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Abstract: The postulate of universal local Weyl scaling (conformal) symmetry modifies both general
relativity and the Higgs scalar field model. The conformal Higgs model (CHM) acquires a cosmologi-
cal effect that fits the observed accelerating Hubble expansion for redshifts z ≤ 1 (7.33 Gyr) accurately
with only one free constant parameter. Conformal gravity (CG) has recently been fitted to anomalous
rotation data for 138 galaxies. Conformal theory explains dark energy and does not require dark
matter, providing a viable alternative to the standard ΛCDM paradigm. The theory precludes a
massive Higgs particle but validates a composite gauge field W2 with mass 125 GeV.
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1. Introduction

Gravitational phenomena that cannot be explained by general relativity as formulated
by Einstein are attributed to cold dark matter in the consensus ΛCDM paradigm for
cosmology. The search for tangible dark matter has continued without success for many
years [1]. Dark energy Λ remains without explanation.

Universal conformal symmetry offers an alternative paradigm, motivated by this
situation. This requires local Weyl scaling covariance [2–4] for all massless elementary
physical fields, without dark matter [5]. With no novel elementary fields, this extends
conformal symmetry, valid for fermion and gauge boson fields [6], to both the metric tensor
field of general relativity and the Higgs scalar field of elementary-particle theory [7,8].
This postulate implies conformal gravity CG [3,9–13] and the conformal Higgs model
CHM [14–17].

The CHM determines model parameters that retain the Higgs mechanism but pre-
clude a massive Higgs particle, replacing mass by implied dark energy in agreement with
observed Hubble expansion [14,15], while validating a novel composite gauge field W2
of mass 125 GeV [18]. This paper reviews the logic of the CHM and its qualitative and
quantitative justification by observed cosmological, gravitational, and particle physics data.

Conformal gravity (CG) [3] retains the logical structure of general relativity, replacing
the Einstein–Hilbert Lagrangian density by a quadratic contraction of the conformal Weyl
tensor [2]. CG ensures consistency of the gravitational field equations, while preserv-
ing subgalactic phenomenology [3,9]. The conformal Higgs model (CHM) introduces a
gravitational term confirmed by observed accelerating Hubble expansion [3,14,15,17].

Substantial empirical support for this proposed break with convention is provided by
recent applications of CG to galactic rotation velocities [19–24] and of the CHM to Hubble
expansion [14,15], in a consistent model of extended dark galactic halos [16], without dark
matter. Gravitational lensing by a galactic halo is attributed to the boundary condition of
continuous gravitational acceleration across the outer boundary radius of the large spherical
halo depleted of primordial matter fallen into the visible galaxy [16]. This accounts for the
nonclassical acceleration parameter γ deduced from anomalous orbital rotation velocities
observed in the outer regions of galaxies [3]. As recently reviewed [3,13,17], conformal
theory fits observational data for an isolated galaxy without invoking dark matter, resolving
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several longstanding paradoxes. Higgs biquadratic parameter λ is found to determine W2
mass 125 GeV [18]. Derivations of these results are summarized here.

2. Depleted Halo Model

CG and the CHM are consistent but interdependent [17] in the context of a depleted
dark halo model [16] of an isolated galaxy. A galaxy of mass M is modeled by spherically
averaged mass density ρG/c2 within rG, formed by condensation of primordial uniform,
isotropic matter of uniform mass density ρm/c2 from a sphere of large radius rH [16]. The
dark halo inferred from gravitational lensing and centripetal acceleration is identified with
this depleted sphere [16]. A model valid for nonclassical gravitation can take advantage of
spherical symmetry at large galactic radii, assuming classical gravitation within an effective
galactic radius rG. Non-spherical gravitation is neglected outside rG. Given mean mass
density ρ̄G/c2 within rG, this implies large empty halo radius rH = rG(ρ̄G/ρm)

1
3 .

The unique Lagrangian density Lg of conformal gravity theory, constructed from the
conformal Weyl tensor [2,3,9], determines source-free Schwarzschild gravitational potential

B(r) = −2β/r + α + γr− κr2, (1)

valid outside a spherically symmetric mass/energy source density [9,12]. This adds two
constants of integration to the classical external potential: nonclassical radial acceleration
γ and halo cutoff parameter κ [16].

