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Abstract: The dynamics of the QCD gauge sector give rise to non-perturbative phenomena that are
crucial for the internal consistency of the theory; most notably, they account for the generation of
a gluon mass through the action of the Schwinger mechanism, the taming of the Landau pole, the
ensuing stabilization of the gauge coupling, and the infrared suppression of the three-gluon vertex.
In the present work, we review some key advances in the ongoing investigation of this sector within
the framework of the continuum Schwinger function methods, supplemented by results obtained
from lattice simulations.
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1. Introduction

The systematic exploration of Green’s functions (n-point correlation functions) of quan-
tum chromodynamics (QCD) [1] by means of continuous Schwinger function methods [2–9],
such as Schwinger–Dyson equations (SDEs) [10–21] and the functional renormalization
group [22–31], together with a plethora of gauge-fixed lattice simulations [32–88], has
afforded ample access to the dynamical mechanisms responsible for the non-perturbative
properties of this remarkable theory. Particularly prominent in this quest is the notion
of the emergent hadron mass (EHM) [3,8,9,89–93], together with its three supporting
pillars: first, the generation of a gluon mass [18,32,93–126] through the action of the
Schwinger mechanism [127,128]; second, the construction of the process-independent
effective charge [3,16,20,79,96,129–131], which arises as the QCD analog of the Gell-Mann–
Low charge is known from quantum electrodynamics (QED) [132,133], and is associated
with a renormalization-group invariant (RGI) scale of about half of the proton mass [20,79];
and third, the dynamical breaking of chiral symmetry and the generation of constituent
quark masses [10,17,134–158].

The dynamics of the gauge sector of QCD, which encompasses both gluonic and ghost
interactions, is instrumental in the physical picture of the EHM outlined above. In fact,
the basic concepts and pivotal mechanisms sustaining the first two pillars of the EHM
have their original inception and most genuine realization in the realm of pure Yang–
Mills theories [18,93,94,96,109,112,117,159–161]. Therefore, in the present review, we focus
precisely on the rich dynamical content of the gauge sector, especially in relation to the
generation of a gluon mass scale out of the intricate gluon self-interactions.

The formulation of the non-perturbative QCD physics in terms of Green’s func-
tions of the fundamental degrees of freedom, such as gluon and ghost propagators and
vertices, provides an intuitive framework for unraveling a wide array of subtle mecha-
nisms; in fact, certain distinctive features of these functions have been inextricably con-
nected with key phenomena such as gluon mass generation, violation of reflection posi-
tivity, and confinement, to name a few. Thus, the saturation of the gluon propagator in
the deep infrared [37,45–49,52,55–59,63,65–67,77,81] has been interpreted as an unequiv-
ocal signal of a gluon mass [32,96–100,103,105,107–109,112,160–166]; and the existence
of an inflection point in the same function has been argued to lead to a non-positive
gluon spectral density [8], and the ensuing loss of reflection positivity [8,11,13,16,167–171]
for the dressed gluons. Similarly, the masslessness of the ghost induces [172] a maxi-
mum in the gluon propagator, and a zero crossing in the form factors of the three-gluon
vertex [28,50,68,69,71,72,81,84,172–180], followed by an infrared divergence for vanishing
momenta. The dynamic origin of these special traits will be the focal point of the analysis
presented in the main body of this article.

The integral equations that govern the full momentum evolution of Green’s functions,
known as SDEs, constitute the indispensable formal and practical instrument for unrav-
eling the special characteristics mentioned above. In their primordial form, the SDEs are
rigorously derived from the generating functional of the theory [133,181], and encode all
dynamical information on the correlation functions, within the entire range of physical
momenta. In practice, due to the enormous complexity of these equations, truncation
approximations need to be implemented; but, unlike perturbation theory, no expansion
parameter is available in the strongly coupled regime of the theory for carrying out such a
task. Despite this intrinsic shortcoming, in recent years, the SDE predictions have become
particularly robust, in part due to various theoretical advances, and in part thanks to the
intense synergy with gauge-fixed lattice simulations, as will be evidenced in subsequent
sections.

Typically, Green’s QCD function is defined within the quantization scheme obtained by
implementing the linear covariant (Rξ) gauges [182]. The corresponding SDEs are derived
and solved within this same quantization scheme, particularly in the Landau gauge (ξ = 0),
where lattice simulations are almost exclusively performed; for studies away from the
Landau gauge, see e.g., [55,58,66,74,75,110,114,120,183–191]. A great deal may be learned,
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however, by considering Green’s functions and corresponding SDEs formulated within the
“PT-BFM” scheme [109,192], namely the framework that arises from the fusion of the pinch
technique (PT) [14,96,100,193–195] with the background field method (BFM) [196–206]. The
main advantage of the PT-BFM originates from the fact that certain appropriately chosen
Green’s functions satisfy Abelian Slavnov–Taylor identities (STIs), whose tree-level form
does not get modified by quantum corrections. This situation is to be contrasted to the
standard STIs [207,208] obtained in the conventional framework of the linear covariant
gauges, which are deformed by non-trivial contributions stemming from the gauge sector
of the theory. In the present work, we will carry out computations and develop arguments
within both frameworks (Rξ and PT-BFM), and will elaborate on their connection by means
of the so-called background-quantum identities (BQIs) [14,209–211].

