

m
(
ζ
)
dζ.

The term I j
mK ≡ I j

mKK exactly is calculated (see Appendix H).
It is obvious that in the limit of z → −∞ or in the (in) asymptotic state limz→−∞ Ω̃jK

(
$, z
)
=

Ω̃−jK
(
$
)
, the motion of the three-body quantum system breaks up into vibrational-rotational and
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translational components. This means that we can write the following representation for an asymptotic
wave function:

Ψ̃+(J)
njK

(
{$̄}

)
−−−−−→z→−∞ Ψ̃(in)J

njK
(
{$̄}

)
=

1√
2π

exp
{
− i

h̄
p−n(jK) z

}
Θj

K
(

ϕ
)
Υ̃(in)

njK
(
$
)
, (76)

where p−n(jK) =

√
2µ0
[
E− E (in)n(j,K)

]
is the momentum of the imaginary point in the (in) asymptotic

subspace of scattering, and the wave function Υ̃(in)
njK
(
$
)

denotes the bound state of a three-body system
that satisfies the following equation:{

1
$

d
d$

(
$

d
d$

)
+

QjK

$2 +
2µ0

h̄2 Ω̃−jK
(
$
)}

Υ̃(in) = 0, (77)

where E (in)n(j,K) is the quantized energy of the coupled system (23)njK, which takes into account the
influence of the vibrational-rotational motion of the system. The spectrum of the energy En(j,K) can be
calculate by solving the Equation (77).

The total wave function Ψ̃+(J)
njK in the limit z→ +∞ goes into the (out) asymptotic state, where it

can be represented as:

Ψ̃+(J)
njK

(
{$̄}

)
−−−−−→z→+∞ ∑

n′ j′K′
SJ

njK→ n′ j′K′
(
Ec
)
Ψ̃(out)J

n′ j′K′
(
{$̄}

)
, (78)

where SJ
n′ j′K′← njK

(
Ec
)

is the S-matrix element of the rearrangement process, which depends on the

collision energy Ec =
[
E−E (in)n(j,K)

]
of particles and the quantum numbers of asymptotic states. The total

wave function of the system of bodies also satisfies the following boundary conditions:

lim
|$ |→∞

Ψ̃+(J)
njK

(
{$̄}

)
= lim
|$ |→∞

∂

∂$
Ψ̃+(J)

njK
(
{$̄}

)
= 0. (79)

As is known, the main goal of quantum scattering theory is to construct S-matrix elements
of different quantum transitions. In the body-fixed LCC system, we can write the following exact
representation connecting two different representations of the full wave function [71]:

Ψ̃+(J)
njK

(
{$̄}

)
= ∑

n′ j′K′
SJ

njK→ n′ j′K′ Ψ̃
−(J)
n′ j′K′

(
{$̄}

)
, (80)

where Ψ̃+(J)
njK

(
{$̄}

)
and Ψ̃−(J)

njK
(
{$̄}

)
are total stationary wave functions that develop, respectively, from

pure (in) and (out) asymptotic states. Recall that this case the coordinate z plays role of timing parametr.
As for asymptotic wave functions, it is convenient to represent them in global coordinates

{ρ̄} ∈ E3, and then display them on a manifoldM(3)
t 3 {x̄}. In order to implement the mapping

f : Ψ(in)J
njK

(
{ρ̄}

)
7→ Ψ̃(in)J

njK
(
{$̄}

)
, in the function Ψ(in)J

njK
(
{ρ̄}

)
, we need to perform a coordinate

transformation using the expressions (43) and (70). Recall that for the asymptotic state 1 + (23)njK the
wave function in global system {ρ̄} ∈ E3 can be represented as:

Ψ(in)J
njK

(
{ρ̄}

)
=

1√
2π

exp
{
− i

h̄
p−njρ1

}
Π(in)

n(j)(ρ2)Θ
j
K(ρ3), p−n(j) =

√
2µ0
[
E− E (in)n(j)

]
, (81)
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where E (in)n(j) is the vibration-rotational energy of the coupled state (23)njK, and the function Π(in)
n(j)(ρ2),

which describes the wave state satisfying the following ODE [72]:[
− h̄2

2µ0

d2

dρ2
2
+ U(in)(ρ2) +

h̄2 j(j + 1)
2µ0ρ2

2

]
Π(in)

n(j) = E
−
n(j)Π

(in)
n(j).

Note that in the (in) asymptotic state: limρ1→∞ V(r) = U(in)(ρ2) (see expression (5)).
It is easy to verify that the asymptotic wave functions (76) and (81), despite being represented in

different coordinate systems, however, consist of similar functions.
Finally, based on the foregoing, we can construct the full stationary wave function of the scattering

process on the 6D manifold {x} ∼
(
{$̄}; {x}

)
∈ M:

Ψ+
(
{$̄}; {x}

)
=

J

∑
K=−J

Ψ̃+(J)
K

(
{$̄}

)
DJ

KM
(
{x}

)
, {x} = (x4, x5, x6), (82)

where DJ
KM is the Wigner D-matrix [73,74], in addition, K and M are space-fixed and body-fixed z

projections of the angular momentum J.
Returning to the problem of constructing of S-matrix elements, it should be noted that each of the

scattering channels in the global coordinate system is conveniently described by its own coordinate
system. In other words, it is convenient to describe quantum states in the initial (in) and final (out)
channels by various Jacobi coordinate systems. In this regard, it is obvious that local systems associated
with the corresponding global systems must also be different. For example, if the wave function Ψ̃+(J)

njK

is conveniently described using the coordinate system {$̄α} ∈ M(3)
α ' E3

α 3 {ρ̄α}, then the wave
function Ψ̃−(J)

njK will naturally be described using the coordinate system {$̄β} ∈ M
(3)
β ' E3

β 3 {ρ̄β}
(see Figure 5).

The correspondence conditions between the asymptotic wave functions written in two various
global coordinate systems {ρ̄α} and {ρ̄β} can be specified using the equation [73,74]:

Ψ(out)J
K′

(
{ρ̄β}

)
= ∑̄

K
dJ

K′K̄(ϑ)Ψ
(out)J
K′

(
{ρ̄α}

)
, (83)

where dJ
K′K̄(ϑ) is the Wigner’s small matrix, which has the following form [75]:

dJ
K′K̄(ϑ) = D J

KK′(0, ϑ, 0) =
[
(J + K′)!(J − K′)!(J + K′)!(J − K′)!

]1/2×

∑
s

[
(−1)K′−K+s[cos(ϑ/2)

]K−K′+2(J−s)[sin(ϑ/2)
]K′−K+2s

(J + K− s)!s!(K′ − K + s)!(J − K′ − s)!

]
,

where the sum over “s” exceeds such values that factorials are non-negative, in addition, ϑ is the
angle between the vectors rα and rβ, that is rαrβ = rαrβ cos ϑ, which are distances of free particle
from the center of mass of coupled pair in the Jacobi coordinates of the initial (in) and final (out)
channels, respectively.

Now we have all the necessary mathematical objects for constructing of the S-matrix elements of
a quantum reactive process.
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Taking into account the fact that the coordinate z is the timing parameter of the problem, we can
obtain a new exact representation for the transition S-matrix elements in terms of stationary wave
functions (this idea was first implemented for the collinear model [76,77]):

SJ
njK→ n′ j′K′

(
Ec
)
= lim

z → +∞

〈
Ψ̃+(J)

njK
(
{$̄α}

)
Ψ̃(out)J

n′ j′K′
(
{$̄β}

)∗〉
=

∑̄
K

〈
dJ

K′K̄(ϑ)Ψ̃
+(J)
njK

(
{$̄α}

)
Ψ̃(out)J

n′ j′K′
(
{$̄α}

)∗〉
, (84)

where is the sign “ ∗” denotes the complex conjugation of a function, in addition: f : Ψ(out)J
n′ j′K′

(
{ρ̄α}

)
7→

Ψ̃(out)J
n′ j′K′

(
{$̄α}

)
,

〈
· · ·
〉
=
∫ π

0 dϑ
∫ ∞

0

∫ π
0

√
g̃
(
{$̄α}

)
$αd$αdϕα.