The physically relevant particular solution for B(r) [17] incorporates nonclassical
radial acceleration γ as a free parameter. Its value is determined by the halo model. Gravita-
tional lensing by a spherical halo is observed as centripetal deflection of a photon geodesic
passing into the empty halo sphere from the external intergalactic space with postulated uni-
versal isotropic mass/energy density ρm. The conformal Friedmann cosmic evolution equa-
tion implies dimensionless cosmic acceleration parameters Ωq(ρ) [16] which are locally con-
stant but differ across the halo boundary rH . Smooth evolution of the cosmos implies observ-
able particle acceleration γ within rH proportional to Ωq(in)−Ωq(out) = Ωq(0)−Ωq(ρm).
Uniform cosmological ρm implies constant γ for r ≤ rH , independent of galactic mass [17].
This surprising result is consistent with recent observations of galactic rotational velocities
for galaxies with directly measured mass [25,26].

3. Variational Field Equations

Gravitational field equations are determined by metric functional derivative Xµν = 1√−g
δI

δgµν
,

where g is the determinant of gµν, and action integral I =
∫

d4x
√−g ∑a La [3,27,28]. Given

δL = xµνδgµν, Xµν = xµν + 1
2Lgµν. Scalar Lagrangian density La determines variational

energy-momentum tensor Θµν
a = −2Xµν

a , evaluated for a solution of the field equations.
For fixed coordinates xµ, local Weyl scaling is defined by gµν(x) → gµν(x)Ω2(x) [2]

for arbitrary real differentiable Ω(x). Conformal symmetry is defined by invariant action
integral I =

∫
d4x
√−gL. For any Riemannian tensor T(x), T(x) → Ωd(x)T(x) +R(x)

defines weight d[T] and residue R[T]. For a scalar field, Φ(x) → Φ(x)Ω−1(x), so that
d[Φ] = −1. Conformal Lagrangian density L must have weight d[L] = −4 and residue
R[L] = 0 up to a 4-divergence [3]. For a bare conformal field, trace gµνXµν

a = 0 [3].
Generalized Einstein equation ∑a Xµν

a = 0 is expressed as Xµν
g = 1

2 ∑a 6=g Θµν
a . Summed

trace ∑a gµνXµν
a vanishes for exact field solutions.

The action integral defined by Lagrangian density LW = −αgCµκν
λ Cλ

µκν for Weyl tensor
Cµκν

λ , a traceless projection of the Riemann tensor [2], is conformally invariant. After
removing a 4-divergence [3], Lg = −2αg(RµνRµν − 1

3 R2), where R = gµνRµν. Conformal
symmetry fixes the relative coefficient of the two quadratic terms. For uniform mass/energy
density ρ̄ the Weyl tensor vanishes identically. Hence Xµν

g ≡ 0 for a uniform cosmos.
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4. The Conformal Higgs Model

Higgs V(Φ†Φ) = −(w2 − λΦ†Φ)Φ†Φ depends on two assumed constants w2 and
λ [7,8]. Nonzero w2 and λ are not determined by standard theory. The conformal Higgs model
(CHM) introduces a gravitational term confirmed by observed Hubble expansion [14,15]. The
CHM supports the Higgs mechanism, spontaneous SU(2) symmetry-breaking, which also
breaks conformal symmetry [15] and invalidates a transformation connecting the two
distinct metrics invoked for successful fits to galactic rotation and Hubble expansion [3].

In the conformal Higgs model, unique Lagrangian density LΦ [3,14,15] of Higgs scalar
field Φ adds a gravitational term to −V, so that (∂µΦ)†∂µΦ is augmented by

∆LΦ = (w2 − 1
6

R− λΦ†Φ)Φ†Φ. (2)

Scalar R = gµνRµν is the trace of the Ricci tensor.
In uniform, isotropic geometry with uniform mass/energy density ρ̄, LΦ implies a

modified Friedmann equation [5,14,29] for cosmic distance scale factor a(t), with a(t0) = 1
at present time t0:

ȧ2

a2 +
k
a2 −

ä
a
=

2
3
(Λ̄ + τ̄c2ρ̄(t)). (3)

Λ̄ = 3
2 w2 ≥ 0 and τ̄ ∼ −3/φ2

0 ≤ 0 are determined by parameters of the Higgs model [14].
By neglecting cosmic curvature k in accordance with observational data, the sum

rule ΩΛ(t) + Ωm(t) + Ωq(t) = 1 follows if conformal Equation (3) is divided by ȧ2/a2,

defining dimensionless Friedmann weights ΩΛ = 2
3

Λ̄a2

ȧ2 , Ωm = 2
3

τ̄c2 ρ̄a2

ȧ2 , and acceleration
weight Ωq = äa

ȧ2 [14,15]. Matter and radiation are combined in Ωm, while the Hubble
function H(t) = ȧ

a (t) ∼ [T−1] = h(t)H0 for Hubble constant H0 = H(t0). Setting a(t0) = 1,
h(t0) = ȧ

a (t0) = 1 in Hubble units of time 1/H0, length c/H0, and acceleration
H2

0 c/H0 = cH0. Evaluated at time t, Ricci scalar R(t) = ä
a +

ȧ2

a2 +
k
ȧ2 .

For k = 0 the standard Friedmann equation, divided by ȧ
a , produces dimensionless

sum rule ΩΛ(t) + Ωm(t) = 1. Ωm = 1 − ΩΛ requires mass density far greater than
observed baryonic mass. This has been considered to be a strong argument for dark matter.
Omitting Ωm completely, with k = 0, the conformal sum rule ΩΛ(t) + Ωq(t) = 1 fits the
observed data accurately for redshifts z ≤ 1 (7.33 Gyr) [14,15,17]. This eliminates any need
for dark matter to explain Hubble expansion.

The luminosity distance dL(z) = (1 + z)χ(z), for Ωk = 0, is shown in Table 1 for
α = ΩΛ(t0) = 0.732, where [15]

χ(z) =
∫ t0

t(z)

dt
a(t)

=
∫ 0

z
dz(1 + z)

dt
dz

=∫ z

0

dz√
2α ln(1 + z) + 1

. (4)

Observed redshifts have been fitted to an analytic function [30] with statistical accuracy
comparable to the best standard ΛCDM fit, with Ωm = 0. Table 1 compares CHM dL(z) to
this Mannheim function. As τ̄ is negative [3,14], cosmic acceleration Ωq remains positive
(centrifugal) back to the earliest time [14].

Conformal Friedmann Equation (3) [14,15] determines cosmic acceleration weight
Ωq. With both weight parameters Ωk and Ωm set to zero, Equation (3) fits scaled Hubble
function h(t) = H(t)/H0 for redshifts z ≤ 1, Table 1, as accurately as standard LCDM,
with only one free constant. This determines Friedmann weights, at present time t0,
ΩΛ = 0.732, Ωq = 0.268 [14]. Hubble constant H(t0) = H0 = 2.197× 10−18/s [31] is
independent of these data. The dimensionless sum rule [14] with Ωk = 0 determines
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Ωq(ρm) = 1−ΩΛ −Ωm in the cosmic background, and Ωq(0) = 1−ΩΛ in the depleted
halo [16].

Table 1. Scaled luminosity distance fit to Hubble data.

Theory Observed
z ΩΛ Ωq H0dL/c Equation (4) H0dL/c [30]

0.0 0.732 0.268 0.0000 0.0000
0.2 0.578 0.422 0.2254 0.2265
0.4 0.490 0.510 0.5013 0.5039
0.6 0.434 0.566 0.8267 0.8297
0.8 0.393 0.607 1.2003 1.2026
1.0 0.363 0.637 1.6209 1.6216

5. Conformal Gravity

The unique Lagrangian density Lg of conformal gravity, constructed from the confor-
mal Weyl tensor [2,3,9], determines Schwarzschild gravitational potential

B(r) = −2β/r + α + γr− κr2, (5)

valid outside a spherically symmetric mass/energy source density [9,12]. Classical gravita-
tion is retained at subgalactic distances by setting β = Gm/c2 for a spherical source of mass
m. CG adds two constants of integration to the classical external potential: nonclassical
radial acceleration γ and halo cutoff parameter κ [16], with negligible effects at subgalactic
distances [3].

