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Abstract: We present a systematic review of the basic features that were adopted for different electron
models and show, in a brief overview, that, for electromagnetic spinning solitons in nonlinear
electrodynamics minimally coupled to gravity (NED-GR), all of these features follow directly from
NED-GR dynamical equations as model-independent generic features. Regular spherically symmetric
solutions of NED-GR equations that describe electrically charged objects have obligatory de Sitter
center due to the algebraic structure of stress–energy tensors for electromagnetic fields. By the Gürses-
Gürsey formalism, which includes the Newman–Janis algorithm, they are transformed to axially
symmetric solutions that describe regular spinning objects asymptotically Kerr–Newman for a distant
observer, with the gyromagnetic ratio g = 2. Their masses are determined by the electromagnetic
density, related to the interior de Sitter vacuum and to the breaking of spacetime symmetry from the
de Sitter group. De Sitter center transforms to the de Sitter vacuum disk, which has properties of
a perfect conductor and ideal diamagnetic. The ring singularity of the Kerr–Newman geometry is
replaced with the superconducting current, which serves as the non-dissipative source for exterior
fields and source of the intrinsic magnetic momentum for any electrically charged spinning NED-
GR object. Electromagnetic spinning soliton with the electron parameters can shed some light on
appearance of a minimal length scale in the annihilation reaction e+e− → γγ(γ).

Keywords: electron; nonlinear electrodynamics; de Sitter vacuum

1. Introduction. Electron Story

“The electron is inexhaustible" [1]

In the first models of the electron, as proposed by Abraham [2] and Lorentz [3,4] soon
after its discovery by Sir Joseph John Thomson in 1897, the electron was visualized as an
extended spherical electrically charged object with the finite total field energy. The models
that were based on assumptions about the distribution of a charge density were plagued
by the problem of preventing the electron from flying apart under the Coulomb repulsion,
which required introducing cohesive forces of non-electromagnetic origin (the Poincaré
stress) testifying for impossibility to construct an electron model within electrodynamics.
Later analyzing extended electron models, Dirac noted the most attractive idea of the
Lorentz model [3] concerning the electromagnetic origin of the electron mass. At the same
time, he did not find any physical reason for assumptions concerning the character of
additional non-electromagnetic forces [5].

In quantum electrodynamics, electron is considered to be a point and the question of its
structure is not addressed. The classical models of point-like spinning particles encounter
the problem of divergent self-energy for a point charge and approach this problem in the
frame of various generalizations of the classical lagrangian (−mc

√
ẋẋ) by introducing

terms with higher derivatives or extra variables [6–15], and then restricting undesirable
effects by applying geometrical [16,17] or symmetry [18,19] constraints.

Another type of point-like models goes back to the Schrödinger suggestion [20] relating
the electron spin to its Zittebewegung motion—trembling motion due to the rapid oscillation
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of a spinning particle about its classical worldline. The approach based on the concept of
Zitterbewegung was motivated by attempts to understand the intrinsic nature of the electron
spin and it involved studying the fundamental questions of quantum mechanics [21–25]. In
models developed in the frame of this approach, the electron was associated with the
mean motion of a point-like constituent, whose trajectory is a cylindrical helix [26,27].
The effects of spacetime curvature on Zitterbewegung of spin-1/2 particles have been
studied in the paper [28], applying the approach introduced for Zitterbewegung in the
local rest frame [29]. It was shown that coupling of Zitterbewegung frequency terms to
the Ricci curvature tensor would lead to the appearance of non-trivial contributions to
the relative position and momentum operators, which suggested a formal violation of the
weak equivalence principle [28].

The concept of a fundamental rotator as a dynamical system described by position, a
single null direction, and two additional parameters, mass and length, has been developed
in [30] in the frame of the hamiltonian dynamics represented in such a way that the Casimir
invariants are not constants of motion, but model parameters [30]. In [31], the fundamental
rotator was considered as the relativistic model for a point-like relativistic spinning particle,
including its interaction with an external electromagnetic field [31].

The development of point models of spinning particles gradually involved the ap-
pearance of tools that are needed for a description of an extended particle and revealed
some of its typical features. In order to overcome difficulties with point charges, Dirac
developed nonlinear electrodynamics, which allows for describing electric currents starting
from a theory without charges, exploiting possibilities of a vector potential A as extra
variables entering the electromagnetic theory due to its gauge invariance. He imposed a
nonlinear gauge in which the potential 1-form A is time-like (A2 = k2 =positive constant),
so that A can be regarded as proportional to a velocity field, and identified it with a current,
obtaining the motion of a continuous stream of electricity rather than the motion of point
charges [32]. In 1962, Dirac proposed the model of the electron as a charged conducting
surface endowed with a non-Maxwellian surface tension; outside the surface, the Maxwell
equations hold, while, inside it, there is no field; thus, the electron was pictured as a bubble
in the electromagnetic field [33]. In 1982, Righi and Venturi have shown that the field
equations of the Dirac nonlinear electrodynamics admit an extended-type, spherically
symmetric, static solution that can be considered to be a charged particle [34].

Later on it appeared, in the frame implying a point-like image of a particle, that there
exists an alternative approach to the investigation of the structure of charged particles [35],
based on generalization of the Dirac nonlinear electrodynamics [32]. In the generalized
Maxwell equations of a new formulation of the Dirac nonlinear electrodynamics, the first
vector potential A is orthogonal to the second pseudo-vector potential B. A solution of
the field equations is constituted by the electric field of a conducting sphere and by the
magnetic field of a magnetized sphere, while the angular momentum that is stored in the
total electromagnetic field is equal to h̄/2. The field equations admit a soliton-like solution
that can represent a charged particle, endowed with a Coulomb field and the field of a
magnetic dipole. The soliton mass is finite, and the angular momentum that is produced by
its electromagnetic field can be identified—for the suitable choice of the parameters—with
the spin of the charged particle. This approach gives the model of a charged spinning particle
as a sphere with the radius re introduced for the dimensional reason, while the magnetic
momentum µe (as well as the related electric charge e) comes as a constant of integration [35];

they are given by re = e2

2mc2

[
1 + 3

4

(
h̄c
e2

)2
]

and µe = 3
8

eh̄
mc

[
1 + 3

4

(
h̄c
e2

)2
]

. The magnetic

momentum vanishes when h̄ → 0, in such a case re is equal to the classical radius of the
electron without spin. For the particle with the spin (h̄ 6= 0), the radius re takes a high value
of the order of the Bohr radius. The interesting feature is the complete accessibility of a
sphere re interior to any other particle (except for possible electromagnetic repulsions) [35].