Note that in the limit z → −∞ as the initial asymptotic condition for Ψ̃+(J)
njK

(
{$̄α}

)
, we must

choose an asymptotic wave function in the global system Ψ(in)J
njK

(
{ρ̄α}

)
. In other words, we have to do a

mapping f : Ψ̃(in)J
njK

(
{$̄α}

)
7→ Ψ(in)J

njK
(
{ρ̄α}

)
, which we can implement using coordinate transformations

(43) and (70).
It is often convenient to obtain equations for S-matrix elements. Let us consider the following

representation for a complete wave function that uses the time-independent coupled-channel approach [78]:

Ψ̃+(J)
K̄,[K]

(
{$̄}

)
= ∑

n̄j̄
Ξ+(J)
[K] [K̄](z)Πn̄( j̄K̄)($; z)Θ j̄

K̄(ζ), [K] = (n, j, K). (85)

Substituting (85) into the Equation (71) and performing not complicated calculations, we obtain:{
d2

dz2 + En′(j ′K′)(z)
}

Ξ+(J)
[K] [K′ ](z) = 0, (86)

where En′(j ′K′)(z) ≡ E
n′(j

′
K′)

n′(j ′K′)
(z) is a regular function (for more details see Appendix H).

It is easy to verify that the solutions of Equation (86) in the limit z → +∞ go over to the
corresponding S-matrix elements:

lim
z→+∞

Ξ+(J)
[K] [K′ ](z) = SJ

[K]→ [K′ ]
(
Ec
)
, [K] = (njK). (87)

Returning to the quantum equations, both non-stationary (62) and stationary (64), we note
that they are solved together with the classical Equation (26) taking into account coordinate
transformations (43) and (70). It is important to note that the meaning of additional classical equations
and coordinate transformations is that they generate trajectory tubes with various geometric and
topological features, which are quantized using Equations (62) and (64). In view of the foregoing, it is
obvious that non-integrability and, moreover, the randomness in behavior of the classical problem
will affect the quantum problem. In the case of strongly developed chaos, this can lead to chaos
generation and, in the main object of quantum mechanics, in the wave function. Recall that this significantly
distinguishes our understanding of quantum chaos from the interpretation of this phenomenon by
other authors (see for example [79]). This means that in the limit h̄→ 0 the dynamical quantum system
(conditionally Qch-quantum chaotic system) will be goes over to the classical dynamical system (P-system),
without violating the quantum generalization of Arnold’s theorem [66] (see Figure 4). In other words,
in connection with the statement of M. Gutswiller that “the concept of quantum chaos is a mystery, not a
well-formulated problem”, we argue that quantum chaos-Qch a separate, more general and well-defined
area-of-motion is represented.

Recent studies by the authors have shown that quantum chaotic behavior even manifests itself in a
low-dimensional model problem, such as a collinear collision of three bodies [80], on the example of the
bimolecular chemical reaction with the rearrangement Li + (FH)→ (LiF) + H. In particular, as shown
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by numerical calculations, the total wave function for the system under study exhibits strongly chaotic
behavior, which also affects the amplitude of quantum transitions AJ

[K]→ [K′ ] =
∣∣SJ

[K]→ [K′ ]
(
Ec
)∣∣2.

In other words, to calculate the mathematical expectation of the amplitude of the quantum transition,
it is necessary to carry out additional averaging, which is done using formula (61) based on the idea
of Definition 8 .

In the end, we note that, as the study showed, not all bimolecular reactions show chaotic behavior.
For example, as shown by numerical simulation of the reacting systems N + N2, O + O2, N + O2 in
the framework of the collinear model [76], these systems are generally regular in the behavior of wave
functions and, accordingly, in transition amplitudes, which indicates insufficient development of chaos in
the corresponding classical counterparts.

11. Conclusions

The study of the classical three-body problem with the aim of revealing new regularities of both
celestial mechanics and elementary atomic-molecular processes, is still of great interest. In addition, it is
very important to answer the fundamental question for quantum foundations, namely: is irreversibility
fundamental for describing the classical world [29]? Recall that the answer to this question on the example
of the three-body problem can significantly deepen our understanding regarding the type and nature
of complexities that arise in dynamical systems.

Note that if the main task for celestial mechanics is finding stable trajectories, for atomic-molecular
collisions the studying of multichannel scattering processes are of primary importance.

Following the Krylov’s idea, we considered the general classical three-body problem on a
conformal-Euclidean-Riemann manifold. The new formulation of the known problem made it possible
to identify a number of important and still unknown fundamental features of the dynamical system.
Below we list only the four most important ones:

• The Riemannian geometry with its local coordinate system in the most general case allows
us to reveal additional hidden symmetries of the internal motion of a dynamical system.
This circumstance makes it possible to reduce the dynamical system from the 18th to the 6th order
(see Equation (26)) instead of the generally accepted 8th order. In case when the energy of the
system is fixed, the dynamical problem is reduced to a 5th-order system. Obviously, the fact of a
more complete reduction of the equations system is very useful for creating efficient algorithms for
numerical simulation. Note that the obtained system of differential equations differs in principle
from the Newtonian equations in that it is symmetric with respect to all variables and is non-linear
since it includes quadratic terms of the velocity projections. These equations play a crucial role
in deriving equations for a probability distributions of geodesic flows both in the phase and
configuration spaces.

• The equivalence between the Newtonian three-body problem (16) and the problem of geodesic
flows on the Riemannian manifold (26) provides the coordinate transformations (43) together
with the system of algebraic Equation (37). Note that due to the algebraic system, which is absent
in Krylov’s representation, the chronological parameter of the s dynamical system, conventionally
called internal time s (see Figure 3), can branch and fluctuate. Moreover, in some intervals
it may show a chaotic character that essentially distinguishes it from usual time t. As the
analysis shows, the internal time in this microscopic classical problem has the same non-trivial
behavior as the time’s arrow of more complex systems [81]. Obviously, internal time “s” makes the
system of Equation (26) irreversible, because it has a structure and an arrow of development,
which significantly distinguishes it from ordinary time t. The latter radically changes our
understanding of time as a trivial parameter that chronologizing events in a dynamical system and
connects the past with the future through the present. And, in spite of the pessimistic statements
of Bergson and Prigogine [82–84], a new approach, in our view, will allow classical mechanics
to describe the whole spectrum of various phenomena, including the irreversibility inherent of
elementary atomic-molecular processes.
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• The developed representation allows taking into account external regular and random forces on
the evolution of the dynamical system without using perturbation theory methods. In particular,
equations have been obtained that describe the propagation of probabilistic flows of geodesic
trajectories in both the phase space (54) and the configuration space (58). Note that this makes
it possible to calculate the probabilities of elementary transitions between different asymptotic
subspaces taking into account the multichannel character of scattering with all its complexities.

• The quantization of the reduced Hamiltonian (27), taking into account algebraic Equation (37)
and coordinate transformations (43) makes the quantum-mechanical Equations (62) and (64)
irreversible. This circumstance is a necessary condition for generating chaos in the wave function.
The latter without violating the quantum generalization of Arnold’s theorem, in the limit h̄→ 0
allows us to make the transition from the quantum region to the region of classical chaotic motion,
that solves an important open problem of the quantum-classical correspondence (see [66,67]).