From the CHM, observed nonclassical gravitational acceleration 1
2 γc2 in the halo

is proportional to ∆Ωq = Ωq(0) − Ωq(ρm) = Ωm(ρm) [16], where, given ρm and H0,

Ωm(ρm) = 2
3

τ̄c2ρm
H2

0
[14]. Thus, the depleted halo model determines constant γ from uni-

form universal cosmic baryonic mass density ρm/c2, which includes radiation energy
density here.

Converted from Hubble units, this implies centripetal acceleration 1
2 γc2 = −cH0Ωm(ρm) [16].

Positive ρm implies Ωm < 0 because coefficient τ̄ < 0 [3,14]. Hence ∆Ωq = Ωm < 0 is consistent
with nonclassical centripetal acceleration 1

2 γc2, confirmed by inward deflection of photon
geodesics observed in gravitational lensing [16]. This logic is equivalent to requiring radial
acceleration to be continuous across the halo boundary rH :

1
2

γHc2 − cH0Ωq(0) = −cH0Ωq(ρm). (6)

Signs here follow from the definition of Ωq as centrifugal acceleration weight.
Given mass/energy source density f (r) enclosed within r̄, the field equation in the ES

metric is [9,12]

∂4
r (rB(r)) = r f (r), (7)

for f (r) ∼ (Θ0
0 −Θr

r)m determined by source energy-momentum tensor Θµν
m [3].

For constants related by α2 = 1− 6βγ [12],

y0(r) = rB(r) = −2β + αr + γr2 − κr3, (8)

is a solution of the tensorial field equation for source-free r ≥ r̄ [9,12]. Derivative functions
yi(r) = ∂i

r(rB(r)), 0 ≤ i ≤ 3 satisfy differential equations

∂ryi = yi+1, 0 ≤ i ≤ 2,

∂ry3 = r f (r). (9)
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The general solution, for independent constants ci = yi(0), determines coefficients
β, α, γ, κ such that at endpoint r̄

y0(r̄) = −2β + αr̄ + γr̄2 − κr̄3,

y1(r̄) = α + 2γr̄− 3κr̄2,

y2(r̄) = 2γ− 6κr̄,

y3(r̄) = −6κ. (10)

Gravitational potential B(r) is required to be differentiable and free of singularities.
c0 = 0 prevents a singularity at the origin. Values of c1, c2, c3 can be chosen to match
outer boundary conditions α = 1, γ = 0, κ = 0 at r = r̄. This determines parameter β.
Specific values of γ and κ, consistent with Hubble expansion and the observed galactic
dark halo [14,16], are fitted by adjusting c1, c2, c3, subject to c0 = 0, α2 = 1− 6βγ.

A particular solution for B(r) [9,12], assumed by subsequent authors, derives an
integral for γ that vanishes for residual source density ρ̂. This is replaced here by an
alternative solution for which γ is a free parameter [17].

For a single spherical solar mass isolated in a galactic halo, mean internal mass density
ρ̄� within r� determines an exact solution of the conformal Higgs gravitational equation,
giving internal acceleration Ωq(ρ̄�).

Given γ outside r�, continuous acceleration across boundary r�,

1
2

γ�,inc2 − cH0Ωq(ρ̄�) =
1
2

γc2 − cH0Ωq(0), (11)

determines constant γ�,in valid inside r�. γ�,in is determined by local mean source density
ρ̄�. γ in the halo is not changed. Its value is a constant of integration that cannot vary in the
source-free halo [16,17]. Hence, there is no way to determine a mass-dependent increment
to γ. This replaces the usually assumed γ = γ0 + N∗γ∗ by γ = γH , determined at halo
boundary rH .