In the course of independent development, Boyer presented the extended models
for rotating fluid masses in the frame of general relativity [36,37]. In the paper [36], the
general question has been addressed whether a perfect-fluid interior can be matched to a
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given exterior field. For an isolated, axially symmetric, uniformly rotating perfect-fluid
mass in a steady state, Boyer has given conditions for the class of all possible boundaries,
which an interior surface would have to satisfy for a given exterior field. In the paper [37],
the properties of a stationary, isolated, axially symmetric, rotating body were specialized to
the case of constant specific entropy and constant angular velocity as well as for the case of
differential rotation. Cohen [38] and by Trümper [39] have presented similar models.

A new road for searches on the electron structure has been opened in 1965 by the
discovery of the Kerr–Newman solution to the Einstein–Maxwell equations [40]

ds2 = −dt2 +
Σ
∆

dr2 + Σdθ2 +
(2mr− e2)

Σ
(dt− a sin2 θdφ)2

+ (r2 + a2) sin2 θdφ2; Ai = −
er
Σ
[1; 0, 0,−a sin2 θ] (1)

where Ai is associated electromagnetic potential, and

Σ = r2 + a2 cos2 θ; ∆ = r2 − 2mr + a2 + e2, (2)

which inspired the search for an electromagnetic image of the electron since Carter found
that the parameter a directly related to the angular momentum J = ma couples with the
charge giving an asymptotic magnetic momentum µ = ea, so that the gyromagnetic ratio
e/m, as measured by a distant observer, is the same as required for a spinning particle
by the Dirac equation [41]. For the solution parameters corresponding to the electron, in
the units h̄ = c = G = 1, the mass, angular momentum, and squared charge are given by
m ≈ 10−22; ma = 1/2; e2 ≈ 1/137, from which one obtains a = 1/2m ≈ 1022; e ≈ 1/12,
so that the length scale that is determined by a is the Compton radius of the electron [41].

The Kerr–Newman solution belongs to the Kerr family of solutions that can represent
the exterior fields of rotating charged or uncharged (e = 0 in (1)) bodies. The Kerr–
Newman solution is the source-free solution; the only contribution to the stress–energy
tensor comes from a source-free electromagnetic field. The question of existence of a
physically reasonable interior material source for the exterior fields is the most intriguing
question for the Kerr–Newman geometry owing to the Carter result suggesting the classical
image of the spinning electron visualized as a massive charged source of the Kerr–Newman
fields [41,42].

The Kerr–Newman solution (1) was obtained from the Reissner–Nordström metric by
the algebraic trick that was discovered by Newman and Janis [43] for “derivation” of the
Kerr solution from the Schwarzschild solution. The Newman–Janis algorithm [43] consists
of the coordinate mapping (r, t)→ (r, u) where u = t−

∫ dr
g(r) and the complex coordinate

transformation r → r + ia cos θ; u → u− ia cos θ introducing the additional parameter a.
Quotation marks in “derivation” are original, accompanied by the remark “There is no clear
reason for this operation to yield a new solution”, but the new solution has been obtained [43].

The reason was found by Gürses and Gürsey in 1975 [44]. The point is that both
Schwarzschild and Reissner–Nordström metrics have the form

ds2 = g(r)dt2 − dr2

g(r)
− r2dΩ2. (3)

Metrics (3) belong to the Kerr–Schild class [45], which is the special class of algebraically
degenerated solutions to the Einstein equations, which, in this algebraically special case, take
the linear form, ∂µTµ

ν = 0, and pseudotensor of gravitational energy vanishes, tµν = 0 [44,45].
The axially symmetric metrics of the Kerr–Schild class can be presented as [45]

gµν = ηµν +
2 f (r)

Σ
kµkν (4)
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where ηµν is the Minkowski metric and the function f (r) in (4) comes from a spherical
solution under transformation. For the Kerr–Newman geometry

f (r) = mr− e2/2. (5)

A null vector field kµ in (4) is tangent to a principal null congruence existing in metrics
of the Kerr family, since they belong to the type D in the Petrov–Pirani classification. Two
double principal null geodesic congruences (analogous to the null radial geodesics of the
spherical geometry) are given by

dt
dτ

=
r2 + a2

∆
E;

dr
dτ

= ±E;
dθ

dτ
= 0;

dφ

dτ
=

a
∆

E (6)

and are used, with choosing the constant E = 1, for constructing a null basis for the Newman–
Penrose formalism adopted in the type-D space-times ([46] for a systematic description).

The coordinate r is geometrically defined as an affine parameter along either of two
principal null congruences, and the surfaces of constant r are the confocal ellipsoids that are
given by

r4 − (x2 + y2 + z2 − a2)r2 − a2z2 = 0 (7)

which degenerate, for r = 0, to the equatorial disk

x2 + a2 ≤ a2, z = 0 (8)

centered on the symmetry axis and bounded by the ring

x2 + y2 = a2, z = 0 (9)

which comprises the ring singularity of the Kerr–Newman geometry [46].
The Cartesian coordinates x, y, z are related with the Boyer–Lindquist coordinates

r, θ, φ by x + iy = (r + ia)eiφ sin θ; z = r cos θ; x2 + y2 = (r2 + a2) sin2 θ.
Newman and Janis found, using the gravitational multipoles analysis [47], that the

Kerr metric is compatible with the structure of a rotating ring of mass [43]. The Kerr–
Newman solution (1) was interpreted by the authors as representing the gravitational
and electromagnetic fields generated by a ring of mass and charge rotating about its
axis of symmetry, but a difficulty in this interpretation was notified as conditioned by a
multivalued behavior of the metric when a closed loop threads the singular ring [40].