Lastly, it is important to note that, despite Poincaré’s pessimism regarding the usefulness of using
non-Euclidean geometry in physics, this study rather shows the truthfulness of his other statement.
Namely, Poincaré believed that geometry and physics are closely related, and therefore the choice of
geometry to solve the problem should be made based on the convenience of describing the problem
under consideration.

We are confident that the ideas discussed will be useful and promising for study, especially for
more complex dynamical problems, both classical and quantum.
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Appendix A

Let us consider vector product of vectors encountered in the expression of the kinetic energy (8).
Taking into account the fact that the direction k = R||R||−1 coincides with the axis z we get:

[ω× k] = (x̂ωx + ŷωy + ẑωz)× (x̂ · 0 + ŷ · 0 + ẑ · kz) = x̂ωy − ŷωx, k = ẑ · kz, (A1)

and respectively,
[ω× k]2 = ω2

x + ω2
y, ||x̂|| = ||ŷ|| = ||ẑ|| = 1. (A2)

Similarly, we can calculate the second term:

[ω× r] = x̂ωyr cos ϑ + ŷr(ωz sin ϑ−ωx cos ϑ)− ẑrωy sin ϑ, r = ||r||γ = rγ, (A3)

using which we can get:

[ω× r]2 = r2{ω2
y + (ωz sin ϑ−ωx cos ϑ)2}, ṙ2 =

(
||r||γ̇ + ||ṙ||γ

)2
= r2γ̇2 +

2rṙγγ̇ + ṙ2γ2 = r2ϑ̇2 + ṙ2, γ = (sin ϑ, 0, cos ϑ), γγ̇ = 0, ṙ · [ω× r] =

(rγ̇ + ṙγ) · [ω× r] = rṙωy sin ϑ cos ϑ− rṙωy sin ϑ cos ϑ = 0. (A4)

Taking into account (A1)–(A4), the expression of the kinetic energy (8) can be written in the
form (9).
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Now it is important to calculate the terms A and B that enter in the expression (9). Taking into
account the equations system (10), it is easy to calculate:

A = ω2
x + ω2

y = (Φ̇ sin Θ sin Ψ + Θ̇ cos Ψ)2 + (Φ̇ sin Θ cos Ψ− Θ̇ sin Ψ)2 =

Φ̇2 sin2 Θ sin2 Ψ + 2Φ̇Θ̇ sin Θ sin Ψ cos Ψ + Θ̇2 cos2 Ψ + Φ̇2 sin2 Θ cos Ψ2

−2Φ̇Θ̇ sin Θ cos Ψ sin Ψ + Θ̇2 sin2 Ψ = Φ̇2 sin2 Θ + Θ̇2, (A5)

and
B = ω2

y +
(
ωx cos ϑ−ωz sin ϑ

)2
= (Φ̇ sin Θ cos Ψ− Θ̇ sin Ψ)2 + (Φ̇ sin Θ sin Ψ+

Θ̇ cos Ψ)2 cos2 ϑ − 2(Φ̇ sin Θ sin Ψ + Θ̇ cos Ψ)(Φ̇ cos Θ− Ψ̇) sin ϑ cos ϑ +

(Φ̇ cos Θ− Ψ̇)2 sin2 ϑ = Φ̇2 sin2 Θ cos2 Ψ− Φ̇Θ̇ sin Θ sin 2Ψ + Θ̇2 sin2 Ψ

+ Φ̇2 sin2 Θ sin2 Ψ cos2 ϑ + Φ̇Θ̇ sin Θ sin 2Ψ cos2 ϑ + Θ̇2 cos2 Ψ cos2 ϑ −
1
2

Φ̇2 sin 2Θ sin Ψ sin 2ϑ + Φ̇Ψ̇ sin Θ sin Ψ sin 2ϑ− Φ̇Θ̇ cos Θ cos Ψ sin 2ϑ

+ Θ̇Ψ̇ cos Ψ sin 2ϑ + Φ̇2 cos2 Θ sin2 ϑ − 2Φ̇Ψ̇ cos Θ sin2 ϑ + Ψ̇2 sin2 ϑ. (A6)

Finally, taking into account the calculations (A5) and (A6), it is easy to calculate the components
of the tensor γαβ (see expression (11)).

Appendix B

As we saw in section IV, the manifold S(3) plays a key role at proofing direct one-to-one
transformation between the manifoldsM(3) and E3. In particular, a set of nine unknown parameters
(α1, ..., ζ3) forms 9D space R9. In the case when we impose additional restrictions on these variables in
the form of a system of six algebraic equations (see Equation (37)), we are thereby isolate the set of 3D
manifolds S(3) in R9 space.

Now let us see how these 3D manifolds are formed and what their geometric and topological
features are. Using simple notations, we can rewrite the system of Equation (37) in a universal form:

α̃2
1 + β̃2

1 + ζ̃2
1 = 1, α̃1α̃2 + β̃1 β̃2 + ζ̃1ζ̃2 = 0,

α̃2
2 + β̃2

2 + ζ̃2
2 = 1, α̃1α̃3 + β̃1 β̃3 + ζ̃1ζ̃3 = 0,

α̃2
3 + β̃2

3 + ζ̃2
3 = 1, α̃2α̃3 + β̃2 β̃3 + ζ̃2ζ̃3 = 0, (A7)

where α̃i = αi/
√

ğ({ρ̄}), β̃i = βi/
√

ğ({ρ̄}) and ζ̃i = ζi
√

γ33({ρ̄})/
√

ğ({ρ̄}). It is well known that
the number of combinations Ck

n from the n-elements in k is determined by the expression Ck
n = n!

k!(n−k)! .
In our case, if we take into account the fact that the number of algebraic equations is 6 and the
number of unknowns is 9, then it is obvious that the system of Equation (A7) will generate C6

9 = 84

oriented smooth 3D-manifolds S(3)
{α}, which are immersed in the space R9. Note that {α} denotes the

certain family of manifolds. Recall that the symmetry of the Equation (A7) suggests that only four
families of manifolds are possible {α} ∈

(
Ă, B̆, C̆, D̆

)
, where in each family there is a different number

of manifolds.
The first family Ă consists of six submanifolds Ă = Ă1, Ă6 (see Figure A1).
We can combine the submanifolds of this family similarly to the family of sets and form

3D-manifold immersed in the space R9:

S
(3)
Ă =

⋃
α∈Ă

S
(3)
α =

{
{x}| ∃ α ∈ Ă, {x} ∈ Ă

}
, (A8)

where {x} =
[
(α1, α2, α3), (β1, β2, β3), (ζ1, ζ2, ζ3), (α1, β1, ζ1), (α2, β2, ζ2), (α3, β3, ζ3)

]
.
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Figure A1. The left figure shows 3D submanifold typical of the Ă family with six topological features.
The right figure shows the projection of this submanifold onto the plane (α2, α3). Recall that similar
pictures arise when we projecting manifold on the plane (α1, α2) and (α1, α3).

The second family of B̆ also consists of six submanifolds B̆ = B̆1, B̆6 (see Figure A2).

Figure A2. The left image shows a typical 3D submanifold of the B̆ family. As seen, a submanifold
is smooth and has no topological features. The right figure shows the projection of this manifold on
the plane (α1, ζ3). Recall that similar pictures arise when we projecting manifold on the plane (α1, β2)

and (β2, ζ3).