The article is organized as follows:

• In Section 2, we introduce some basic notations and review certain prominent features
of Green’s functions within the linear gauges and the PT-BFM formalism [109,192].
We stress, in particular, the properties of the auxiliary function G(q) [16,131,212,213],
which relates the gluon propagators with quantum and background gluons, and is in-
timately connected with the definition of the process-independent and RGI interaction
strength [16], to be discussed in detail in Section 6. In addition, we elucidate (with a
concrete example) the important property of “block-wise” transversality, displayed by
the background gluon self-energy [18,109,112].

• In Section 3, we review the general principles associated with the Schwinger mech-
anism [127,128] that endows gauge bosons with an effective mass, focusing on the
details associated with its realization in the context of Yang–Mills theories. We place
particular emphasis on the pivotal requirement that must be satisfied by the funda-
mental vertices of the theory, namely the appearance of massless poles in their form
factors [18,93,109,111–113,117,159,214].

• In Section 4, we examine the dynamical formation of colored composite excitations
(bound states) of vanishing masses, which provide the required structures in the
vertices in order for the Schwinger mechanism to be activated [18,117,159,214]. The
formation of these states out of a pair of gluons or a ghost–anti-ghost pair is controlled
by a set of coupled Bethe–Salpeter equations (BSEs) [18,117,124,214,215], which are
found to have nontrivial solutions for the corresponding Bethe–Salpeter (BS) ampli-
tudes, to be denoted by C(r) and C(r), respectively.

• In Section 5, we explain in detail how the presence of the massless poles in the dressed
vertices that enter the SDE of the gluon propagator give rise to a gluon mass. The
demonstration is carried out separately for the gµν and qµqν/q2 components of the
gluon self-energy. The former case requires the evasion of the so-called “seagull
identity” [113,166]; this becomes possible by virtue of the crucial Ward identity (WI)
displacement, to be further considered in Section 10.

• In Section 6, we go over the basic notions underpinning the PT [14,96,100,193,194], and
show how their application leads naturally to the definition of a dimensionful process-
independent RGI interaction strength [3,16,20,79,96,129–131], denoted by d̂(q). The
genuine process independence of this quantity is concretely exemplified by demon-
strating its appearance in two processes involving fundamentally different external
fields. Next, d̂(q) is computed by combining lattice data for the gluon propagator and
SDE results for the function G(q). Finally, the dimensionless quantity is derived that
constitutes the physical definition of the one-gluon exchange interaction appearing in
standard bound-state computations [15–17,216–222].

• In Section 7, we focus on the structure of the “transversely projected” three-gluon
vertex [126,174,175,223], and discuss briefly the property of planar degeneracy [86],
satisfied, at a high level of accuracy [86–88,174,175,223], by the vertex form factors.
This special property induces a striking simplification to the structure of this vertex,
captured by a particularly compact expression [86], which will be extensively used in
some of the following sections.
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• In Section 8, we take a close look at the ghost sector of the theory, and solve the coupled
system of SDEs governing the ghost propagator and ghost–gluon vertex [85,224–228];
as is well-known, the ghost remains massless, but its dressing function saturates at
the origin [21,42,47,49,51,56,62,63,73,79,85,112,178,225,227–233], because the infrared-
finite gluon propagator used in the ghost SDE provides an effective infrared cutoff. In
the SDE of the ghost–gluon vertex, we employ as central input the compact expression
for the three-gluon vertex presented in the previous section. The results are in excellent
agreement with the available lattice data for the ghost dressing function [73,85] and
the form factor of the ghost–gluon vertex evaluated in the soft-gluon limit [42,43].

• In Section 9, we discuss two important consequences of the masslessness of the ghost
propagator, which manifest themselves at the level of both the gluon propagator
and the three-gluon vertex. Specifically, the diagrams comprised by a ghost loop
induce “unprotected” logarithms, i.e., of the type ln q2; instead, gluonic loops give
rise to “protected” logarithms, of the type ln(q2 + m2), where m is the effective gluon
mass [172,234]. As q2 → 0, the unprotected contributions diverge, driving the appear-
ance of a maximum in the gluon propagator and a divergence in its first derivative,
as well as a zero-crossing and a corresponding divergence in the form factors of the
three-gluon vertex. As we comment in this section, of particular phenomenological
importance [234–240] is the relative suppression that the above features induce to the
dominant vertex form factors in the intermediate range of momenta.

• In Section 10, we discuss an outstanding feature of the WI satisfied by the pole-free
part of the three-gluon vertex, namely the displacement induced by the presence of the
aforementioned massless poles [93,124]. In this context, we introduce the key quantity
denominated “displacement function”, whose appearance serves as a smoking gun
signal of the action of the Schwinger mechanism in QCD; quite interestingly, it coin-
cides [93,124] with the BS amplitude C(r) for the formation of a massless scalar out of a
pair of gluons, introduced in Section 4. In addition, we derive a crucial relation, which
ultimately permits the indirect determination of C(r) from lattice QCD [93,124,126];
an important ingredient in this relation is a partial derivative [124,241], denoted by
W(r), of the ghost–gluon kernel [228], to be determined in the next section.

• In Section 11, we set up and solve the SDE that governs the evolution ofW(r) [124,
126,241,242]; the main component of this SDE is a special projection of the three-
gluon vertex, which is computed by appealing to formulas established in Section 7,
and allows for the accurate determination of W(r) in the entire range of relevant
momenta [126].