The point clarified by Israel [42] is that r tends to zero through positive values when
approaching the disk (8) from above either below, while grad r (directed outward from
the disk) does not vanish. This admits two ways of representation of the Kerr–Newman
manifold corresponding to two options of the metric behavior around the disk [42]: (1) the
manifold is defined in such a way that r ≥ 0 everywhere, but there is discontinuity in the
normal derivative of the metric across the disk. (2) The metric is smooth everywhere except
the singular ring, but an observer crossing the disk (8) from a region with r > 0 emerges
in a region with r < 0. The two sheets, r > 0 and r < 0, are to be joined on the disk r = 0
(for details [46]) which serves as a branch cut, while the singular ring (9) is a branch line of
space on two sheets.

The main disaster of the Kerr–Newman geometry is the nontrivial causality violation,
just in the case of a particle, when a2 + e2 > m2. In this case, there are no Killing horizons,
the manifold is geodesically complete, except for geodesics that reach the singularity at
Σ = 0, and the whole space is a single vicious set, i.e. such a set in which any point can be
connected to any other point by both a future and past directed timelike curve [41]. The
condition of the causality violation [41]

gφφ = r2 + a2 + Σ−1(2mr− e2)a2 sin 2θ < 0 (10)
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is satisfied for small values of r in the vicinity of the disk. In this region, the vector ∂/∂φ is
timelike, so that the circles t = const, r = const, θ = const, are themselves closed timelike
lines. Closed timelike curves are not restricted to the region where the condition (10)
is satisfied, but it can extend over the whole space and cannot be removed by taking a
covering space [41].

Two lines of research conditioned by two ways of presenting a manifold were to
remove or cover the pathological region of the Kerr–Newman geometry, either to adopt it
for a construction of a source, including its physical interpretation. The second approach
resulted in the string-like models [48–52]. Attempts to introduce a source by truncation
the negative-r sheet along the disk (8) break the analyticity and lead to appearance of a
singular distribution of a source material on the disk [42]. The choice of truncation is not
unique, and various singular models [42,53,54] display this fact.

Assuming a source of the Kerr–Newman metric as a layer of mass and charge dis-
tributed over the equatorial disk spanning the ring singularity and applying the well
developed theory of surface layers, Israel found that the charged disk must be composed
of material having negative proper surface density σ, prevented from flying off by a radial
tension |σ| (negative pressure), and rotating with the superluminal velocity. The disk
material has negative mass, both mass and angular momentum of the disk diverge to −∞
as the intrinsic radial coordinate on the disk tends to |a|, the singular ring carries infinite
positive charge, and it must carry infinite positive mass and angular momentum in order
to yield the finite net values m and ma. As a result, the gyromagnetic ratio is e/m for every
annulus of the disk. This allows for accounting for some spin properties of the electron
on a purely classical basis by visualizing it as a charged disk with the angular momentum
ma = h̄/2 and diameter 2a = h̄/m equal to the Compton wavelength. Because of negative
mass of the disk material, electrostatic repulsive forces that are normal to the plane of the
disk would provide stability of the disk structure for |e| > m [42].

The Israel approach was essentially different from the existing models, in that the
results came from precise analysis of the precise equations, so that information that came
from equations reflected typical features of the Kerr–Newman geometry, stated actually
of its bad adaptability to the deep interior of an object, but revealed its basic feature—the
appearance of a negative pressure as a source of the gravitational repulsion [42].

The repulsive character of the gravitational field close to the disk has been first revealed
in the analysis of geodesics: for a particle falling down the axis, the gravitational force
becomes repulsive when r < |a| [55,56].

Hamity demonstrated the appearance of a negative pressure for the Kerr geometry
in the disk-like model of a neutral spinning particle that is responsible for the Kerr field
and visualized as a thin rigidly rotating disk with a regular interior and a singular rim.
The interior of the disk represents a material with the positive isotropic stress (negative
pressure), which is minimal at the center of the disk and tends to infinity at its rim [57].

Tiomno has used the fact that the electromagnetic field in the Kerr–Newman solution
is independent of the gravitational constant, and found two solutions of the Maxwell
equations in the flat space for the field of a rotating charged oblate ellipsoid of infinite
conductivity and either (a) magnetic susceptibility of vacuum or (b) infinite magnetic
susceptibility. It has been shown that, for small ω = a/(R2 + a2) (where R is the semi-
minor radius of the ellipsoid), the conductive surface current (case (a)) or the volume
magnetization (case (b)) contributes to the total magnetic moment with the needed value
of the gyromagnetic ratio [58].

In the Lopez extended model [59], a rigidly rotating charged shell of zero thickness
endowed with the surface tension is defined by r2

s = e2/2m. At this value of r, all of the
gravitational potentials vanish, which allows the KN metric to be matched to the interior
flat space-time metric replacing the unphysical region of the Kerr–Newman geometry
responsible for the breakdown of causality. The electron is visualized as a bubble of a
flat space-time immersed in the Kerr–Newman geometry. Outside the bubble, the metric
coefficient gφφ never changes its sign and, hence, there are no closed time-like curves.
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The shell of the bubble is the surface of an oblate ellipsoid with a minor axis equal to the
classical electron radius and a focal distance of the order of the Compton wavelength λe.
The magnetic moment is obtained as µ = ea and the angular momentum as J = −ma, so
that the gyromagnetic ratio µ/|J| = e/m takes the proper value. The oblateness of the
bubble produces an electric quadrupole moment that is proportional to λ2

e [59].
The question of the role of the repulsive gravity in the electron models has been

analyzed by Grøn [60], who compared the Lopez model [59] with the earlier Cohen &
Cohen model [61], in which the de Sitter equation of state p = −ρ is explicitly introduced
for an isotropic vacuum fluid interior matched to the KN metric on a spherical shell. The
charged shell confines the interior with the repulsive gravity due to p = −ρ, while, in the
Lopez model, a bubble interior is flat, but the stress–energy tensor on the shell contains a
“gas” with the imposed negative pressure and repulsive gravitation [59].