The united manifold in this case has the form:

S
(3)
B̆ =

⋃
α∈B̆

S
(3)
α =

{
{y}| ∃ α ∈ B̆, {y} ∈ B̆

}
, (A9)

where {y} =
[
(α1, β2, ζ3), (α1, β3, ζ2), (α2, β3, ζ1), (α2, β1, ζ3), (α3, β1, ζ2), (α3, β2, ζ1)

]
.

The third C̆ = C̆1, C̆36 and fourth D̆ = D̆1, D̆36 families (see Figures A3 and A4), each of which
individually consists of 36 submanifolds, can be combined similarly to the previous cases. In particular:

S
(3)
Ğ =

⋃
α∈Ğ

S
(3)
α =

{
{t}| ∃ α ∈ Ğ, {t} ∈ Ğ

}
, (A10)

where Ğ = (C̆, D̆) and {t} =
(
{u}, {v}

)
, in addition:

{u} =
[
(α1, α2, β3), (β3, ζ1, ζ2), (β2, ζ1, ζ3), (β2, β3, ζ1), (β1, ζ2, ζ3), (β1, β3, ζ2), (β1, β2, ζ3),

(α3, ζ1, ζ2), (α3, β3, ζ2), (α3, β3, ζ1), (α3, β2, ζ3), (α3, β2, ζ2), (α3, β1, ζ3), (α3, β1, ζ1),

(α3, β1, ζ2), (α2, ζ1, ζ3), (α2, β3, ζ3), (α2, β3, ζ2), (α2, β2, ζ3), (α2, β2, ζ1), (α2, β1, ζ2),
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(α2, β1, ζ1), (α2, β1, β3), (α2, α3, ζ1), (α2, α3, β1), (α1, ζ2, ζ3), (α1, β3, ζ3), (α1, β3, ζ1),

(α1, β2, ζ2), (α1, β2, ζ1), (α1, β2, β3), (α1, β1, ζ3), (α1, β1, ζ2), (α1, α3, ζ2), (α1, α3, β2),

(α1, α2, ζ3)
]
,

and

{v} =
[
(α1, β1, β2), (α1, α2, β2), (α1, α2, β1), (β3, ζ2, ζ3), (β3, ζ1, ζ3), (β2, ζ2, ζ3), (β2, ζ1, ζ2),

(β2, β3, ζ3), (β2, β3, ζ2), (β1, ζ1, ζ3), (β1, ζ1, ζ2), (β1, β3, ζ3), (β1, β3, ζ1), (β1, β2, ζ2),

(β1, β2, ζ1), (α3, ζ2, ζ3), (α3, ζ1, ζ3), (α3, β2, β3), (α3, β1, β3), (α2, ζ2, ζ3), (α2, ζ1, ζ2),

(α2, β2, β3), (α2, β1, β2), (α2, α3, ζ3), (α2, α3, ζ2), (α2, α3, β3), (α2, α3, β2), (α1, ζ1, ζ3),

(α1, ζ1, ζ2), (α1, β1, β3), (α1, α3, ζ3), (α1, α3, ζ1), (α1, α3, β3), (α1, α3, β1), (α1, α2, ζ2),

(α1, α2, ζ1)
]
.

Figure A3. The left image shows a typical 3D submanifold of the C̆ family that has a topology. The right
figure shows the projection of this submanifold on the plane (α1, β1). Recall that the projections of the
submanifold on the plane (β1, β2) and (α1, β2) do not contain topologies.

 

Figure A4. The left image shows a typical 3D submanifold of the D̆ family that has a topology. The right
figure shows the projection of this submanifold on the plane (α1, α2). Recall that the projections of the
submanifold on the plane (α2, β3) and (α1, β3) do not contain topologies.
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Finally, we can combine all the manifolds and find the 3D manifold that is immersed in the
configuration space 9D:

S(3) =
⋃

α∈(Ă,B̆,C̆,D̆)
S

(3)
α =

{
{l}| ∃ α ∈ (Ă, B̆, C̆, D̆), {l} ∈ (Ă, B̆, C̆, D̆)

}
, (A11)

where {l} =
(
{x}, {y}, {u}, {v}

)
.

Appendix C

Since the existence of inverse coordinate transformations is very important for the proof of the
proposition, we now consider the system of algebraic Equation (34).

Let us make the following notations:

ᾱµ = x1
, µ, β̄µ = x2

, µ, ζ̄µ = x3
, µ, ūµ = x4

, µ, v̄µ = x5
, µ, w̄µ = x6

, µ. (A12)

In addition, we require the following conditions to be fulfilled:

ᾱ4 = ᾱ5 = ᾱ6 = 0, β̄4 = β̄5 = β̄6 = 0, ζ̄4 = ζ̄5 = ζ̄6 = 0,

ū1 = ū2 = ū3 = 0, v̄1 = v̄2 = v̄3 = 0, w̄1 = w̄2 = w̄3 = 0. (A13)

Now, performing similar arguments and calculations, as in the case of direct coordinate
transformations, from (34) it is easy to get the following two systems of algebraic equations:

ᾱ2
1 + β̄2

1 + ζ̄2
1 =

1
g({x̄}) , ᾱ1ᾱ2 + β̄1 β̄2 + ζ̄1ζ̄2 = 0,

ᾱ2
2 + β̄2

2 + ζ̄2
2 =

1
g({x̄}) , ᾱ1ᾱ3 + β̄1 β̄3 + ζ1ζ3 = 0,

ᾱ2
3 + β̄2

3 + ζ̄2
3 =

ζ33

g({x̄}) , ᾱ2ᾱ3 + β̄2 β̄3 + ζ̄2ζ3 = 0, (A14)

and, correspondingly:

ū2
4 + v̄2

4 + w̄2
4 = γ44g−1({x̄}), ū4ū5 + v̄4v̄5 + w̄4w̄5 = γ45g−1({x̄}),

ū2
5 + v̄2

5 + w̄2
5 = γ55g−1({x̄}), ū4ū6 + v̄4v̄6 + w̄4w̄6 = γ46g−1({x̄}),

ū2
6 + v̄2

6 + w̄2
6 = γ66g−1({x̄}), ū5ū6 + v̄5v̄6 + w̄5w̄6 = γ56g−1({x̄}), (A15)

where f−1 : g({x̄}) 7→ ğ({ρ̄}).
In particular, systems of algebraic Equations (A14) and (A15), as in the case direct coordinate

transformations (see (37) and (38)), generate two 3D manifolds S̄(3) and R̄(3), respectively.
Thus, we have proved that there are also inverse coordinate transformations.

Appendix D

As mentioned (see (42)), the vector X consists of 18 independent components. Its transposed form
looks like this:

XT =
(
α11, α12, α13, α22, α23, α33, β11, β12, β13, β22, β23, β33, ζ11, ζ12, ζ13, ζ22, ζ23, ζ33

)
.
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Taking into account the form of the vector X, we can write the explicit form of the basic matrix:

A =



d 1
1 0 0 0 0 0 d 7

1 0 0 0 0 0 d13
1 0 0 0 0 0

0 d 2
2 0 0 0 0 0 d 8

2 0 0 0 0 0 d14
2 0 0 0 0

0 0 d 3
3 0 0 0 0 0 d 9

3 0 0 0 0 0 d15
3 0 0 0

0 d 2
4 0 0 0 0 0 d 8

4 0 0 0 0 0 d14
4 0 0 0 0

0 0 0 d 4
5 0 0 0 0 0 d10

5 0 0 0 0 0 d16
5 0 0

0 0 0 0 d 5
6 0 0 0 0 0 d11

6 0 0 0 0 0 d17
6 0

0 0 d 3
7 0 0 0 0 0 d 9

7 0 0 0 0 0 d15
7 0 0 0

0 0 0 0 d 5
8 0 0 0 0 0 d11

8 0 0 0 0 0 d17
8 0

0 0 0 0 0 d 6
9 0 0 0 0 0 d12

9 0 0 0 0 0 d18
9

d 1
10 d 2

10 0 0 0 0 d 7
10 d 8

10 0 0 0 0 d13
10 0 0 0 d17

10 0
0 d 2

11 0 d 4
11 0 0 0 d 8

11 0 d10
11 0 0 0 d14

11 0 d16
11 0 0

0 0 d 3
12 0 d 5

12 0 0 0 d 9
12 0 d11

12 0 0 0 d15
12 0 d17

12 0
d 1

13 0 d 3
13 0 0 0 d 7

13 0 d 9
13 0 0 0 d13

13 0 d15
13 0 0 0

0 d 2
14 0 0 d5

14 0 0 d 8
14 0 0 d11

14 0 0 d14
14 0 0 d17

14 0
0 0 d 3

15 0 0 d 6
15 0 0 d 9

15 0 0 d12
15 0 0 d15

15 0 0 d18
15

0 d 2
16 d 3

16 0 0 0 0 d 8
16 d 9

16 0 0 0 0 d14
16 d15

16 0 0 0
0 0 0 d 4

17 d5
17 0 0 0 0 d10

17 d11
17 0 0 0 0 d16

17 d17
17 0

0 0 0 0 d 5
18 d 6

18 0 0 0 0 d11
18 d12

18 0 0 0 0 d17
18 d18

18



, (A16)

where the superscript indicates the column number, while the subscript indicates the line number.
As for the explicit form of elements d ν

µ = dµν, where µ, ν = 1, 18, then we can find they by multiplying
the basic matrix A with the vector X (see Equation (42)) and comparing with the system of Equation (41).

In particular, it is easy to verify these terms are equal:

d 1
1 = d 2

2 = d 3
3 = 2d 2

10 = 2d 4
11 = 2d 5

12 = 2d 3
13 = 2d 5

14 = 2d 6
15 = 2α1,

d 2
4 = d 4

5 = d 5
6 = 2d 1

10 = 2d 2
11 = 2d 3

12 = 2d 3
16 = 2d 5

17 = 2d 6
18 = 2α2,

d 3
7 = d 5

8 = d 6
9 = 2d 1

13 = 2d 2
14 = 2d 3

15 = 2d 2
16 = 2d 4

17 = 2d 5
18 = 2α3,

d 1
7 = d 2

8 = d 3
9 = 2d 8

10 = 2d10
11 = 2d11

12 = 2d 9
13 = 2d11

14 = 2d12
15 = 2β1,

d 8
4 = d10

5 = d 6
11 = 2d 7

10 = 2d 8
11 = 2d 9

12 = 2d 9
16 = 2d11

17 = 2d12
18 = 2β2,

d 9
7 = d11

6 = d 6
12 = 2d 7

13 = 2d 8
14 = 2d 9

15 = 2d 8
16 = 2d10

17 = 2d11
18 = 2β3,

d 1
13 = d 2

14 = d 3
15 = 2d17

10 = 2d16
11 = 2d17

12 = 2d15
13 = 2d17

14 = 2d18
15 = 2γ33ζ1,

d14
4 = d16

5 = d 6
17 = 2d13

10 = 2d14
11 = 2d15

12 = 2d13
13 = 2d14

14 = 2d15
15 = 2γ33ζ2,

d15
7 = d17

8 = d 9
18 = 2d14

16 = 2d16
17 = 2d17

18 = 2d15
16 = 2d17

17 = 2d18
18 = 2γ33ζ3. (A17)

As is known, the algebraic system (41) or (42) does not have a solution in the case when the
determinant of the matrix is zero det(A) = det(dµν) = 0. A class consisting of sets of coefficients {σ}
for which the determinant is zero can be countable and the measure, respectively, will be equal to
zero W = �.

Appendix E

Let us consider third-order matrices ∆i({x̄}) (i = 1, 3 ), that are included in the solutions of the
system of algebraic Equation (44):

∆1 =

∣∣∣∣∣∣∣
δ 2ξ1ξ2 2ξ1ξ3

δ K2 2ξ2ξ3

δ 2ξ2ξ3 K3

∣∣∣∣∣∣∣ , ∆2 =

∣∣∣∣∣∣∣
K1 δ 2ξ1ξ3

2ξ1ξ2 δ 2ξ2ξ3

2ξ1ξ3 δ K3

∣∣∣∣∣∣∣ , ∆3 =

∣∣∣∣∣∣∣
K1 2ξ1ξ2 δ

2ξ1ξ2 K2 δ

2ξ1ξ3 2ξ2ξ3 δ

∣∣∣∣∣∣∣ . (A18)
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By calculating these determinants we get:

∆1({x̄}) = δ ·
{

K2K3 − 2ξ1[ξ2K3 + ξ3K2] + 4ξ2ξ3[ξ1(ξ2 + ξ3)− ξ2ξ3]
}

,

∆2({x̄}) = δ ·
{

K1K3 − 2ξ2[ξ1K3 + ξ3K1] + 4ξ1ξ3[ξ2(ξ1 + ξ3)− ξ1ξ3]
}

,

∆3({x̄}) = δ ·
{

K1K2 − 2ξ3[ξ2K1 + ξ1K2] + 4ξ1ξ2[ξ3(ξ1 + ξ2)− ξ1ξ2]
}

. (A19)

The main determinant ∆({x̄}) (see (46)) is easy to to calculate:

∆({x̄}) = K1K2K3 − 4
[
(ξ2ξ3)2K1 + (ξ1ξ3)2K2 + (ξ1ξ2)2K3

]
+16(ξ1ξ2ξ3)2. (A20)

In a coupled system, given the conditions ẍi = 0 (i = 1, 3 ), bodies can have different constant
velocities ξ i = consti (i = 1, 3) depending on their mass. To simplify the determinant ∆({x̄}), it is
useful to introduce two new parameters; α = (const2)

2 = (ξ2/ξ1)2 and β = (const3)
2 = (ξ3/ξ1)2,

and also notation (ξ1)2 = (const1)
2 = y > 0. In addition, we assume that; (ξ1)2 ≥ [(ξ2)2, (ξ3)2], from

which follows that parameters α, β ∈ [0, 1].
Using these notations, we can represent the expression (A20) in the form of a

third-order polynomial:

∆({x̄}) = Ay3 + By2 + Cy−Λ6, (A21)

where

A =
{

12α2β2 + (1− α2 − β2)(1 + α2 − β2)(1− α2 + β2) + 4(α2 + β2)(1 + α2β2) + 4(α2 − β2)2},

B =
{

1 + 2(α2 + β2) + (α2 + β2)2}Λ2, C = −(1 + α2 + β2)Λ4.

Now to eliminate uncertainties like 0/0 in expressions (45), we need to find the conditions, that is,
the parameters α and β, for which ∆({x̄}) ∼ δ, and later δ→ 0.

Let us consider the cubic equation:
∆({x̄}) = 0. (A22)

To find the roots of the cubic Equation (A22), it is convenient to use the Vieta trigonometric
formula. Recall that the determinant of the Equation (A22) has the following form:

D = Q3 −R2,

where Q =
(
[B/A]3 − 3[C/A]

)
/9 andR =

(
2[B/A]2 − 9[BC/A2]− 27Λ6/A

)
/54.

According to the analysis, depending on the values of the parameters α and β, three cases are
possible for determinant D.

Case 1: When D > 0, there are three real solutions:

y1 = −2
√
Q cos(φ)−B/(3A),

y2 = −2
√
Q cos(φ + 2π/3)−B/(3A),

y3 = −2
√
Q cos(φ− 2π/3)−B/(3A), φ =

[
arccos(R/Q3/2)

]
/3. (A23)

Case 2: When D < 0, depending on the sign of the parameterQ, there are three possible solutions.