• In Section 12, we substitute into the central relation derived in Section 10 the solution
for W(r) found in the previous section, together with the lattice data [84,85] for
the gluon propagator, the ghost dressing function, and the form factor of the three-
gluon vertex associated with the soft-gluon limit, in order to obtain the form of the
displacement function C(r) [124,126]. As we discuss, the results exclude—with near-
absolute certainty—the null hypothesis (absence of Schwinger mechanism, C(r) = 0),
and corroborate the action of the Schwinger mechanism in QCD [126]. In addition,
we show that the form of C(r) found is statistically completely compatible with that
obtained from the BSE-based analysis presented in Section 4.

• In Section 13, we present our conclusions.
• Finally, in Appendix A, we derive the BQIs related to the displacement functions of

the conventional and background vertices, while in Appendix B, we provide details
about the renormalization scheme employed in our computations.
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2. Basic Concepts and General Theoretical Framework

We start by considering the Lagrangian density of an SU(N) Yang–Mills theory, com-
prised of the classical part, Lcl, the contribution from the ghosts, Lgh, and the covariant
gauge-fixing term, Lgf, namely

LYM = Lcl + Lgh + Lgf , (1)

where
Lcl = −

1
4

Fa
µνFaµν , Lgh = −ca∂µDab

µ cb , Lgf =
1

2ξ
(∂µ Aa

µ)
2 . (2)

In the above formula, Aa
µ(x) denotes the gauge field, while ca(x) and ca(x) represent the

ghost and anti-ghost fields, respectively, with a = 1, . . . , N2 − 1.
In addition,

Fa
µν = ∂µ Aa

ν − ∂ν Aa
µ + g f abc Ab

µ Ac
ν , (3)

is the antisymmetric field tensor, where f abc stands for the totally antisymmetric structure
constants of the SU(N) gauge group, and g is the gauge coupling, while

Dab
µ = ∂µδac + g f amb Am

µ , (4)

denotes the covariant derivative in the adjoint representation. Finally, ξ represents the
gauge-fixing parameter; ξ = 0 corresponds to the Landau gauge, while ξ = 1 specifies the
Feynman–´t Hooft gauge.

The transition from the pure Yang–Mills theory of Equation (1) to QCD is implemented
by supplementing the corresponding kinetic and interaction terms for the quark fields.
However, since throughout this work we do not consider effects due to dynamical quarks,
the aforementioned terms will be omitted entirely.

The most fundamental correlation function is the gluon propagator, whose non-
perturbative features are inextricably connected with key dynamical properties of the
theory. In the Landau gauge that we will employ throughout, the gluon propagator,
∆ab

µν(q) = −iδab∆µν(q), is completely transverse, i.e.,

∆µν(q) = ∆(q)Pµν(q) , Pµν(q) := gµν − qµqν/q2 . (5)

In the continuum, the dynamical properties of the gluon propagator are encoded in
the corresponding SDE, given by

∆−1(q)Pµν(q) = q2Pµν(q) + iΠµν(q) , (6)

where Πµν(q) is the gluon self-energy, shown diagrammatically in the first row of Figure 1.
The fully-dressed vertices entering the diagrams are determined by their own SDEs, obtain-
ing finally a tower of coupled integral equations, which, for practical purposes, must be
truncated or treated approximately.

Given that, by virtue of the fundamental STI satisfied by the two-point function, the
self-energy Πµν(q) is transverse,

qµΠµν(q) = 0 , (7)

we have that
Πµν(q) = Π(q)Pµν(q) , (8)

and from Equation (6) follows that

∆−1(q) = q2 + iΠ(q) . (9)

Of particular importance is the exact way that Equation (7) is enforced at the level of the
SDE given in Figure 1 which governs the gluon evolution. In particular, if we were to
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contract the corresponding diagrams by qµ, the entire set of diagrams must be considered
in order for Equation (7) to emerge from the SDE. This pattern manifests itself already at
the one-loop level, where it is known that the ghost loop must be included in order to
guarantee the transversality of the self-energy. The main practical drawback stemming
from this observation is that truncations, in the form of the omission of certain subsets of
graphs, are likely to distort this fundamental property.

+ +Πµν(q) =

(d1) (d2) (d3)

+

(d4)

+

(d5)

ν

q

µ

q

ν

q
ν

q

ν

q

ν

q

µ

q
µ

q

µ

q

µ

q

+
˜Πµν(q) =

(a1)

ν

q

µ

q

+

(a3)

ν

q

µ

q

+

(a2)
ν

q

µ

q +

(a4)
µ

q

ν

q

(a5)

+

(a6)

ν

q

ν

q

µ

q

µ

q

˜Π(1)
µν (q)

˜Π(2)
µν (q)

˜Π(3)
µν (q)

Figure 1. Upper panel: the diagrammatic representation of the conventional gluon self-energy,
Πµν(q). Bottom panel: the diagrammatic representation of the Qa

µ(q)Bb
ν(−q), self-energy δabΠ̃µν(q);

the grey circles at the end of the gluon lines indicate a background gluon. The corresponding Feynman
rules are given in Appendix B of [14].

Quite interestingly, within the PT-BFM framework the transversality property of
Equation (7) is enforced in a very special way, which permits physically meaningful
truncations. In what follows we will predominantly employ the language of the BFM; for
the basic principles of the PT and its connection with the BFM, the reader is referred to the
extended literature on the subject [14,96,100,193,194,211,243], as well as to Section 6 of the
present work.