The question of the origin of mass for a charged particle has been studied by
Tiwari et al [62] using the properties of the metric (3) that were applied for a charged perfect-
fluid interior. It was shown, by analysis of the relation between the metric coefficients, that the
mass-energy density and the pressure of the interior are of electromagnetic origin. A presented
particular solution that smoothly matches this interior to the Reissner–Nordström exterior
represents a spherically symmetric charged particle whose mass is entirely of electromagnetic
origin [62].

For the Kerr geometry, Burinskii constructed the supersymmetric superconducting
bag model as a core of the Kerr spinning particle [63] on the basis of an ealier model
combining the Kerr spinning particle and superparticle, which describes a neutral rotating
black hole [64]. In this model, the Kerr geometry is presented in a complex form, as created
by a complex source. A natural supergeneralization of the model results in a complex
“supersource” developed by a supershift to the Kerr and Kerr–Sen solutions to metrics of
supergravity black holes with a nonlinear realization of the broken supersymmetry [64].

The models for regular interior sources of the Kerr–Newman solution were constructed
in [65] on the basis of a smooth deformation of space in the neighborhood of the disk (8),
keeping the Kerr–Schild form of the metric. Deformed metric induces a stress–energy
tensor in the right hand side of the Einstein equations which corresponds to appearance of
a source of the Kerr–Newman geometry in the form of an oblate ellipsoid of revolution
with a smooth matter distribution. The singular ring is regularized by introducing an
anisotropic matter rotating in the equatorial plane, so that the negative-r sheet is absent.
The sources have the form of bags, which can have de Sitter or anti de Sitter interiors and
a domain wall boundary at the transition layer rs at which the Kerr–Newman function
f (r) = mr− e2/2 is matched to the de Sitter function f (r) = r4/r2

0 [65].
Burinskii applied a later similar approach in the lepton bag model [66,67], in the

supersymmetric domain-wall bubble model [68], and in the supersymmetric bag model for
the unification of gravity with spinning particles ([69] and references therein), in which the
external Kerr–Newman solution is matched to the free of gravity (flat) superconducting
interior by the domain wall boundary interpolating between them.

The models that are based on the dominating role of the electron spin have been put
forward by Pope and Hofer [70] and by Burinskii ([71] and the references therein).

Among the models with an imposed regular (Anti) de Sitter core matched directly to
the external Kerr–Newman metric ([63,65] and references therein), there is the model that
involves nonlinear electrodynamics [72]. This model represents the solution of a hybrid
type, in which the electrically charged KN space-time is matched to the magnetically
charged internal core. The model [72] is obtained by modification of the Ayön–Beato–
Garcia black hole solution [73]. Magnetic interior is matched to an electric exterior at
the surface r = rs, where the electric susceptibility diverges, so that this surface looks
like the ideal conducting surface. The magnetic charges are confined inside the surface
r = rs. For the external observer, this solution only exhibits electric charge. The internal
magnetic core expels electric charges by construction, so one can speculate that it possesses
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superconducting properties, whereas the exterior region that is open to distant observers
displays the dual superconductivity, expelling the magnetic charges [72].

The problem of fitting the Kerr–Newman exterior to a rotating material source does not
have a unique solution, because of the arbitrariness in the choice of the boundary between
the exterior and interior [42], as well as of a freedom in choosing an interior model.

To avoid this uneasy choice and yet learn something about a possible reasonable
model of the electron structure, it seems natural to appeal to equations, to ask— What
do equations know?In the case of structure related by electromagnetic interaction as well
as by gravitational interaction (acting in any structure), the appropriate equations come
from nonlinear electrodynamics minimally coupled to gravity (minimal coupling does
not require introducing additional assumptions) and give certain model-independent
information about generic properties of spinning electromagnetic solitons, as described by
regular, causally safe solutions, asymptotically Kerr–Newman, and characterized by the
gyromagnetic ratio g = 2 for a distant observer.

In Section 2.2, we present basic equations of nonlinear electrodynamics minimally
coupled to gravity (NED-GR) and outline the basic features and internal structure of
electromagnetic spinning solitons that are predicted by analysis of NED-GR dynamical
equations for an arbitrary gauge-invariant electromagnetic lagrangian. In Section 3, we
summarize and discuss the results.

2. Electromagnetic Spinning Soliton of NED-GR

Nonlinear electrodynamics has been proposed by Born and Infeld in 1934 on the basis
of two principles: to consider electromagnetic field and particles within one physical frame,
and to avoid infinite values for physical quantities characterizing particles [74]. In the
electron model, the finite value of the electromagnetic energy was ensured by imposing
an upper limit on the electric field related to the electron size, but geometry remains
singular without physical restrictions on gravity in the center of an object. Later, it has
been found that NED theories appear as low-energy effective limits in certain models of
string/M-theories [75–77].

Two aims of the Born–Infeld program can be achieved in the nonlinear electrodynamics
minimally coupled to gravity, which admits regular solutions describing compact finite-
energy objects related by electromagnetic and gravitational interactions. A NED-GR
electromagnetic spinning soliton is made of a nonlinear electromagnetic field and defined
in the spirit of Coleman lump [78] as non-singular non-dissipative object localized in the
confined region and keeping itself together by its own self-interaction.

2.1. Basic Equations and Spacetime Structure

Regular electrically charged spherically symmetric solutions obtained in the frame of
the Lagrange dynamics [73,79–82] have been found in the alternative P-form of nonlinear
electrodynamics related to the Lagrangian F-form by the Legendre transformation [83]. F-P
duality turns into electric-magnetic duality in the Maxwell limit, but, in the general case, it
connects different theories [84], which leads to branching of a Lagrangian in the F frame [82,84].