• Q > 0, there is one real solution:

y = −2sgn(R)|Q|1/2 cosh(φ)−B/(3A), φ =
[
Arch

(
|R|/|Q|3/2)]/3. (A24)



Particles 2020, 3 612

• Q < 0, in this case, the real solution is:

y = −2sgn(R)|Q|1/2 sinh(φ)−B/(3A), φ =
[
Arsh

(
|R|/|Q|3/2)]/3. (A25)

• Q = 0, in this case, the real solution, accordingly, has the form:

y =
(

Λ6/A+
[
B/3A

]3)1/3
. (A26)

Case 3: When D = 0, there are three real solutions, however, two of them coincide:

y1 = −2R1/3 −B/(3A), y2 = y3 = R1/3 −B/(3A). (A27)

Below, as an example, we will analyze case 1, i.e., when D > 0.
Taking into account the solutions (A23), the determinant ∆({x̄}) can be represented as:

∆({x̄}) = (y− y1)(y− y2)(y− y3). (A28)

Consider solutions (46) near the value:

y = y1 ± δ. (A29)

Using (A29) and (A19) and (A20) for solutions (45), we obtain the following expressions:

a1({x̄}) = ±
K2K3 − 2(y1 ± δ)2[αK3 + βK2] + 4αβ(y1 ± δ)4[α + β− αβ]

(y2 − y1 ± δ)(y3 − y1 ± δ)
,

a2({x̄}) = ±
K1K3 − 2α(y1 ± δ)2[K3 + βK1] + 4β(y1 ± δ)4[α− β + αβ]

(y2 − y1 ± δ)(y3 − y1 ± δ)
,

a3({x̄}) = ±
K1K2 − 2β(y1 ± δ)2[αK1 + K2] + 4α(y1 ± δ)4[β− α + αβ]

(y2 − y1 ± δ)(y3 − y1 ± δ)
. (A30)

Now, making the transition to the limit δ → 0 in the expressions (A30) for the coefficients (46),
we get clearly defined regular expressions. Assuming that y1({x̄}) = λ1 = const, we can generate by
this equation 2D surface in the internal space E3, on which the system of equations (44) has a solution.
Similarly, we can find solutions of the system of algebraic Equation (46) on 2D manifolds generated by
equations y2({x̄}) = λ2 = const and y3({x̄}) = λ3 = const, respectively.

To analyze the problem, of particular interest is the case when all the masses are the same. In this
case, obviously, α = β = 1, using which from the Equation (A21), taking into account (A22), it is easy
to find the following cubic equation:

27y3 + 9Λ2y2 − 3Λ4y−Λ6 = 0, (A31)

which can be written as:
(3y + Λ2)2(3y−Λ2) = 0. (A32)

From the Equation (A32) it follows that there is only one real solution:

y = Λ2({x̄})/3, or ξ1 = const1 = Λ({x̄})/
√

3. (A33)

Finally, using (45), (A19) and (A20) and (A33), we can find the coefficients of algebraic Equation
(44):

a1({x̄}) = a2({x̄}) = a3({x̄}) =
(

K− 2y
Λ2 + 3y

)2

= 1.
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Solving the second equation in (A33) for a specific value of ξ1 = const1, we can find a 2D surface
Ξ on which a restricted three-body system with holonomic connections is localized.

For other cases, also using similar reasoning, we can find surfaces on which configurations with
holonomic connections are localized.

Appendix F

The equation for the covariant derivative (50) can be written as:

DFi

Ds
= Ḟi + Yi, Yi = Γi

j l({x̄})ẋjFl , q̇ =
dq
ds

, i, j, l = 1, 3, (A34)

where Yi ∈ M(3) is a component of the 3D vector.
Using (A34), we can calculate the covariant derivative of the second order:

D2ζ i

Ds2 = ζ̈ i + Γi
j l ẋ

j ζ̇ l + Ẏi + Γi
j l ẋ

jYl = ζ̈ i + Γi
j l ẋ

j ζ̇ l +
d
ds
(
Γi

j l ẋ
jζ l) +

Γi
j lΓ

l
k p ẋj ẋkζ p = ζ̈ i + 2Γi

j l ẋ
j ζ̇ l + Γ̇i

j l ẋ
jζ l + Γi

j l ẍ
jζ l + Γi

j lΓ
l
k p ẋj ẋkζ p

= ζ̈ i + 2Γi
j l ẋ

j ζ̇ l + (Γ̇i
j l ẋ

jζ l − Γi
j lΓ

j
k p ẋk ẋpζ l + Γi

j nΓn
k p ẋj ẋkζ p), (A35)

where k, n, p = 1, 3. In addition:

Γi
j l =

1
2

gip(∂l gpj + ∂jglp − ∂pgjl
)
= −δi

l aj − δi
jal + δipδjlap, ak = −

1
2

∂xk ln g, (A36)

Γ̇i
j l =

dΓi
j l

ds
=

1
2

ġip(∂l gpj + ∂jglp − ∂pgjl
)
+

1
2

gip(∂l ġpj + ∂j ġlp − ∂p ġjl
)

=
1
g

( 3

∑
k=1

ak ẋk
)[(

δi
jal + δi

paj − δipδj lap
)
−
(
δi

jbl + δi
pbj − δipδjlbp

)]
=

1
g

( 3

∑
k=1

ak ẋk
)[(

δi
j(al − bl) + δi

p(aj − bj)− δipδjl(ap − bp)
]
, (A37)

where bk = −(1/2)∂xk ln
∣∣∑3

i=1 g;i ẋi
∣∣ and g; k = ∂g/∂xk.

Appendix G

Substituting (67) into the Equation (66), we get:{
1
r2

d
dr

(
r2 d

dr

)
− l(l + 1)

r2 +
2
h̄2

∞

∑̄
l=0

l̄

∑
m̄=−l̄

Ωl̄m̄(r ; E, J, ε)Ym̄
l̄ (θ, ϕ)

}
Ψ̄ = 0, (A38)

where Ωl̄m̄(r ; E, J, ε) =
[
E g

(1)
l̄m̄ (r; ε)− J(J + 1)g(2)l̄m̄ (r; ε)

]
.

To simplify the Equation (A38), we first multiply it by the complex conjugate of the spherical
function, that is Ym′∗

l′ (θ, ϕ) then using the well-known orthogonal properties of the spherical
functions [85]: ∫ 2π

0

∫ π

0
Ym

l (θ, ϕ)Ym′
l′
∗
(θ, ϕ) sin θdθdϕ = δmm′δll′ ,
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we obtain the following ordinary differential equation (ODE) for the radial component of the
wave function:{

1
r2

d
dr

(
r2 d

dr

)
− l(l + 1)

r2

}
δmm′δll′ Υ = − 2

h̄2

∞

∑̄
l=0

l̄

∑
m̄=−l̄

Wm,m′ ,m̄ ; l,l′ ,l̄ Ωl̄m̄(r; E, J)Υ, (A39)

where

Wm1,m2,m3 ; l1,l2,l3 =
∫ 2π

0

∫ π

0
Ym1

l1
(θ, ϕ)Ym2∗

l2
(θ, ϕ)Ym3

l3
(θ, ϕ) sin θdθdϕ.