Anomalous rotation velocities for 138 galaxies have been fitted to Equation (1) us-
ing four assumed universal parameters β∗, γ∗, γ0, κ [3,13,21,24] such that β = N∗β∗ =
GM/c2, γ = γ0 + N∗γ∗. N∗ is galactic baryonic mass M in solar mass units. Inferred
parameter values [3,22],

β∗ = 1.475× 103m, γ0 = 3.06× 10−28/m,

γ∗ = 5.42× 10−39/m, κ = 9.54× 10−50/m2, (12)

fit conformal gravity to galactic rotation velocities. The depleted halo model removes
the galactic mass dependence of nonclassical acceleration parameter γ. For our Milky
Way galaxy, with N∗ = 6.07× 1010 [24,32], implied γH = γ0 + N∗γ∗ = 6.35× 10−28/m.
Parameter κ provides a cutoff of modified radial acceleration at a large halo radius [17].

6. Reconciliation of the Two Distinct Gravitational Models

CG and CHM must be consistent for an isolated galaxy and its dark halo, observed
by gravitational lensing. CG is valid for anomalous outer galactic rotation velocities in the
static spherical Schwarzschild metric, solving a differential equation for Schwarzschild
gravitational potential B(r) [3,9]. The CHM is valid for cosmic Hubble expansion in the
uniform, isotropic FLRW metric, solving a differential equation for Friedmann scale factor
a(t) [14]. Concurrent validity is achieved by introducing a common hybrid metric. The
two resulting gravitational equations are decoupled by separating mass/energy source
density ρ into uniform isotropic mean density ρ̄ and residual ρ̂ = ρ− ρ̄, which extends only
to galactic radius rG and integrates to zero over the defining volume.

The conformally invariant action integral of conformal gravity is defined by a quadratic
contraction of the Weyl tensor, simplified by removing a 4-divergence [3,13]. For uniform
density ρ̄ the Weyl tensor vanishes identically, so that Xµν

g ≡ 0 for a uniform, isotropic cosmos.
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Observed excessive galactic rotational velocities have been studied and parametrized
using conformal Weyl Lagrangian density Lg [3,13]. The generalized Einstein equation
exactly cancels any vacuum energy density. Hubble expansion has been parametrized
using conformal Higgs scalar field Lagrangian density LΦ [14].

Metric tensor gµν is determined by conformal field equations derived from Lg + LΦ [16],
driven by energy-momentum tensor Θµν

m , where subscript m refers to conventional matter
and radiation. The gravitational field equation within halo radius rH is

Xµν
g + Xµν

Φ =
1
2

Θµν
m . (13)

Defining mean density ρ̄G and residual density ρ̂G = ρG− ρ̄G, and assuming Θµν
m (ρ) '

Θµν
m (ρ̄) + Θµν

m (ρ̂), solutions for r ≤ rG of the two equations

Xµν
g =

1
2

Θµν
m (ρ̂G), Xµν

Φ =
1
2

Θµν
m (ρ̄G) (14)

decouple and imply a solution of the full equation. This removes any mean density source
from the Xg equation, leaving only the residual density, which integrates to zero over a
closed volume and cancels vacuum energy.

The decoupled solutions require a composite hybrid metric such as [17]

ds2 = −B(r)dt2 + a2(t)(
dr2

B(r)
+ r2dω2). (15)

Solutions in the two distinct primitive metrics are made consistent by fitting param-
eters to boundary conditions and setting cosmic curvature constant k = 0, justified by
currently observed data.

7. Baryonic Tully–Fisher and Radial Acceleration Relations

Static spherical geometry defines Schwarzschild potential B(r). For a test particle in a
stable exterior circular orbit with velocity v the centripetal acceleration is a = v2(r)/r =
1
2 B′(r)c2. Newtonian B(r) = 1− 2β/r, where β = GM/c2, so that aN = βc2/r2 = GM/r2.

CG adds nonclassical ∆a to aN , so that orbital velocity squared is the sum of v2(aN ; r)
and v2(∆a; r), which crosses with equal and opposite slope at some r = rTF. This defines a
flat range of v(r) centered at stationary point rTF, without constraining behavior at large r.