In this case, the dynamical system is described by the non-uniform variational
problem [85]

I =
1

16π

[∫
Ωint

(R−Lint(F))
√
−gd4x +

∫
Ωext

(R−Lext(F))
√
−gd4x

]
(11)

where R is the scalar curvature, Fµν = ∂µ Aν − ∂ν Aµ is the tensor of electromagnetic field,
and F = FµνFµν is the electromagnetic field invariant. The gauge-invariant electromagnetic
Lagrangian Lext(F) should have the Maxwell limit, L → F, LF → 1, where LF = dL/dF,
in the weak field regime, as r → ∞.

Each part of the manifold, Ωint and Ωext, is confined by the initial and final spacelike
hypersurfaces tin and t f in, and by the timelike internal common boundary between them,
denoted as Σc; the exterior part Ωext is confined by the timelike three-surface Σext extended
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to infinity where electromagnetic fields vanish. Dynamical variables in the Lagrangian
L(F) are electromagnetic potentials Aµ. At the surfaces tin and t f in their variations should
satisfy δAµ = 0. The boundary surface Σc is specified by the condition of continuity of the
dynamical variables Aµ

int = Aµ
ext, and the standard boundary condition on the surface Σc is

given by [85]

∫
Σc

(
LF (int)Fµν (int) −LF (ext)Fµν (ext)

)√
−gδAµdσν = 0 (12)

The stress–energy tensor of a nonlinear electromagnetic field, calculated in the stan-
dard way [86] with the electromagnetic lagrangian L(F)

Tµ
ν = −2LFFναFµα +

1
2

δ
µ
νL (13)

provides the only source of the gravitational field in the Einstein equations Gµ
ν = −8πGTµ

ν .
Basic common features of the electron models, such as the adopted interior de Sitter

vacuum and electromagnetic origin of mass, as well as presumed superconducting behavior,
for NED-GR objects follow directly from the dynamical equations governing their behavior
with the only condition–satisfaction of WEC (the Weak Energy Condition [87], which
requires the positivity of density, as measured by any local observer, and ensures the
positivity of mass of an object).

The key point is that the stress–energy tensors for electromagnetic field have the
algebraic structure such that [82]

Tt
t = Tr

r . (14)

The metrics obtained with these stress–energy tensors belong to the Kerr–Schild class
and have the form (3) with the metric function [88,89]

g(r) = 1− 2GM(r)
r

; M(r) = 4π
∫ r

0
ρ(x)x2dx. (15)

Regular spherical solutions of this class have an obligatory de Sitter center provided
that WEC is satisfied [90]. The mass of objects m = 4π

∫ ∞
0 ρ(r)r2dr is generically related

with the interior de Sitter vacuum and breaking of spacetime symmetry from the de Sitter
group [90,91]. In the NED-GR solutions, the mass functionM(r) in (15) is determined by
the electromagnetic field density, ρ(r) = Tt

t (r) in (13). Mass m of electromagnetic origin
enters into axially symmetric solutions that are obtained by the Gürses-Gürsey formalism
for rotating objects [92].

The Gürses and Gürsey formalism presents the general, model-independent approach
for description of the axially symmetric metrics of the Kerr–Schild class based on the
complex Trautman–Newman translations (that include the Newman–Janis algorithm). In
the Boyer–Lindquist coordinates, the Gürses–Gürsey metric reads [44]

ds2 =
2 f − Σ

Σ
dt2 +

Σ
∆

dr2 + Σdθ2 − 4a f sin2 θ

Σ
dtdφ +

(
r2 + a2 +

2 f a2 sin2 θ

Σ

)
sin2 θdφ2 (16)

where now
∆ = r2 + a2 − 2 f (r); f (r) = rM(r) (17)

and the master function f (r) comes from a related spherically symmetric solution of the
Kerr–Schild class with the mass function given in (15) specified by the density profile of the
spherical solution, denoted from now on as ρ̃(r),M(r) = 4π

∫ r
0 ρ̃(x)x2dx, for convenience

when we shall consider the density of an axially symmetric solution, ρ(r, θ).
For spherical solutions satisfying WEC, the mass functionM(r) is everywhere positive

function of r monotonically growing fromM(r) = 4πρ̃(0)r3/3 as r → 0 to m− e2/2r as
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r → ∞ [92]. Approaching the disk (8), the function 2 f (r) in (16) approaches the de
Sitter form

2 f (r)→ 8πGρ(0)
3

r4 =
r4

r2
0

; r2
0 =

3
8πGρ(0)

=
3
Λ

. (18)

The metric (16) is regular for r → 0 since r2/Σ→ 1 as r → 0, and asymptotically de
Sitter for r → 0 and asymptotically Kerr–Newman for r → ∞ [92]. The function f (r) is
an everywhere positive function evolving from the de Sitter value f (r) = 4πρ(0)r4/3
at r → 0 to the Kerr–Newman value f (r) = mr − re2/2. The condition of causality
violation (10) would have to read gφφ = r2 + a2 + Σ−12 f (r)a2 sin 2θ < 0 which never
occurs due to non-negativity of f (r). The vector ∂/∂φ is spacelike over the whole space, so
that the whole manifold is causally safe [92].

In the Kerr–Schild form, the metric (16) reads

ds2 = dx2 + dy2 + dz2 − dt2 +
2 f (r)

Σ

(
r(xdx + ydy)− a(xdy− ydx)

r2 + a2 +
zdz

r
+ dt

)2

. (19)

Expressing Σ in the Cartesian coordinates, we get, for the rotating de Sitter vacuum,

2 f (r)
Σ

=
r4

r2
0

r2

(r4 + a2z2)
. (20)

In the equatorial plane 2 f (r)/Σ = r2/r2
0, so that formally the disk r = 0 is totally

(together with the ring) flat. But Λ is non-zero on the disk. The metric (19) originates from
spherical metric with the de Sitter center. Rotation transforms the center r = 0 into the
disk (8). Asymptotic (20) represents a rotating de Sitter vacuum with Λ being spread over
the disk. Thus, the de Sitter center becomes the de Sitter vacuum disk [92].

