
Article

Theoretical Investigation of Subluminal Particles Endowed
with Imaginary Mass

Luca Nanni

����������
�������

Citation: Nanni, L. Theoretical

Investigation of Subluminal Particles

Endowed with Imaginary Mass.

Particles 2021, 4, 325–332. https://

doi.org/10.3390/particles4020027

Academic Editor: Kazuharu Bamba

Received: 29 May 2021

Accepted: 15 June 2021

Published: 18 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Faculty of Natural Science, University of Ferrara, 44122 Ferrara, Italy; luca.nanni@edu.unife.it

Abstract: In this article, the general solution of the tachyonic Klein–Gordon equation is obtained as a
Fourier integral performed on a suitable path in the complex ω-plane. In particular, it is proved that
this solution does not contain any superluminal components under the given boundary conditions.
On the basis of this result, we infer that all possible spacelike wave equations describe the dynamics of
subluminal particles endowed with imaginary mass. This result is validated for the Chodos equation,
used to describe the hypothetical superluminal behaviour of the neutrino. In this specific framework,
it is proved that the wave packet propagates in spacetime with subluminal group velocities and that
it behaves as a localized wave for sufficiently small energies.
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1. Introduction

The physics of tachyons is an intriguing and fascinating subject that has attracted the
attention of physicists in both the pre-relativistic [1–3] and post-relativistic epochs [4–10].
However, the majority of the scientific community still considers it a speculative theory, and
there are only a few efforts aimed at finding the experimental evidence that could make it a
candidate for extending the current Standard Model [11]. A comprehensive overview of the
most relevant experiments dealing with the superluminal behaviour of waves and particles
is detailed in [9,12–15]. If considered in the framework of quantum mechanics, tachyons
exhibit completely unexpected behaviours [16–18]. In particular, half-integer free fermions
endowed with imaginary mass behave like wave trains propagating with subluminal group
velocities. The aim of this study is to verify whether this result can be generalized for any
particle regardless of its spin. The basic idea is that the individual components of spinor
wave functions, which are solutions of the tachyonic wave equations, must satisfy the
tachyonic Klein–Gordon (TKG) equation as well [19]. Finding a general solution of the
TKG equation without spacelike components means proving that any solution of the wave
equations of particles with negative mass squared represents a wave packet that propagates
with subluminal group velocity. As proposed by Salesi, these particles are called pseudo-
tachyons (PTs), namely particles travelling with slower-than-light velocity but fulfilling
the tachyonic energy-momentum relation E2 = p2c2 + µ2c4, where µ = im denotes the
imaginary mass. The obtained result will be validated for the Chodos equation [20] which
describes the behaviour of a 1

2 -spin tachyon using a more different analytical approach
than that discussed in [18].

2. Preliminary Notions on the Fourier Transforms in the Complex Plane

To facilitate the reading of Section 3 of this article, a brief review on the theory of the
Fourier transform in the complex plane is presented [21].
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Let f (x) be an integrable function; its Fourier transform is defined as:

F [ f (x)] = f̃ (ω) =

∞∫
−∞

f (x)eiωxdx, (1)

while the inverse Fourier transform is:

F−1
[

f̃ (ω)
]
=

1
2π

∞∫
−∞

f̃ (ω)e−iωxdω. (2)

Definitions (1) and (2) can be generalized by allowing ω to take complex values. To this
end, let us suppose that f (x) grows at most exponentially at infinity, i.e., f (x) = O

(
ec|x|

)
as x → ±∞ and c > 0. Moreover, we split up f (x) as follows:

f (x) = f+(x) + f−(x) : f+(x) = 0 ∀x< 0 and f−(x) = 0 ∀x >0 (3)

The Fourier transform of the component f+(x) is:

f̃+(ω) =

∞∫
0

f+(x)eiRe(ω)xe−Im(ω)xdx. (4)

It is evident that: ∣∣∣ f̃+(ω)
∣∣∣ ≤ ∞∫

0

| f+(x)|e−Im(ω)xdx, (5)

and the integral converges provided Im(ω) > c. Therefore, f̃+(ω) exists and is holomor-
phic for Im(ω) > c.