The BFM is a powerful quantization procedure, where the gauge-fixing is implemented
without compromising explicit gauge invariance. Within this framework, gauge field A
appearing in the classical action is decomposed as A = B + Q, where B and Q are the
background and quantum (fluctuating) fields, respectively. Note that the variable of
integration in the generating functional Z(J) is the quantum field, which couples to the
external sources, as J ·Q. The background field does not appear in loops. Instead, it couples
externally to the Feynman diagrams, connecting them with the asymptotic states to form
elements of the S-matrix. Then, if the gauge-fixing term

L̂gf =
1

2ξQ
(D̂ab

µ Qbµ)2 , D̂ab
µ = ∂µδab + g f ambBm

µ , (10)

is used, the resulting gauge-fixed action retains its invariance under gauge transformations
of the background field. As a result of this invariance, when Green’s functions are contracted
by the momentum carried by a background gluon, they satisfy Abelian (ghost-free) STIs,
akin to the Takahashi identities known from QED. In particular, the STIs of the BFM retain
their tree-level forms in all orders, in contradistinction to the STIs of the Rξ gauges, whose
forms are modified by contributions stemming from the ghost sector.

Within the BFM, one may consider three kinds of propagators, by choosing the types
of incoming and outgoing gluons [244]. In particular, we have:

(i) The propagator 〈0| T[Qa
µ(q)Qb

ν(−q)]|0〉 that connects two quantum gluons. Notice that
this propagator coincides with the conventional gluon propagator of the covariant
gauges, defined in Equation (5), under the assumption that the corresponding gauge-
fixing parameters, ξ and ξQ, are identified, i.e., ξ = ξQ.

(ii) The propagator 〈0| T[Qa
µ(q)Bb

ν(−q)]|0〉 that connects a Qa
µ(q) with a Bb

ν(−q), to be
denoted by ∆̃ab

µν(q) = −iδab∆̃µν(q).
(iii) The propagator 〈0| T[Ba

µ(q)Bb
ν(−q)]|0〉 that connects a Ba

µ(q) with a Bb
ν(−q), to be

denoted by ∆̂ab
µν(q) = −iδab∆̂µν(q). Note that its full definition requires an addi-



Particles 2023, 6 318

tional gauge-fixing term, with the associated “classical” gauge-fixing parameter,
ξC [14,202,206].

Given that the relations captured by Equations (5) and (6) apply also in the cases of
∆̃µν(q) and ∆̂µν(q), one may define the corresponding self-energies Π̃µν(q) and Π̂µν(q), as
well as the functions ∆̃(q) and ∆̂(q).

Quite interestingly, the three propagators defined in (i)-(iii) are related by a set of exact
identities, known as BQIs [14,209–211]. In particular, we have that (see also Table 1)

∆(q) = [1 + G(q)]∆̃(q) = [1 + G(q)]2∆̂(q) , (11)

where the function G(q) is the gµν component of a particular two-point ghost function,
Λµν(q), given by [209,211,213,245]

Λµν(q) := ig2CA

∫

k
∆ρ

µ(k)D(k + q)Hνρ(−q, k + q,−k) = gµνG(q) +
qµqν

q2 L(q) , (12)

where CA is the Casimir eigenvalue of the adjoint representation [N for SU(N)], Dab(q) =
iδabD(q) is the ghost propagator, and Hνµ(r, p, q) denotes the ghost–gluon kernel defined
in Figure 2.

Table 1. The different types of gluon propagators of the background field method (BFM), together
with their diagrammatic representations, symbols, corresponding self-energies, and the background
quantum identities (BQIs) that relate them to the conventional propagator.

External Legs
Diagrammatic
Representation Symbol Self-Energy BQI

Qa
µ(q)Qb

ν(−q)
q

a b

µ ν −iδab∆µν(q) Πµν(q) —

Qa
µ(q)Bb

ν(−q)
q

a b

µ ν −iδab∆̃µν(q) Π̃µν(q) ∆̃(q) =
∆(q)

1 + G(q)

Ba
µ(q)Bb

ν(−q)
q

a b

µ ν −iδab∆̂µν(q) Π̂µν(q) ∆̂(q) =
∆(q)

[1 + G(q)]2

In the Landau gauge, a special identity relates the form factors of Λµν(q) to the ghost
dressing function, F(q), defined as F(q) = q2D(q), namely [16,131,213]

F−1(q) = 1 + G(q) + L(q) , (13)

which is valid before renormalization. In fact, in this particular gauge, G(q) coincides with
the so-called Kugo–Ojima function [212,245–247].
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= −gfabcHνµ(r, p, q)

ν, bk

p

µ, a

q

r

k + r

c

Figure 2. Diagrammatic definition of the ghost–gluon scattering kernel, Hνµ(r, p, q). At the tree level,
H0

νµ = gνµ.

To determine the renormalized form of Equation (13), we introduce the renormaliza-
tion constants of the conventional Green’s functions

∆R(q) = Z−1
A ∆(q) , FR(q) = Z−1

c F(q) ,

IΓR
µ(r, p, q) = Z1IΓµ(r, p, q) , IΓR

αµν(q, r, p) = Z3IΓαµν(q, r, p) ,

gR = Z−1
g g ,

[
gµν + ΛR

µν(q)
]
= ZΛ

[
gµν + Λµν(q)

]
, (14)