A stress–energy tensor responsible for the metric (16) is given by [44]

Tµν =
1

Σ2

[
(2( f ′r− f )− f ′′Σ)gµν + (4( f ′r− f )− f ′′Σ)(uµuν − lµlν)

]
(21)

in the orthonormal tetrad with the time-like vector uµ and three space-like vectors lµ, nµ, mµ

such that uµuµ = −1; lµlµ = 1 nµnµ = 1; mµmµ = 1. They are given by

uµ =
1

∆Σ
[(r2 + a2)δ

µ
0 + aδ

µ
3 ]; lµ =

√
∆
Σ

δ
µ
1 ; nµ =

1
Σ

δ
µ
2 ; mµ = − 1√

Σ sin θ
[a sin2 θδ

µ
0 + δ

µ
3 ]. (22)

Obtained by Gürses and Gürsey field equations with the source term (21) are the same as
the field equations for the Kerr–Schild metric in the Lorentz covariant coordinate system [44],
so that all the axially symmetric solutions from the Kerr–Schild class are described by the
Gürses–Gürsey metric (16) obtained with the stress–energy tensor (21) as a source.

The eigenvalues of the stress–energy tensor (21), its components in the co-rotating
reference frame, where each of ellipsoidal layers of constant r rotates with its angular
velocity ω(r) = uφ/ut = a/(r2 + a2), are [44]

Tµνuµuν = ρ(r, θ); Tµνlµlν = pr = −ρ; Tµνnµnν = Tµνmµmν = p⊥(r, θ). (23)

They are related with the function f (r) by

ρ(r, θ) =
2( f ′r− f )

Σ2 ; p⊥ =
2( f ′r− f )− f ”Σ

Σ2 . (24)

In terms of the eigenvalues, the stress–energy tensor takes the form

Tµν = (ρ(r, θ) + p⊥(r, θ))(uµuν − lµlν) + p⊥(r, θ)gµν (25)
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The density and pressures are expressed through the density of a related spherical
solution as

ρ(r, θ) =
r4

Σ2 ρ̃(r); p⊥ =

(
r4

Σ2 −
2r2

Σ

)
ρ̃(r)− r3

2Σ
ρ̃′(r). (26)

The equation of state that relates the radial pressure with density in (23) actually
follows from the algebraic structure of a stress–energy tensor (14), while the transversal
pressure is related with the density by functional dependence which follows from Tµ

ν,µ = 0.
This gives [92]

pr(r, θ) = −ρ(r, θ); p⊥(r, θ) = −ρ− Σ
2r

∂ρ(r, θ)

∂r
. (27)

In the limit z → 0, the expression r2/Σ → 1 in (26), and we get in the equatorial
plane [92]

ρ(r, θ) = ρ(r) = ρ̃(r); p⊥ = −ρ̃− r
2

ρ̃′. (28)

For spherical solutions regularity requires rρ̃′(r)→ 0 as r → 0, and the density ρ̃(r)
achieves its maximal de Sitter value [82]. As a result, the density on the disk (8) takes the
de Sitter value

ρ(r → 0) = ρ̃(0) =
Λ

8πG
(29)

while in (28) p⊥ = −ρ̃ and, hence, p⊥ = pr = −ρ̃, so that the equation of state on the disk (8)
represents the de Sitter vacuum [92]

pr = p⊥ = −ρ. (30)

We have convinced above that interior de Sitter vacuum, mass of electromagnetic origin, and
causal safety are generic features of all regular compact objects in NED-GR determined by the space-
time structure for regular geometry with the metric from the Kerr–Schild class. In what follows,
we shall see that the electromagnetic properties of the disk (8) and superconductive origin
of the fields are determined in a general setting by solutions for electromagnetic fields.

2.2. Dynamics of Electromagnetic Fields

The dynamic equations for the electromagnetic field obtained by variation of the
action (11) with respect to the electromagnetic potential Aµ in each part of the manifold,
are given by

∇µ(LFFµν) = 0 (31)

where LF = dL/dF, and the contracted Bianchi identities give

∇µ
∗Fµν = 0. (32)

An asterisk denotes the Hodge dual that is defined by [86]

∗Fµν =
1
2

ηµναβFαβ; ∗Fµν =
1
2

ηµναβFαβ (33)

and the totally antisymmetric unit tensor is chosen in such a way that η0123 =
√−g.

In terms of the field vectors that are defined as ([92] and references therein)

E = {F0k}; D = {LFF0k}; B = {∗Fk0}; H = {LF
∗F0k}; k = 1, 2, 3 (34)

the field Equations (31) and (32) take the form of the Maxwell equations

∇D = 0; ∇×H =
∂D
∂t

; ∇B = 0; ∇× E = −∂B
∂t

. (35)
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Non-zero field components that are compatible with the axial symmetry are F01, F02, F13,
F23; in geometry with the metric (16), they are related by

F31 = a sin2 θF10; F23 =
r2 + a2

a
F02. (36)

The field intensities are expressed via the field components as

Er = F10; Eθ = F20; Hr = LF
√
−gF23; Hθ = LF

√
−gF31; (37)

Dr = LFF01; Dθ = LFF02;
√
−gBr = F23;

√
−gBθ = F31 (38)

where

F01 =
r2 + a2

Σ
F10; F31 =

1
Σ sin2 θ

F31; F02 =
1
Σ

F20; F23 =
1

Σ(r2 + a2) sin2 θ
F23. (39)

The electric field intensity E is connected with the electric induction D, as

Dα = εαβEβ (40)

where εαβ is the tensor of the dielectric permeability, so that the nonlinear electromagnetic
field in geometry (16) behaves like anisotropic dielectric medium. Equipotential surfaces are
ellipsoidal layers r = const that are determined by (7). In geometry (16), the symmetry of an
ellipsoid (7) gives two independent eigenvalues of εαβ [92]