Next, we need to extend the Fourier inversion theorem to recover f+(x) from f̃+(ω).
To this end, let F+(x) = f+(x)e−αx, where α > c, so that

[
F̃+(ω)

]
= f̃+(ω + iα) exists and

is holomorphic for Im(ω) > c− α, in particular for ω ∈ R, since α > c. Thus, we can apply
the Fourier transform inversion theorem obtaining:

F+(x) = 1
2π

∞∫
−∞

F̃+(ω)e−iωxdω ⇒ f+(x)e−αx = 1
2π

∞∫
−∞

f̃+(ω + iα)e−iωxdω

⇒ f+(x) = 1
2π

∞∫
−∞

f̃+(ω + iα)e−i(ω+iα)xdω.
(6)

The final integral corresponds to an integration along a horizontal contour in the
complex ω-plane:

f+(x) =
1

2π

∞+iα∫
−∞+iα

f̃+(ω)e−iωxdω. (7)

Suppose f̃+(ω) can be continued below Im(ω) = c, so that it is holomorphic in
some region Ω+ ⊃ {ω : Im(ω) > c} except for singularities at ω = a1, a2, · · · . By the
deformation theory, the inversion contour Γ+ = {x + iα : −∞ < x < ∞}may be deformed
into Ω+ provided it passes above the singularities of f̃+(ω). Since the singularities of f̃+(ω)
are below the inversion contour, for x < 0, we can close the contour at +i∞. This gives the
expected result that f+(x) = 0 for x < 0. For x > 0, we would need to close the contour
in Im(ω) < 0, picking up the contributions from the singularities in f̃+(ω) and giving a
nonzero value of f+(x).

The same procedure works for f−(x) with everything upside down, namely f̃−(ω)
can be continued above Im(ω) = −c, so that it is holomorphic in some region Ω− ⊃
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{ω : Im(ω) < −c} except for singularities at ω = b1, b2, · · · . If there is a non-empty
overlap region Ω = Ω+ ∩ Ω−\{ai} ∪

{
bj
}

, where {ai} are the singularities of f̃+(ω) and{
bj
}

are the singularities of f̃−(ω), then the Fourier transform of f (x) is defined as:

f̃ (ω) = f̃+(ω) + f̃−(ω), (8)

for ω ∈ Ω. Moreover, if Γ+ and Γ− can be deformed into the same contour Γ ⊂ Ω, with Γ
above the singularities of f̃+(ω) and below the singularities of f̃−(ω), then:

f (x) =
1

2π

∫
Γ

f̃ (ω)e−iωxdω. (9)

What is discussed in this section represents the method that will be implemented
below to solve the TKG equation.

3. Dynamics of Wave Packets in the TKG Equation

The TKG equation can be obtained by quantizing the tachyonic energy-momentum
relation using the operators E→ i}∂/∂t and p→ −i}c∇ :(

}2 ∂2

∂t2 − }2c2∇2 −m2c4
)

ψ(r, t) = 0. (10)

For free scalar particles, Equation (10) can be solved by Fourier transform in time,
which allows decomposing the wave function ψ(r, t) in its monochromatic temporal com-
ponents, using the initial conditions given for ψ(r, t)|r=0 and ∂ψ(r, t)/∂r|r=0.

To simplify the following discussion, we suppose that the motion of the particle takes
place along the z-axis. The solution is a wave packet represented by the following inverse
Fourier transform:

ψ(z, t) =
1

2π

∫
Γ

[
A(ω)eiK(ω)z + B(ω)e−iK(ω)z

]
e−iωtdω, (11)

where Γ is a path in the ω-plane. The quantity ω is defined as ω = ±E/}, and, for a
tachyon, it is always a real quantity except when E = ±µc2 (this last statement will be
clarified in Section 4 where we calculate the group velocity of the tachyonic wave packet).
In fact:

E = ±γµc2 = ±
(

1− u2

c2

)−1/2

imc2 = ±
(

u2

c2 − 1
)−1/2

mc2, (12)

where γ is the tachyonic Lorentz factor and u > c is the classical tachyonic velocity.
Returning to Equation (11), the term K(ω) is the dispersion relation whose characteristic
equation is:

K2(ω) =
ω2 −ω2

0
c2 where ω2

0 = −m2c4/}2. (13)

Equation (13) is obtained from Equation (10) upon factorisation ψ(z, t) = ϕ(z)e−iωt.
The aim is to prove that Equation (1) admits a general solution in which no spacelike
components arise. In other words, we want to prove that this solution is completely
analogous to the one that solves the ordinary KG equation, where ω is always real, and
tends to the solution of the d’Alembert wave equation as the mass energy tends to zero.
We point out that the spacelike components are those associated with complex values of ω,
and therefore of K(ω).

The coefficients A(ω) and B(ω) are calculated once the following boundary conditions
have been set [21]:

f (t) = ψ(0, t) and f ′(t) = ∂ψ(z, t)/∂z|z=0. (14)
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As we will see, these conditions determine the choice of the path Γ of integration.
Using the boundary conditions in Equation (14), we obtain [21]: A(ω) = 1

2

∫ ∞
−∞

[
f (t)− i f ′(t)

K(ω)

]
eiωtdt

B(ω) = 1
2

∫ ∞
−∞

[
f (t) + i f ′(t)

K(ω)

]
eiωtdt

(15)

The computation of the integrals in Equation (15) can be simplified if we consider
f (t) as a semi-infinite wave train with a sharp edge. In other words, we can set a time
t0 such that ∀t < t0 ⇒ f (t) = 0 . This is equivalent to state that, at the time t0, the wave
is created. However, in order to ensure the convergence of the integral in Equation (11)
as t→ t0+ , the function f (t) tends to zero. From now on, we assume t0 = 0. Under this
assumption and f (t) and f ′(t) being infinite wave trains with a sharp edge, it is necessary
that ω runs on a path equivalent to the line (−∞ + iα, ∞ + iα) where α > 0, in order to
obtain the convergence of the integrals in Equation (15).

Let us now set the following further condition:

B(ω) = 0 ⇒ f ′(t) =
1

2π
i
∫

Γ
K(ω)F ( f )e−iωtdω, (16)

where F ( f ) is the Fourier transform of the function f (t). Using Equation (16), the first of
the integrals in Equation (15) becomes:

A(ω) =
∫ ∞

−∞
f (t)eiωtdt = F ( f ). (17)

Substituting the integral in Equation (17) into Equation (11), we obtain:

ψ(z, t) =
1

4π

∫
Γ
F ( f )eiK(ω)z−iωtdω. (18)

Since f (t) is a semi-infinite sharp-edged wave train, it can be written explicitly as:

f (t) = θ(t)e−iω|t0 t, (19)

where θ(t) is the Heaviside function. The Fourier transform of the function given in
Equation (19) is [22]:

F ( f ) = i
1

ω− ω|t0

. (20)

Substituting Equation (20) into Equation (18), we obtain the explicit form of the kernel:

ψ(z, t) =
1

2π

∫
Γ

i
ω− ω|t0

eiK(ω)z−iωtdω. (21)

To solve the integral in Equation (21), we need to find the integration path Γ. In
order to satisfy the initial conditions at z = 0, all singularities of the Fourier coefficient
A(ω) must lie under the path Γ (as discussed in Section 2), so that the integral in Equation
(11) vanishes as t < t0, after closing Γ in the upper half-plane. This is the mathematical
representation of the fact that, since the wave function is a semi-infinite train with a sharp
edge, the integrals in Equation (15) give rise to singularities on the real axis of the complex
plane, except for the two branch points at ω = ±iω0. Only non-physical expressions for
f (t) and f ′(t) (namely, not suitable for a wave function) can produce singularities in the
upper half-plane. The two branch points come from the dispersion relation:

K(ω) = ±1
c

(
ω2 + ω2

0

)1/2
= ±1

c
[(ω + |ω0|)(ω− |ω0|)]1/2. (22)
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There are two possible kinds of cuts: the segment (−iω0, iω0) or the pair of half-
lines(iω0, iω0 + ∞) and (−iω0,−iω0 + ∞). Since the path Γ must lies above the real axis,
we have to study how it behaves when it meets the cut. It could go around the cut or
run parallel to the real axis both of these choices are mathematically correct. However,
the second choice would lead to superluminal components given by the upper cut, and
the group velocity associated with the wave function will be greater than the speed of
light. The criterion for discriminating the choice of the integration path is that, at the
limit |ω0| → 0 , the dispersion relation K(ω) tends to ω/c which represents the typical
dispersion relation of a wave packet that satisfies the ordinary wave equation, which does
not admit tachyonic components. This condition excludes the cuts given by the pair of
half-lines (iω0, iω0 + ∞) and (−iω0,−iω0 + ∞) and leads to the correct dispersion relation
K(ω) =

∣∣ω2 + ω2
0

∣∣1/2/c for ω > 0 and K(ω) = −
∣∣ω2 + ω2

0

∣∣1/2/c for ω < 0.
The wave function in Equation (21) has a completely general form, and the integration

path Γ is uniquely determined by the choice of the initial conditions (Equations (14), (16)
and (19)). Therefore, it is expected that, whatever the tachyonic equation considered, the
wave packet describing the dynamics of the particle always propagates with subluminal
velocity, even if it is associated with a negative mass squared.

4. Validation of the Obtained Result for Half-Integer Spin Tachyon

The results obtained in Section 3 should be validated for each tachyonic wave equation.
However, to the best of our knowledge, the only tachyonic wave equation formulated
for massive particles is that of Chodos which describes the motion of a particle with
half-integer spin [23]. This equation is generally used to investigate neutrinos exhibiting
superluminal behaviours [24]. Therefore, we work on this equation with the aim to obtain a
solution in the form of a Gaussian wave packet from which we calculate the group velocity.
To this purpose, we formulate the equation of the envelope function that characterises the
wave packet.

The Chodos equation is obtained from the Tanaka Lagrangian [25]. For a tachyonic
particle moving along the z-axis, this (Hermitian) Lagrangian reads:

L = i}ψγ5γ0∂tψ− i}cψγ5γ3∂zψ−mc2ψψ, . (23)

where m = |µ|, ψt = ψ†
t γ0 and γ5 = iγ0γ1γ2γ3. Introducing the Lagrangian (Equation (23))

in the Euler–Lagrange equations, we obtain the Chodos equation:(
i}γ5γ0∂t − i}cγ5γ3∂z −mc2

)
ψ = 0 (24)

The spacelike property of Equation (24) is given by the operator γ5 and not by the
imaginary mass [25]. We seek solutions that have the form of a Gaussian wave packet:

ψ±(z, t) = N
(

ϕ±1
ϕ±2

)
f±(z, t)exp

{
±i
(
kz−ω±t

)}
, (25)

where ± denotes the solutions with positive and negative frequencies, ϕ±1,2 are the spinor
components, f±(z, t) is the Gaussian envelope function and N is the normalization con-
stant. Before formulating the equation for the function f±(z, t), we need to calculate the
spinor components for the particle and antiparticle states. To this purpose, we substitute
the plane wave component of Equation (25) into Equation (24) and obtain a system of four
algebraic equations from which the spinor components can be calculated:

i}c∂z −mc2 0
0 −i}c∂z −mc2

−i}∂t 0
0 −i}∂t

i}∂t 0
0 i}∂t

−i}c∂z −mc2 0
0 i}c∂z −mc2




ϕ+
1

ϕ+
2

ϕ−1
ϕ−2

e±i(kz−ω±t) = 0. (26)
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Multiplying Equation (26) with its adjoint, we obtain four TKG equations. This
equation can be easily solved by the Cramer rule and we obtain:

ϕ+
1 = ϕ−2 = −

(
ω

kc + ω0

) 1
2

; ϕ+
2 = ϕ−1 =

(
ω

kc−ω0

) 1
2
. (27)

where ω0 = mc2/}. The spinor components of Equation (27) can be rewritten in parametric
form. To this end, we set the classical tachyonic velocity as u = ηc with η > 1. Then,
Equation (27) becomes:

ϕ+
1 = ϕ−2 = −

 (
η2 − 1

)− 1
2

η(η2 − 1)−
1
2 + 1

 1
2

; ϕ+
2 = ϕ−1 =

 (
η2 − 1

)− 1
2

η(η2 − 1)−
1
2 − 1

 1
2

. (28)

We can now formulate the equation in f±(z, t) which allows us to calculate both
the group velocity of the wave packet and the explicit form of the envelope function.
Substituting Equation (25) into Equation (24), we obtain:

(
∂
∂t − c ϕ+

1
ϕ−1

∣∣∣∣
η0

∂
∂z +

2mc2

i}
ϕ+

1
ϕ−1

∣∣∣∣
η0

)
f+(z, t) = 0(

∂
∂t + c ϕ−2

ϕ+
2

∣∣∣∣
η0

∂
∂z +

2mc2

i}
ϕ−2
ϕ+

2

∣∣∣∣
η0

)
f−(z, t) = 0

, (29)

where η0 is the centre of the Gaussian envelope function. The numerical coefficient of the
second term in Equation (29) is just the group velocity of the wave packet [26]:

vg = −c
ϕ+

1
ϕ−1

∣∣∣∣∣
η0

= c
ϕ−2
ϕ+

2

∣∣∣∣∣
η0

= c

[
η0
(
η2

0 − 1
)−1/2 − 1

η0
(
η2

0 − 1
)−1/2

+ 1

]1/2

< c ∀ηo >c. (30)

As expected, Equation (30) proves that the group velocity is always lower than the
speed of light, confirming the result obtained in Section 3. From Equation (30), we see
that, when the classical tachyonic velocity u tends to infinity, i.e., when η0 → ∞ , then, the
group velocity vg tends asymptotically to zero. In other words, in a reference frame moving
with an infinitely large relative velocity, the wave packet is localized. This is another
relevant result of this study and it allows to reinterpret the Hartman effect [27] in quantum
tunnelling phenomena. This will be discussed in more detail in Section 5. Furthermore, the
limit vg → 0 when η0 → ∞ can be used to explain why the rest mass energy of the PT is
given by µc2. The imaginary value of this energy is due to the proper time τ of a tachyon
which, as is known [28,29], is imaginary.

5. Discussion

In this study, we proved that, once appropriate initial conditions have been set, it is
always possible to find a general solution of the TKG equation in which no superluminal
components arise and that gives the same results of the ordinary wave equation at the
limit |ω0| → 0 . Since each component of the tachyonic spinors must satisfy the TKG
equation, we infer that all the possible tachyonic wave equations that can be formulated
in the framework of quantum mechanics describe the dynamics of subluminal particles
with spacelike momentum. This result has been validated for the Chodos equation. In this
context, it is proved that the wave packet solution of this equation is characterized by a
subluminal group velocity that tends asymptotically to zero as the corresponding classical
particle velocity tends to infinitely large values. In other words, the tachyonic wave packet
tends to behave like a localized wave for sufficiently small energy values. Such a behaviour
could explain the long-standing controversy concerning the time spent by a massive
particle to cross a classically forbidden barrier, i.e., the tunnelling time [30]. Theoretical
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investigations show that, for sufficiently large barriers, the scattering velocity may become
superluminal [9]. However, recently, Ramos et al. have published an article [31] in which
they state that, although a peak appears at the output before the input even arrives, it
does not mean anything travelled faster than light. This is due to the fact that there is no
law connecting an incoming and an outgoing peak. We believe that this law may have
something to do with the fact that, within the potential barrier, the particle behaves like a
nearly localized PT wave packet. Therefore, inside the barrier, the particle behaves like a
bradyon which satisfies the spacelike energy-momentum relation. This suggests that the
scattering theory of a generic massive particle impinging a classically forbidden potential
barrier should be completely revised.
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