Z−1
g = Z−1

1 Z1/2
A Zc = Z−1

3 Z3/2
A ,

where we denote by IΓabc
µ (r, p, q) = −g f abcIΓµ(r, p, q) and IΓabc

αµν(q, r, p) = g f abcIΓαµν(q, r, p)
the conventional ghost–gluon [Qa

µ(q)cc(p)c̄b(r)] and three-gluon [Qa
α(q)Qb

µ(r)Qc
ν(p)] ver-

tices, respectively. Note that, by virtue of Taylor’s theorem [207], Z1 is finite in the Landau
gauge; its precise value depends on the renormalization scheme adopted, see Section 8.
Moreover, denoting by ẐA the (wave-function) renormalization constant of ∆̂(q), the
Abelian STIs of the BFM impose the validity of the pivotal relation [14,202,206]

Zg = Ẑ−1/2
A , (15)

which is the non-Abelian analog of the textbook relation Ze = Z−1/2
A [133], relating the

renormalization constants of the electric charge and the photon propagator in QED.
Then, since the BQIs of Equation (11) are direct consequences of the Becchi–Rouet–

Stora–Tyutin (BRST) symmetry [248–250] of the theory [209,211,213,245], the form is pre-
served by renormalization. Hence, by combining Equations (11), (15) and (15), we obtain

ZΛ = Z−1
1 Zc , (16)

which yields (note that in the original and widely used [3,8,16,20,79,131] version of Equation
(17) the renormalization is performed in the so-called Taylor scheme, where Z1 = 1.)

Z−1
1 F−1(q) = 1 + G(q) + L(q) . (17)

As has been shown in [131], the dynamical equation governing L(q) yields L(0) = 0,
provided that the gluon propagator entering it is finite at the origin. Thus, one obtains from
Equation (17) the useful identity [212]

Z−1
1 F−1(0) = 1 + G(0) . (18)

According to numerous lattice simulations and studies in the continuum (see e.g., [21,42,
47,49,51,56,62,63,73,79,85,112,178,225,227–233]), the ghost dressing function reaches a finite
(nonvanishing) value at the origin, which, due to Equation (18), furnishes also the value of
G(0).
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The final upshot of the above considerations is that one may use the BQIs in Equation (11)
to express the SDE given in Equation (6) in terms of the Π̃µν(q) or Π̂µν(q), at the modest
cost of introducing in the dynamics the quantities 1 + G(q) or [1 + G(q)]2. Focusing on the
former possibility, Equation (11) becomes

∆−1(q)Pµν(q) =
q2Pµν(q) + iΠ̃µν(q)

1 + G(q)
, (19)

where the diagrammatic representation of the self-energy Π̃µν(q) is shown in the lower
panel of Figure 1.

The principal advantage of this formulation is that the self-energy Π̃µν(q) contains
fully-dressed vertices with a background gluon of momentum q exiting from them, which
satisfy Abelian STIs. In particular, denoting by ĨΓµαβ(q, r, p), ĨΓµ(r, p, q), and ĨΓ

mnrs
µαβγ(q, r, p, t)

the BQQ, Bcc, and BQQQ vertices, respectively, we have that [14,100,109]

qµ ĨΓµαβ(q, r, p) = ∆−1
αβ (r)− ∆−1

αβ (p) , (20)

qµ ĨΓµ(r, p, q) = D−1(p)− D−1(r) , (21)

qµ ĨΓ
mnrs
µαβγ(q, r, p, t) = f mse f ernIΓαβγ(r, p, q + t) + f mne f esrIΓβγα(p, t, q + r)

+ f mre f ensIΓγαβ(t, r, q + p) . (22)

In contrast, the conventional three-gluon and ghost–gluon vertices, IΓαµν(q, r, p) and
IΓα(r, p, q), respectively, satisfy the STIs [1,251–255]

qαIΓαµν(q, r, p) = F(q)
[
∆−1(p)Pσ

ν (p)Hσµ(p, q, r)− ∆−1(r)Pσ
µ (r)Hσν(r, q, p)

]
, (23)

qµF−1(q)IΓµ(r, p, q) + pµF−1(p)IΓµ(r, q, p) = −r2F−1(r)U(r, q, p) , (24)

where U(r, q, p) is an interaction kernel containing only ghost fields; its tree-level value is
U0(r, q, p) = 1. The STI for the conventional four-gluon vertex is given in Equation (C.24)
of [14].

The special STIs listed in Equations (20)–(22) are responsible for the remarkable prop-
erty of “block-wise” transversality [109,192,244], displayed by Π̃µν(q). To appreciate this
point, notice that the diagrams comprising Π̃µν(q) in Figure 1 were separated into three
different subsets (blocks), consisting of (i) one-loop dressed diagrams containing only
gluons, (ii) one-loop dressed diagrams containing a ghost loop, and (iii) two-loop dressed
diagrams containing only gluons. The corresponding contributions of each block to Π̃µν(q)

are denoted by Π̃(i)
µν(q), with i = 1, 2, 3.

The block-wise transversality is a stronger version of the standard transversality
relation qµΠ̃µν(q) = 0; it states that each block of diagrams mentioned above is individually
transverse, namely

qµΠ̃(i)
µν(q) = 0 , i = 1, 2, 3. (25)

In order to appreciate in detail the reason why the STIs in Equations (20)–(22) are
instrumental for the block-wise transversality, we will consider the case of Π̃(2)

µν (q); the
relevant diagrams are enclosed in the blue box of Figure 1.