εr =
(r2 + a2)

∆
LF; εθ = LF. (41)

The magnetic field intensity H is related with the magnetic induction B by [92]

Bα = µαβHβ (42)

where µαβ is the tensor of magnetic permeability whose independent eigenvalues are

µr =
(r2 + a2)

∆
1
LF

; µθ =
1
LF

. (43)

Dynamical quations (31) and (32) form the system of four equations for two indepen-
dent functions (with taking into the relations (36)) [93]

∂

∂r
[(r2 + a2) sin θLFF10] +

∂

∂θ
[sin θLFF20] = 0;

∂F01

∂θ
+

∂F20

∂r
= 0; (44)

∂

∂r

[
1

sin θ
LFF31

]
+

∂

∂θ

[
1

(r2 + a2) sin θ
LFF32

]
= 0;

∂F23

∂r
+

∂F31

∂θ
= 0. (45)

Solutions to this system should satisfy the compatibility condition which is given by [93]

∂

∂r

(
1

LF

∂LF
∂θ

)
∂

∂θ

(
1

LF

∂LF
∂r

)
+

4a2 sin2(θ)

Σ2
1

L2
F

[
r

∂LF
∂r

+ cot(θ)
∂LF
∂θ

]2

= 0 (46)

as the necessary and sufficient condition of compatibility of Equations (44) and (45), and as
the necessary condition for the existence of solutions [93].

Equations (44) and (45) and compatibility condition (46) are satisfied by the functions [92–94]

Σ2(LFF01) = −e(r2 − a2 cos2 θ); Σ2(LFF02) = ea2r sin 2θ; (47)

Σ2(LFF31) = ae sin2 θ(r2 − a2 cos2 θ); Σ2(LFF23) = aer(r2 + a2) sin 2θ. (48)



Particles 2021, 4 140

in two limiting cases: in the linear regime LF = 1, when the solutions (47) and (48) coincide
with the solutions to the Maxwell–Einstein equations obtained in the Kerr–Newman
geometry [41,58], and in the strongly nonlinear regime when (47) and (48) satisfy the
system (44) and (45) as the asymptotic solutions in the limit LF → ∞ [93–95].

The relation connecting density and pressure with the electromagnetic fields directly
follows from (13) and reads [92]

(p⊥ + ρ) = 2LF

(
F2

10 +
F2

20

a2 sin2 θ

)
. (49)

This allows to investigate the behavior of the fields on the disk, since geometry tells
us about the behavior of the left-hand side there.

The first conclusion is that the weak energy condition that requires p⊥ + ρ ≥ 0 should
be satisfied for electrically charged NED-GR objects, since its violation would lead to
LF < 0 in (49) and to negative values of the electric permeability in (41), which is excluded
by the basic requirement of electrodynamics of continued media [96].

Putting the solutions (47) in (49), we obtain

(p⊥ + ρ) =
2e2

LFΣ2 . (50)

It follows that LF → ∞ exactly on the disk (8), where p⊥ + ρ = 0 by virtue of (30).
On the disk the electromagnetic density achieves its maximum, Equation (29), so that
the behavior LF → ∞ corresponds to the realization of the underlying hypothesis about
nonlinearity replacing a singularity.

On the de Sitter disk (8), where LF → ∞, Equation (41) yields εr = εθ = LF → ∞,
while Equation (43) gives µr

r = µθ
θ = LF

−1 = µ → 0. As a result, the disk displays the
properties of a perfect conductor and ideal diamagnetic.

The magnetic induction B in (42) also zeros out on the disk by virtue of (38)
and (47) [92,97]. This suggests the appearance of an uncertainty in the definition of
a surface current js = (1−µ)

4πµ [nB], where n is the normal to the surface, which would
testify for a transition to a superconducting state [96].

The surface current on the disk is defined by 4π jk = [eα
(k)Fαβnβ] [42], where eα

(k) are
the base vectors that are related to the intrinsic coordinates on the disk t, φ, 0 ≤ ξ ≤ π/2;
the vector nα = δ1

α(1 + e2/a2)−1/2 cos ξ is the unit normal to the disk, and the symbol [..]
denotes a jump across its surface in the direction orthogonal to it [42]. Using the solutions (47)
and (48) on the disk and taking into account that µ = 1/LF there, we obtain [97]

jφ = − e
2πa

√
1 + e2/a2 sin2 ξ

µ

cos3 ξ
. (51)

Intrinsic coordinate ξ on the disk changes within 0 ≤ ξ ≤ π/2. The magnetic
permeability µ = 0 over the whole disk. Therefore, the current jφ is zero throughout the
disk, except the ring ξ = π/2, where numerator and denominator in the second fraction go
to zero independently. As a result, the surface current on the ring can be any and amount
to a non-zero total value, hence the general condition for transition to a superconducting
state [96] is satisfied.

The electric field vanishes on the disk (8) [92,98], and the superconducting current (51)
replacing the ring singularity represents a non-dissipative source of the exterior fields that
can, in principle, provide a practically unlimited life time of an object [97,98].

As any circular current, the superconducting current (51) produces a magnetic mo-
mentum. NED-GR equations for electromagnetic field (31) are source-free and, hence, this
magnetic momentum is intrinsic for any regular rotating compact object in NED-GR [99].