For calculation the integral of the product of three spherical harmonicsWm1,m2,m3 ; l1,l2,l3 we will
use the following formula [74]:

∫ 2π

0

∫ π

0
Yl1m1(θ, ϕ)Yl2m2(θ, ϕ)Yl3m3(θ, ϕ) sin θdθdϕ =√

(2l1 + 1)(2l2 + 1)(2l3 + 1)
4π

(
l1 l2 l3
0 0 0

)(
l1 l2 l3

m1 m2 m3

)
, (A40)

where Ylm(θ, ϕ) is the real spherical function, which can be represented by a complex spherical

function Ym
l (θ, ϕ) (see [85]) and

(
l1 l2 l3

m1 m2 m3

)
denotes the Wigner 3j symbol (see [86]). Using

the transform:

Ym
l (θ, ϕ) =


1√
2

(
Yl|m| − iYl,−|m|

)
, m < 0,

Y0m, m = 0,
(−1)m
√

2

(
Yl|m| + iYl,−|m|

)
, m > 0,

we can calculate the functionWm1,m2,m3 ; l1,l2,l3 .
As follows from (A39), this equation, depending on the ratios of the quantum numbers m, m′, l

and l′, can go over into two different equations:

1. Into the algebraic equation:

∞

∑̄
l=0

l̄

∑
m̄=−l̄

Wm,m′ ,m̄ ; l,l′ ,l̄ Ωl̄m̄(r; E, J, ε) = 0, (A41)

when one of the inequalities holds; m 6= m′ or l 6= l′, or when take place of both inequalities
m 6= m′ and l 6= l′, and, accordingly,

2. Into the ODE for the radial wave function of bodies system (see (68) ), if m = m′ and l = l′.

Note that the algebraic Equation (A41) generates the discrete set of points Y at which the wave
function is not defined. However, the cardinality of the set Y with respect to the cardinality of the
set that forms the internal spaceM(3) is equal to zero. The latter means that the wave function of a
dynamical system is defined in the spaceM(3) \ Y .

Based on this, below we will calculate only those 3j symbols that will be needed to determine the
ODE for the quantum motion (see (68)).

Case 1. Assuming that m = m′ < 0 and l = l′, as well as taking into account the selection rules
for the Wigner 3j symbol, we obtain:

Wm,m,m̄; l, l, l̄ = (−1)m̄ 2l + 1
4

√
2l̄ + 1

π

(
l l l̄
0 0 0

)(
l l l̄
−|m| −|m| |m̄|

)
, m̄ > 0,

Wm,m,m̄; l, l, l̄ =
2l + 1

4

√
2l̄ + 1

π

(
l l l̄
0 0 0

)(
l l l̄
−|m| −|m| |m̄|

)
, m̄ < 0. (A42)
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It is easy to see that the second 3j symbol in (A42) is not equal to zero only if the equality m̄ = 2m
holds. Recall that it follows directly from selection rules. From this condition, in particular, it follows
that the first and second expressions in (A42) are equal.

Case 2. When m = m′ > 0 and l = l′, the Wigner 3j symbol is calculated in the same way and
gives the result similarly (A42).
Case 3. When m̄ = 0, in addition, m = m′ and l = l′. For this case we obtain:

W0,0,0; l,l,l̄ =
2l + 1

2

√
2l̄ + 1

π

(
l l l̄
0 0 0

)2

. (A43)

To calculate the 3j symbol, we turn to the well-known general representation [73]:(
l1 l2 l3

m1 m2 m3

)
=

[
(l1 + l2 − l3)!(l1 − l2 + l3)!(−l1 + l2 + l3)!

(l1 + l2 + l3 + 1)!

]1/2

×[
(l1 + m1)!(l1 −m1)!(l2 + m2)!(l2 −m2)!(l3 + m3)!(l3 −m3)!

]1/2 ×

∑
ν

{(
−1
)ν+l1−l2−m1

[
ν!(l1 + l2 − l3 − ν)!(l1 −m1 − ν)! ×

(l2 + m2 − ν)!(l3 − l1 −m2 + ν)!(l3 − l2 + m1 + ν)!
]−1
}

, (A44)

where summation over ν is carried out over all integers.
Using (A44) and the selection rules for the Wigner 3j symbol, we can calculate the following

specific 3j symbols:(
l l l̄
−|m| −|m| |m̄|

)
=

[
(2l − l̄ )!(l̄ + |m̄|)!(l̄ − |m̄|)!

(2l + l̄ + 1)!

]1/2

l̄! (l + |m|)! (l − |m|)!×

∑
ν

(
−1
)ν+|m|

ν!(2l − l̄ − ν)!(l + |m| − ν)!(l − |m| − ν)!(l̄ − l + |m|+ ν)!(l̄ − l − |m|+ ν)!
, (A45)

and correspondingly:(
l l l̄
0 0 0

)
=

[
(2l − l̄ )!

(2l + l̄ + 1)!

]1/2(
l̄!l!
)2 ∑

ν

(
−1
)ν

ν!(2l − l̄ − ν)!
[
(l − ν)!(l̄ − l + ν)!

]2 . (A46)

Based on the above analysis and selection rules for 3j symbols, the quantum Equation (A39) can
be written as: {

1
r2

d
dr

(
r2 d

dr

)
− l(l + 1)

r2

}
Υ = −2l + 1

h̄2

2l

∑
l̄= 0

l̄

∑
m̄= 0

√
2l̄ + 1

π
×

(
l l l̄
0 0 0

)(
l l l̄
−|m| −|m| |m̄|

)
Ωl̄m̄(r; E, J)Υ. (A47)

Note that the upper limit of summation over l̄ is the value 2l. Recall that this fact is related to the
selection rules, according to which the symbol 3j is not equal to zero, in particular, if |l− l′| ≤ l̄ ≤ l + l′.
Since in the case under consideration l = l′, therefore, 0 ≤ l̄ ≤ 2l.



Particles 2020, 3 616

Appendix H

If we assume that ζ = cos ϕ, then the second-order derivative d2Θj
K/(dϕ)2 will have the

following form:

d2Θj
K

dϕ2 = −ζ
dΘj

K
dζ

+
(
1− ζ2)d2Θj

K
dζ2 = ζ

dΘj
K

dζ
−
[

j(j + 1)− K2

1− ζ2

]
Θj

K. (A48)

Using (A48), we can calculate the following integral, which will play an important role in
further calculations:

QjKK′ =
∫ 1

−1
Θj

K′
d2Θj

K
dϕ2 dζ =

∫ 1

−1
ζΘj

K′
dΘj

K
dζ

dζ −
∫ 1

−1

[
j(j + 1)− K2

1− ζ2

]
Θj

K′Θ
j
K dζ. (A49)

Multiplying the Equation (74) by the associated Legendre function Θj
K′
(
ζ
)

and integrating it over
the variable ζ in the range [1,−1] we get:{

δKK′

[
1
$

∂

∂$

(
$

∂

∂$

)
+

∂2

∂z2

]
+

QjKK′

$2 +
2µ0

h̄2 Ω̃jKK′
(
$, z
)}

Υ̃ = 0, (A50)

where

QjKK′ =
∞

∑
m=0

I j
mKK′ , I j

mKK′ =
∫ 1

−1
Θj

K
(
ζ
)
Θj

K′
(
ζ
)
Θ0

m
(
ζ
)
dζ,

Ω̃jKK′
(
$, z
)
=
[
Eg̃ (1)

m − J(J + 1)g̃ (2)
m
]
. (A51)

To calculate the term I(j, K; j, K′; 0, m) ≡ I j
mKK′ , we can use the following general formula [87,88]:

I(m1, j1; m2, j2; m3, j3) =∫ +1

−1
Θm1

j1
(x)Θm2

j2
(x)Θm3

j3
(x)dx =

√
(j2 + m2)!(j1 + m1)!
(j2 −m2)!(j1 −m1)!