The diagrams (a3) and (a4) are given by

(a3)µν(q) = g2CA

∫

k
(k + q)µD(k + q)D(k)ĨΓν(−k, k + q,−q) , (26)

(a4)µν(q) = g2CA gµν

∫

k
D(k) , (27)
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where a color factor δab is suppressed in both expressions. In addition, for the formal
manipulations of integrals, we employ dimensional regularization [256]; to that end, we
introduce the short-hand notation

∫

k
:=

µε
0

(2π)d

∫ +∞

−∞
ddk , (28)

where d = 4− ε is the dimension of the space-time, and µ0 denotes the ’t Hooft mass.
The contraction of graph (a3)µν(q) by qν triggers the STI satisfied by Γ̃ν(−k, k + q,−q)

[given by Equation (21)], and we obtain

qν(a3)µν(q) = g2CA

∫

k
(k + q)µD(k + q)D(k)

[
D−1(k)− D−1(k + q)

]

= g2CA

∫

k
(k + q)µ[D(k + q)− D(k)]

= −g2CA qµ

∫

k
D(k) , (29)

which is precisely the negative of the contraction qν(a4)µν(q). Hence,

qν
[
(a3)µν(q) + (a4)µν(q)

]
= 0 . (30)

3. Schwinger Mechanism in Yang–Mills Theories

The BRST symmetry of the Yang–Mills Lagrangian given in Equation (1) prohibits the
inclusion of a mass term of the form m2 A2

µ. Moreover, a symmetry-preserving regulariza-
tion scheme, such as dimensional regularization, prevents the generation of a mass term at
any finite order in perturbation theory. Nonetheless, as affirmed four decades ago [94–99],
the non-perturbative Yang–Mills dynamics endow the gluons with an effective mass, which
sets the scale for all dimensionful quantities, and tames the instabilities originating from
the infrared divergences of the perturbative expansion ( e.g., Landau pole). In addition,
the presence of this mass causes the effective decoupling (screening) of the gluonic modes
beyond a “maximum gluon wavelength” [257], and leads to the dynamical suppression of
the Gribov copies, see e.g., [16,258,259] and references therein.

The generation of a gluon mass proceeds through the non-perturbative realization
of the Schwinger mechanism [127,128]. Even though the technical details associated with
the implementation of this mechanism in a four-dimensional non-Abelian setting are
particularly elaborate, the general underlying idea is relatively easy to convey.

To that end, consider the dimensionless vacuum polarization Π(q), defined through
Π(q) = q2Π(q), such that

∆−1(q) = q2[1 + iΠ(q)] . (31)

The Schwinger mechanism is based on the fundamental observation that, if Π(q) develops
a pole at q2 = 0 (to be referred to as “massless pole”) then the vector meson (gluon) picks up
a mass, regardless of any “prohibition” imposed by the gauge symmetry at the level of the
original Lagrangian. Thus, in Euclidean space, the above sequence of ideas leads to

lim
q→0

Π(q) = m2/q2 =⇒ lim
q→0

∆−1(q) = lim
q→0

(q2 + m2) =⇒ ∆−1(0) = m2 , (32)

and the gauge boson propagator saturates to a non-zero value at the origin. This effect of
infrared saturation of the propagator signifies the generation of a mass, which is identified
with the positive residue of the pole.

At this descriptive level, Schwinger’s argument is completely general, making no
particular reference to the specific dynamics that would lead to the appearance of the
required massless pole inside Π(q). In fact, depending on the particular theory, the field-
theoretic circumstances that trigger the crucial sequence captured by Equation (32) may be
very distinct, see e.g., [260,261]. In the case of Yang–Mills theories, the origin of the massless
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poles is purely non-perturbative [159]: the strong dynamics produce scalar composite
excitations, which carry color and have vanishing masses. These poles are carried by the
fully-dressed vertices of the theory; and since these vertices enter the gluon SDE shown in
Figure 1 (upper (lower) panel for the QQ (QB) propagator), the massless poles find their way
into the gluon self-energy (or, equivalently, the gluon vacuum polarization). The detailed
implementation of this idea has been presented in a series of works [18,93,96,112,116–
118,159–161,166,189,262], and will be summarized in the rest of this section.

Let us focus for now on the conventional three-gluon and ghost–gluon vertices,
IΓαµν(q, r, p) and IΓα(r, p, q), respectively, introduced above Equation (23). When the forma-
tion of massless poles is triggered, these vertices assume the general form (see Figure 3)

IΓαµν(q, r, p) = Γαµν(q, r, p) + Vαµν(q, r, p) ,

IΓα(r, p, q) = Γα(r, p, q) + Vα(r, p, q) , (33)

where Γαµν(q, r, p) and Γα(r, p, q) are their pole-free components, while Vαµν(q, r, p) and
Vα(q, r, p) contain longitudinally coupled poles, whose special tensorial structure is given by

Vαµν(q, r, p) =
qα

q2 Cµν(q, r, p) +
rµ

r2 Aαν(q, r, p) +
pν

p2 Bαµ(q, r, p) ,

Vα(r, p, q) =
qα

q2 C(r, p, q) , (34)

such that
Pα

α′(q)Pµ
µ′(r)Pν

ν′(p)Vαµν(q, r, p) = 0 , Pα
α′(q)Vα(r, p, q) = 0 . (35)

= +

qq

a, α

q

a, α a, α

i/q2

VαµνIΓαµν Γαµν ︸ ︷︷ ︸
Iα(q)

µ, b

ν, c

r

p

µ, b

ν, c

r

p

µ, b

ν, c

r

p

=

q

a, α
+

i/q2qqq

a, α a, α
VαIΓα Γα ︸ ︷︷ ︸

Iα(q)

b

c

r

p

b

c

r

p

b

c

r

p

Figure 3. The diagrammatic representation of the three-gluon and ghost–gluon vertices introduced in
Equation (33): IΓαµν(q, r, p) (first row) and IΓα(r, p, q) (second row). The first term on the r.h.s. indicates
the pole-free part, Γαµν(q, r, p) or Γα(r, p, q), while the second denotes the pole term Vαµν(q, r, p) or
Vα(r, p, q).