The current (51) flows in the region of the perfect conductivity. In addition, geometry
on the disk is flat, the metric function g(r) = 1 at r = 0 for a related spherical solution
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in (3) and, consequently, in the axially symmetric metric (16), the function f (r) for r → 0
approaches 2 f (r) → r4/r2

0 → 0; hence, the disk (8) is intrinsically flat together with the
ring [92]. Therefore, the magnetic momentum is simply

µin =
1
c

jφS = − eS
2πa

√
1 + e2/a2U (52)

where S is the disk area and U is an undetermined coefficient for an uncertainty in the
fraction µ

cos3 ξ
in (51). When the magnetic moment of the spinning object is known, the

coefficient U can be restored from (52), which shall give the value of the superconducting
ring current powering the regular spinning object. The circular current has the form

jφ =
ec

2πa

√
1 + e2/a2U. (53)

The magnetic momentum produced by this current is

µe =
e

2πa
Uπa2. (54)

For the electron e = 1.6022× 10−19 C, and 2a = λe [41] where λe = 3.8616× 10−11

cm is its Compton wavelength. In the geometrical units (c = G = 1) the electron charge is
e = 1.381× 10−34 cm, and a = 1.931× 10−11 cm, which gives e2/a2 = 0.5115× 10−46 � 1
in (53). The experimental value of the electron magnetic moment reads [100]

µe =
eh̄

2mec
(1 + 0.00116) =

eλe

2
(1 + 0.00116). (55)

A comparison of (54) with (55) gives U = 2.00232 and jφ = 79.277 A [99].
In the observer region r � λe, the superconducting current (51) produces the elec-

tromagnetic fields, which, in the region of a distant observer, are described by the Kerr–
Newman limit of solutions (47) and (48) coinciding with the results presented in [41,58]

Er = −
e
r2

[
1− h̄2

m2
e c2

3 cos2 θ

4r2

]
; Eθ =

eh̄2

m2
e c2

sin 2θ

4r3 ; Br = − eh̄
mec

cos θ

r3 ; Bθ = − eh̄
2mec

sin θ

r4 . (56)

The Planck constant appears due to discovered by Carter ability of the Kerr-Newman
solution to present the electron as seen by a distant observer. In terms of the Coleman
lump, the leading term in Er gives the Coulomb law as the classical limit h̄ = 0, and the
higher terms represent the quantum corrections.

We see that the behavior of solutions for electromagnetic fields determines typical
generic features of regular NED-GR spinning objects: Interior de Sitter vacuum disk (8) has
the properties of a perfect conductor and ideal diamagnetic. The superconducting current jφ flowing
over the edge of the disk replaces the ring singularity of the Kerr–Newman geometry, powers the
electromagnetic fields of an object, and provides the origin of its intrinsic magnetic momentum. For
the electromagnetic soliton with the parameters of the electron jφ = 79.277 A.

3. Summary and Discussion

Electromagnetic spinning solitons are described by the regular solutions of the source-
free NED-GR equations, the only contribution to stress–energy tensors comes from source-
free nonlinear electromagnetic field. The mass of a NED-GR soliton is determined by the
electromagnetic density. Mass is positive and related to the interior de Sitter vacuum and to
breaking of spacetime symmetry from the de Sitter group for NED-GR objects satisfying the
Weak Energy Condition, which requires the positivity of density, as measured by any local
observer. Electrically charged NED-GR solitons represent regular charged spinning objects
related by electromagnetic and gravitational interaction. Their basic generic properties
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are defined in the model-independent way by the spacetime structure and by the typical
behavior of solutions for electromagnetic fields.

The regular interior of electromagnetic spinning soliton consists of the equatorial
disk of the rotating de Sitter vacuum at which the energy density of the electromagnetic
vacuum achieves its maximal de Sitter value 8πGρem = Λ. At approaching the disk the
magnetic permeability µ→ 0 while the electric susceptibility ε→ ∞, which corresponds
to behavior typical for the perfect conductor and ideal diamagnetic. The magnetic induc-
tion and magnetic permeability independently vanish on the disk, which testifies for a
superconducting behavior. The ring singularity of the Kerr–Newman geometry is replaced
with the superconducting ring current which provides the non-dissipative source of elec-
tromagnetic fields and the origin of an intrinsic magnetic momentum for any electrically
charged regular object described by NED-GR. Generic features of the electromagnetic soliton
with the parameters of the electron, mea = h̄/2, g = 2, suggest that the intrinsic origin
of the electron fields and of its magnetic momentum is the superconducting ring current
evaluated as jφ = 79.277 A. One can say that the basic generic features of NED-GR spinning
solitons suggest the existence of superconductive behavior within a single particle with the
spin h̄/2.

This picture is verified by the results that were obtained for the annihilation reaction
e+e− → γγ(γ). The experimental data reveal, with a 5σ significance, the appearance of
a minimal length scale le = 1.57× 10−17 cm at the energy E = 1.253 TeV [101,102]. It
corresponds to the minimum in the χ2-fit and it characterizes the region of the closest
approach of annihilating particles.

The hypotheses of quantum electrodynamics applied in the χ2-test assume a scattering
center as a point. For the extended electron, its structure should modify the QED cross-
section if the test distances are smaller than its characteristic size. The experimental results
indicate decreasing cross section with respect to that predicted by QED and testify for
extended particles rather than point-like. The purely electromagnetic reaction e+e− →
γγ(γ) can be interpreted with using the basic properties of an electromagnetic spinning
soliton. For the electron visualized as a NED-GR spinning soliton, its characteristic size λe =
3.8616× 10−11 cm is certainly bigger that the characteristic test distance le = 1.57× 10−17 cm.
The definite feature of the annihilation process is that at its final stage a region of interaction
is neutral and spinless. It can be modeled by a spherical lump with the de Sitter vacuum
interior. In the internal structure of any structure with the de Sitter interior, there exists the
characteristic surface of zero gravity r∗ ' (r2

0rg)1/3, at which the strong energy condition
(ρ + ∑ pk ≥ 0 [87]) is violated and beyond which the gravitational acceleration becomes
repulsive [90,103]. The gravitational radius rg that is related to the energy E = 1.253 TeV,
and de Sitter radius r0 related to the Higgs vacuum expectation value responsible for
the electron mass at the scale EEW = 246 GeV, give r∗ ' 0.86× 10−16 cm. The test scale
le = 1.57× 10−17 cm fits inside a region where gravity is repulsive and can be understood
as a distance at which electromagnetic attraction is balanced by the gravitational repulsion
of the interior de Sitter vacuum [102].
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