MOND [1,33,34] modifies the Newtonian force law for accelerations below an empir-
ical scale a0. Using y = aN/a0 as independent variable, for assumed universal constant
a0 ' 10−10m/s2, MOND postulates an interpolation function ν(y) such that observed
radial acceleration a = f (aN) = aNν(y). A flat velocity range approached asymptotically
requires a2 → aN a0 as aN → 0. For aN � a0, ν → 1 and for aN � a0, ν2 → 1/y. This
implies asymptotic limit a2 → a0aN for small aN , which translates into an asymptotically
flat galactic velocity function v(r) for large orbital radius r [33]. For aN � a0, MOND
v4 = a2r2 → GMa0, the empirical baryonic Tully–Fisher relation [20,35–37].

In conformal gravity (CG), centripetal acceleration a = v2/r determines exterior orbital
velocity v2/c2 = ra/c2 = β/r + 1

2 γr− κr2, compared with asymptotic raN/c2 = β/r. If the
asymptotic Newtonian function is valid at r and 2κr/γ can be neglected, the slope of v2(r)
vanishes at r2

TF = 2β/γ. This implies that v4(rTF)/c4 = (β/rTF + 1
2 γrTF)

2 = 2βγ [19,20].
This is the Tully–Fisher relation, exact at stationary point rTF of the v(r) function. Given
β = GM/c2, v4 = 2GMγc2, for relatively constant v(r) centered at rTF.

McGaugh et al. [25] have recently shown for 153 disk galaxies that observed radial
acceleration a is effectively a universal function of the expected classical Newtonian accel-
eration aN , computed for the observed baryonic distribution. Galactic mass is determined
directly by observation, removing uncertainty due to adjustment of mass-to-light ratios for
individual galaxies in earlier studies. The existence of such a universal correlation function,
a(aN) = aNν(aN/a0), is a basic postulate of MOND [33,34].



Particles 2022, 5 18

CG implies a similar correlation function if nonclassical parameter γ is mass-independent [26].
Outside an assumed spherical source mass, conformal Schwarzschild potential B(r) de-
termines circular geodesics such that v2/c2 = ra/c2 = 1

2 rB′(r) = β/r + 1
2 γr − κr2. The

Kepler formula is raN/c2 = β/r. Well inside a galactic halo boundary, 2κr/γ can be ne-
glected. This defines correlation function a(aN) = aN + ∆a if ∆a = 1

2 γc2 is a universal
constant [26], which is implied by the depleted halo model [16]. This requires reconsid-
eration of the definition γ = γ0 + N∗γ∗ used in fitting rotation data for 138 galaxies to
CG [3,22]. For comparison with CG for the Tully–Fisher relation, CG would agree with
MOND v4 = GMa0 if a0 = 2γc2 [19], for mass-independent γ. CG γ = 6.35× 10−28/m
implies MOND a0 = 1.14× 10−10 m/s2.

8. Higgs Parameter λ

The conformal scalar field equation, including parametrized ∆LΦ, is [3,14,17]

1√−g
∂µ(

√
−g∂µΦ) = −(1

6
R− w2

0 + 2λΦ†Φ)Φ. (16)

For k = 0, 1
6 R(t) = h2(t)(1 + Ωq(t)) > h2(t)ΩΛ = w(t)2, where h(t) = ȧ/a in Hubble

units [14].
Ricci scalar R introduces gravitational effects. Time-dependent R(t) = 6(ξ0(t)+ ξ1(t)),

where ξ0(t) = ä
a and ξ1(t) = ȧ2

a2 + k
a2 [14]. For h(t) = ȧ/a and k = 0, 1

6 R(t) = h2(t)(2−
ΩΛ(t) − Ωm(t)) = h2(t)(1 + Ωq(t)) > h2(t)ΩΛ(t))) = w(t)2. Hence ζ(t) = 1

6 R(t) −
w(t)2 > 0.

Only real-valued solution φ(t) is relevant in uniform, isotropic geometry. The field
equation is