∑
n

[
(−1)m1+m2(2n + 1)×

(
j1 j2 n
0 0 0

)(
j1 j2 n

m1 m2 −m1 −m2

)√
(n−m1 −m2)!
(n + m1 + m2)!

∫ +1

−1
Θm3

j3
(x)Θm1+m2

n (x)dx
]

, (A52)

where it is assumed that; j1 + m1 + j2 + m2 + j3 + j3, is even in addition, also are even |j1 − j2| ≤
n ≤ j1 + j2, j1 + j2 + n and n + m1 + m2 + m3 + j3. As for the integral from two associated Legendre
polynomials, it is calculated exactly for an arbitrary case:

∫ +1

−1
Θm1

j1
(x)Θm2

j2
(x)dx =

(−1)m22−2|m2−m1|−1π

Γ(1/2 + |m2 −m1|/2)Γ(3/2 + |m2 −m1|/2)
×

√
(j1 + m1)!(m2 + j2)!
(j1 −m1)!(m2 − j2)!

∑
k

G{•}
(
1 + (−1)k+|m2−m1|

)√ (k + |m2 −m1|)!
(k− |m2 −m1|)!

×

Γ(1/2)Γ(k/2)Γ(|m2 −m1|+ 1)Γ(−[k + 1]/2)
Γ([|m2 −m1|+ 1− k]/2)Γ(|m2 −m1|/2)Γ([|m2 −m1|+ k]/2 + 1)Γ(−[|m2 −m1| − 1]/2)

,

where again |j2− j1| ≤ k ≤ j2 + j1 and k+ j1 + j2 are even. Additionally one requires that the integrand
is even, i.e. j1 + m1 + j2 + m2 = even. As for the function G{•}, then it is defined by the help of 3j
symbols as:

G{•} = (−1)−m1+m2(2k + 1)
(

j1 j2 j3
0 0 0

)(
j1 j2 k
−m1 m2 m1 −m2

)
.
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From the Equation (A50) in the case K 6= K′ we obtain the following algebraic equation:

QjKK′

$2 +
2µ0

h̄2 Ω̃jKK′
(
$, z
)
= 0. (A53)

The set of points Z that generates the Equation (A53) with respect to the set of points forming the
internal spaceM(3) has power zero. Recall that the wave function is not uniquely determined on the
set of points Z , i.e., it can be defined in the spaceM(3) \ Z .

We now turn to the question of obtaining an equation whose solution in the limit z → +∞
goes over to the S-matrix elements. For this, we substitute the full wave function of the three-body
system (85) into the Schrödinger Equation (71):

∑
n̄j̄

{
1
$

∂

∂$

(
$

∂

∂$

)
+

∂2

∂z2 +
1
$2

∂2

∂ϕ2 +
2µ0

h̄2 Ω̃
(
{$̄}

)}
Ξ+(J)
[K] [K̄](z)Πn̄( j̄K̄)($; z)Θ j̄

K̄(ζ) = 0, (A54)

where Ξ+(J)
[K] [K̄](z) and Πn̄( j̄K̄)($; z) functions that still need to be defined.

Multiplying the Equation (A54) by the associated Legendre function Θj
K′
(
ζ
)

and integrating it
over the variable ζ in the range [1,−1], taking into account the condition of orthogonality of these
functions, we obtain:

∑
n̄j̄

{
δj ′ j̄ δK′K̄

[
1
$

∂

∂$

(
$

∂

∂$

)
+

∂2

∂z2

]
+

Qj ′ j̄K′K̄

$2 +
2µ0

h̄2 Ω̃j ′ j̄K′K̄

(
$, z
)}

Ξ+(J)
[K] [K̄](z)Πn̄( j̄K̄)($; z) = 0. (A55)

Let us consider the following reference equation:{
1
$

∂

∂$

(
$

∂

∂$

)
+

Qj ′ j̄K′K̄

$2 +
2µ0

h̄2 Ω̃j ′ j̄K′K̄

(
$, z
)}

Πn̄( j̄K̄)($; z) = E (j
′
K′)

n̄( j̄K̄) (z)Πn̄( j̄K̄)($; z), (A56)

which is actually a parametric, second-order ODE.
Based on the fact that the localization of the quantum current occurs near the coordinate z by

the coordinate $, it can be assumed that the solution Πn̄( j̄K̄)($; z) is quantized. In other words, the
solutions Πn̄( j̄K̄)($; z) form an orthonormal basis in a Hilbert space, and we can write the following
condition of orthonormality: ∫ ∞

0
Πn(jK)($; z)Π∗n̄( j̄K̄)($; z)d$ = δnn̄.

Finally, multiplying the Equation (A56) by the solution Πn′(j ′K′)($; z)∗ and integrating, we obtain
the following ODE :

∑
n̄j̄

δn′ n̄

{
δj ′ j̄ δK′K̄

d2

dz2 + E n′(j
′
K′)

n̄( j̄K̄) (z)
}

Ξ+(J)
[K] [K̄](z) = 0, (A57)

where E n′(j
′
K′)

n̄( j̄K̄) (z) =
∫ ∞

0 Πn′(j ′K′)($; z)E (j
′
K′)

n̄( j̄K̄) (z)Π
∗
n̄( j̄K̄)($; z)d$.

The Equation (A57) at the n′ = n̄, j
′
= j̄ and K = K′ takes the simple form of the second-order

ODE (see Equation (86)).
In the case when at least one pair of quantum numbers does not coincide between two sets [K′]

and [K̄], from (A57) we obtain the algebraic equations:

∑̄
j
E n′(j

′
K′)

n̄ ( j̄ K̄) (z) = 0, n′ 6= n̄ or K 6= K̄. (A58)
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The algebraic Equation (A58) generates a line on which the function should be equal to zero.
Note that this is an additional condition imposed on the function E n̄ ( j̄ K̄)(z).

References and Notes

1. Poincaré, H. New Methods of Celestial Mechanics; American Institute of Physics: Woodbury, NY, USA; Springer:
Berlin, Germany; 1993; Volume 1, Chapter 1.

2. Whittaker, E.T. A Treatise on the Analytical Dynamicals of Particles and Rigid Bodies; With an Introduction to the
Problem of Three Bodies; University Press in Cambridge: Cambridgeshire, UK, 1988.

3. Chenciner, A. Poincaré and the Three-Body Problem, Poincaré, 1912–2012; Séminaire Poincaré XVI; Springer:
Berlin, Germany, 2012; pp. 45–133.

4. Valtonen, M.; Karttunen, H. The Three-Body Problem; Cambridge University Press: Cambridge, UK, 2005.
5. Lin, F.J. Symplectic reduction, geometric phase, and internal dynamicals in three-body molecular dynamicals.

Phys. Lett. A 1997, 234, 291–300. [CrossRef]
6. Lemaître, G. The Three-Body Problem, NASA CR-110. Available at NASA Technical Report Server. 1964.

Available online: http://ntrs.nasa.gov/ (accessed on 29 July 2020).
7. Bruns, E.H. Über die Integrale des Vielekörperproblems. Acta Math. 1887, 11, 25. [CrossRef]
8. Arnold, V.I.; Kozlov, V.V.; Neishtadt, A.I. Mathematical Aspects of Classical and Celestial Mechanics, 3rd ed.;

Dynamical Systems III, Encyclopaedia of Mathematical Sciences; Springer: Berlin, Germany, 2006; Volume 3.
9. Marchal, C. The Three-Body Problem; Elsevier: Amsterdam, The Netherlands, 2006.
10. Bruno, A.D. The Restricted Three-Body Problem: Plane Periodic Orbits; Walter de Gruyter: Berlin, Germany, 1994.
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