We emphasize that the reason why Vαµν(q, r, p) and Vα(q, r, p) are longitudinally
coupled may be directly inferred from their special decomposition, shown in Figure 3.
In particular, let us denote by Iα(q) the transition amplitude that connects a gluon with
a massless composite scalar, depicted as a gray circle in Figure 3. Since Iα(q) depends
solely on the momentum q, and carries a single Lorentz index, α, its general form is given
by Iα(q) = qα I(q), where I(q) is a scalar form factor [117,214]. This observation accounts
directly for the form of Vα(q, r, p) given in Equation (34); to deduce the form of Vαµν(q, r, p),
one must, in addition, appeal to Bose symmetry, which imposes the structures rµ/r2 and
pν/p2 in the remaining two channels.

Returning to the SDE of Figure 1, the component Vαµν(q, r, p) will enter in it through
graphs (d1) and (d4), while the component Vα(q, r, p) through graph (d3). Since Vαµν(q, r, p)
has poles for each one of its three momenta, let us point out that only the pole associated
with the q-channel, i.e., the channel that carries the momentum entering the gluon prop-
agator is relevant for the Schwinger mechanism that will generate mass for ∆(q). In fact,
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in the Landau gauge that we employ, the gluon propagators inside the diagrams (d1) and
(d4) are transverse, leading to a considerable reduction in the number of the form factors of
Vαµν(q, r, p) that participate actively, since

Pµ
µ′(r)Pν

ν′(p)Vαµν(q, r, p) =
qα

q2 Pµ
µ′(r)Pν

ν′(p)Cµν(q, r, p) . (36)

Consequently, for the ensuing analysis, one requires only the tensorial decomposition of
the component Cµν(q, r, p) in Equation (34), which is given by

Cµν(q, r, p) = C1 gµν + C2 rµrν + C3 pµ pν + C4 rµ pν + C5 pµrν , (37)

where Cj := Cj(q, r, p). Then, the substitution of Equation (37) into Equation (36), and use
of the relation q + p + r = 0, reveals that only two form factors survive inside (d1) and (d4),
namely

Pµ
µ′(r)Pν

ν′(p)Vαµν(q, r, p) =
qα

q2 Pµ
µ′(r)Pν

ν′(p)
[
C1 gµν + C5qµqν

]
. (38)

Since the main function of the Schwinger mechanism is to make the gluon propagator
saturate at the origin, it is important to explore the properties of the structures appearing
in Equation (38) near q = 0. To that end, we expand the r.h.s. of Equation (38), keeping
terms at most linear in q. After noticing that the term proportional to C5 in Equation (38) is
of order O(q2), we end up with a single relevant form factor associated with Vαµν(q, r, p),
namely C1(q, r, p), which survives the q→ 0 limit of graphs (d1) and (d4). As for Vα(r, p, q),
its unique component, C(q, r, p), enters directly in (d3).

The continuation of this analysis entails the Taylor expansion of C1(q, r, p) and C(r, p, q)
around q = 0. In carrying out this expansion, one employs the following two key relations,

C1(0, r,−r) = 0 , C(r,−r, 0) = 0 . (39)

The first one follows directly from the Bose symmetry of the three-gluon vertex, which
implies that C1(q, r, p) = −C1(q, p, r); as we will see in Section 10, it may also be derived
in a completely independent way from the fundamental STIs satisfied by the three-gluon
vertex. The justification of the second relation in Equation (39) is less straightforward; its
derivation, presented in Appendix A, relies on the BQI [14,211] linking the conventional
ghost–gluon vertex, IΓα(r, p, q), with its background counterpart, ĨΓα(r, p, q).

Thus, after taking Equation (39) into account, the Taylor expansion of C1(q, r, p) and
C(r, p, q) around q = 0 yields

lim
q→0

C1(q, r, p) = 2(q · r)C(r) + · · · , lim
q→0

C(r, p, q) = 2(q · r)C(r) + · · · , (40)

with

C(r) :=
[

∂C1(q, r, p)
∂p2

]

q=0
, C(r) :=

[
∂C(r, p, q)

∂p2

]

q=0
. (41)

The functions C(r) and C(r) are of central importance for the rest of this review. In
particular, there are three key points related to them that will be elucidated in detail in
what follows:

1. C(r) and C(r) are the BS amplitudes describing the formation of gluon–gluon and
ghost–anti-ghost colored composite bound states, respectively, see Section 4.

2. The gluon mass is determined by certain integrals that involve C(r) and C(r), given
explicitly in Section 5.

3. C(r) and C(r) lead to smoking-gun displacements of the WIs. In fact, the displacement
induced by C(r), has been confirmed by lattice QCD, by combining judiciously the
results of several lattice simulations, see Section 5.2.
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We emphasize that the BFM vertices develop poles in exactly the same way as their
conventional counterparts. In particular, the main relations Equations (33), (34), (39) and
(41) remain valid, with the only modification that all quantities carry hats or tildes; these
BFM vertices will be used extensively in Section 5. Note that the conventional and back-
ground vertices, including their pole content, are related through appropriate BQIs, see
e.g., Equations (A3) and (A6).