φ̈

φ
+ 3

ȧ
a

φ̇

φ
= −(1

6
R(t)− w(t)2 + 2λφ2). (17)

Omitting R and assuming constant λ > 0, Higgs solution φ2
0 = w2

0/2λ [7] is exact. All
time derivatives drop out. In the conformal scalar field equation, cosmological time depen-
dence of Ricci scalar R(t), determined by the CHM Friedmann cosmic evolution equation,

introduces nonvanishing time derivatives. w2
0 = φ̇2

φ2 from the Higgs field covariant deriva-
tive is consistent with constant λ. Time-dependent terms in the scalar field equation can be

included in w2(t) = φ̇2

φ2 −
φ̈
φ − 3h(t) φ̇

φ . For ζ(t) = 1
6 R(t)− w2(t) > 0, φ2(t) = −ζ(t)/2λ is

an exact solution of Equation (17). ζ > 0 for computed R(t) [14] implies λ < 0.
h̄φ(t0) = 174 GeV [38]= 1.203 × 1044h̄H0. In Hubble units, for Ωm = 0,

ζ(t0) = 2Ωq(t0) = 0.536. For empirical φ(t), λ(t) = ζ/(−2φ2). Given ζ(t0) and φ(t0),
dimensionless λ(t0) = −0.185× 10−88 [17].

9. W2 Particle and Z2 Resonance

Conformal theory obtains empirical parameters that preserve the standard electroweak
model, but preclude a massive Higgs particle [17]. The observed LHC 125 GeV reso-
nance [39–41] requires an alternative explanation.

A model Hamiltonian matrix can be defined [18] in which indices 0,1 refer, respectively,
to bare neutral scalar states WW = gµνWµ

−Wν
+, ZZ = gµνZµ∗Zν. The assumed diagonal

elements are H00 = 2mW = 160 GeV, H11 = 2mZ = 182 GeV, for empirical masses mW
and mZ. Intermediate quark and lepton states define a large complementary matrix H̃
indexed by i, j 6= 0, 1, with eigenvalues εi, and off-diagonal elements Ãi0, Ãi1. H̃ determines
energy-dependent increments in a 2× 2 reduced matrix

Hab − µab = Hab − ∑
i 6=0,1

Ã†
ai(εi − ε)−1 Ãib. (18)
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H01 − µ01 = (WW|Hred|ZZ) corresponds to Feynman diagrams for quark and lepton
exchange. The most massive and presumably most strongly coupled intermediate field that
interacts directly would be tetraquark T = tb̄bt̄, whose mass is estimated as εT = 350 GeV.
The very strong interaction between bare fields ZZ and WW is assumed to be dominated
by tetraquark exchange.

A simplified estimate of W2 energy is obtained by restricting intermediate states to the
three color-indexed tetraquark states T = tb̄bt̄, and assuming elements ÃT0, ÃT1 of equal
magnitude α/

√
3. For the reduced 2× 2 matrix, matrix increments µab ' µ(ε) = α2

εT−ε are
all defined by a single parameter α2. Secular equation

(2mW − µ(ε)− ε)(2mZ − µ(ε)− ε) = µ2(ε) (19)

is to be solved for two eigenvalues ε = E0, E1.
It is found that identifying the model diboson W2 with the recently observed LHC

125 GeV resonance [39–41] confirms the empirical value of Higgs parameter λ. In Higgs
V(Φ†Φ) = −(w2 − λΦ†Φ)Φ†Φ, coefficient w2 results from dressing the bare massless
Higgs scalar field by neutral gauge field Zµ, while coefficient λ results from dressing by
W2 [17,18].

Setting E0 = 125 GeV = 0.8644 ×1044h̄H0 for the W2 state, dominated by the bare WW
field, determines parameters α2 = 4878 GeV2, µ(E0) = 21.68 GeV and
tan θx = 0.6138. Using α2 determined by E0, the present model predicts E1 = 173 GeV, with
µ(E1) = 27.62 GeV. This higher eigenvalue is the energy of a resonance Z2 dominated by
the bare ZZ field. Z2 decay into bare WW, two free charged gauge bosons, is allowed by
energy conservation, but not into bare ZZ. Composite field W2 cannot decay spontaneously
into either WW or ZZ.

Identifying E0 with the observed 125 GeV resonance, and using gw = 0.6312 and
gz = 0.7165 with computed tan θx = 0.6138, the implied value of Higgs parameter
λ = − 1

4 g2
wg2

z sin 2θx(
φ̇0
φ0
)2h̄2/m2

W2
c4 = −0.455× 10−88 is consistent with its empirical value,

λ ' −10−88 [17,18].
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