We end this section by commenting briefly on the implementation of the Schwinger
mechanism away from the Landau gauge, i.e., when the gluon propagator is given by

∆µν(q, ξ) = ∆(q, ξ)Pµν(q) + ξ qµqν/q4 , ξ 6= 0 ; (42)

for further details, the reader is referred to [189].
(ı) The massless poles remain longitudinally coupled for every value of ξ, i.e., the

form of Vαµν(q, r, p) and Vα(r, p, q) given in Equation (34) persists, with the only difference
that the form factors comprising Cµν(q, r, p), Aαν(q, r, p), Bαµ(q, r, p), and C(r, p, q) depend
in general on ξ. Indeed, as explained right below Equation (35), the longitudinal nature of
the poles is dictated solely by Lorentz invariance, which forces the transition amplitude
Iα(q, ξ) to assume the form Iα(q) = qα I(q, ξ); clearly, this fundamental argument holds for
every ξ.

(ii) Since the gluon propagators entering the graphs (d1) and (d4) of Figure 1 are now
given by Equation (42), the l.h.s. of Equation (36) becomes ∆µ

µ′(r, ξ)∆ν
ν′(p, ξ)Vαµν(q, r, p),

and, as a result, the terms in Equation (34) proportional to pν/p2 and rµ/r2 are not fully
annihilated. Note, however, that the presence of poles in p2 → k2 and r2 → (k + q)2 poses
no problem, given that one integrates over the loop momentum k. Similar observations
hold for the BSE discussed in the next section, which acquires a more complicated form,
involving not only the C(r) and C(r), but also additional form factors [189].

(iii) A general property of the massless excitations that trigger the Schwinger mech-
anism is that they do not induce divergences to physical amplitudes; their contributions
are completely vanishing, or, at most, finite [260,261]. As was shown recently in [93], in
Landau gauge QCD this property hinges on the validity of Equations (35) and (39). Away
from the Landau gauge, Equation (39) persists, because its validity relies on Bose symmetry
[189]. However, in Equation (35) the substitution Pµν(q) → ∆µν(q, ξ) must be carried
out for all projectors; as a result, the r.h.s. no longer vanishes, but includes ξ-dependent
longitudinal contributions. Even though this issue has not been addressed in the literature,
the longitudinal nature of the additional terms heralds their cancellation through the same
general mechanism that renders physical amplitudes ξ-independent.

4. Dynamical formation of Massless Poles

One crucial aspect of the implementation of the Schwinger mechanism in a Yang–
Mills context is that the poles that comprise the components Vαµν(q, r, p) and Vα(q, r, p)
in Equation (34) are not introduced by hand; rather, they are generated dynamically, as
massless composite excitations that carry color. In fact, this subtle process is controlled
by a system of coupled linear BSEs for the functions C(r) and C(r), which play the role
of the BS amplitudes for generating composite massless scalars out of two gluons and a
ghost–anti-ghost pair, respectively.

The starting points for the derivations of the aforementioned BSEs are the SDEs for
IΓαµν(q, r, p) and IΓα(r, p, q), shown diagrammatically in Figure 4, and given by [124]

IΓαµν = Γαµν
0 − λ

∫

k
IΓαβγ∆βρ∆γσKµνσρ

11 + 2λ
∫

k
IΓαDDKµν

12 ,

IΓα = Γα
0 − λ

∫

k
IΓαβγ∆βρ∆γσKσρ

21 − λ
∫

k
IΓαDDK22 , (43)

where
λ := ig2CA/2 , (44)
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and the tree-level expressions for the vertices IΓαµν and IΓα are given by

Γαµν
0 (q, r, p) = (q− r)νgαµ + (r− p)αgµν + (p− q)µgνα , Γα

0 (r, p, q) = rα . (45)

Note that, for compactness, all momentum arguments have been suppressed; they may be
easily restored by appealing to Figure 4.
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Figure 4. The coupled system of Schwinger–Dyson equations (SDEs) for the three-gluon and ghost–
gluon vertices, IΓαµν(q, r, p) and IΓα(r, p, q), respectively. The orange ellipses represent four-point
scattering kernels, denoted by Kij. We omit diagrams containing five-point scattering kernels.

The following steps are subsequently implemented:

1. Substitute into both sides of Equation (43) the expressions for the fully-dressed vertices
given in Equation (33).

2. In order to exploit Equation (38), multiply the first equation by the factor Pµ′µ(r)Pµ′
ν (p).

3. Take the limit of the system as q→ 0: this activates Equation (40) and introduces the
functions C(r) and C(r).

4. Isolate the tensor structures proportional to qα, and match the terms on both sides.
5. Employ the “one-particle exchange” approximation for the kernels Kij, to be denoted

by K0
ij, shown in Figure 5.
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Figure 5. The one-particle exchange approximations, K0
ij, of the kernels Kij appearing in Figure 4.

Thus, we arrive at a system of homogeneous equations involving C(r) and C(r),

C(r) = −λ

3

∫

k
C(k)∆2(k)Pρσ(k)Pµν(r)K̃µνσρ

11 +
2λ

3

∫

k
C(k)D2(k)Pµν(r)K̃µν

12 ,

C(r) = −λ
∫

k
C(k)∆2(k)Pσρ(k)K̃σρ

21 − λ
∫

k
C(k)D2(k)K̃22 , (46)
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where K̃ij := (r · k/r2)K0
ij(r,−r, k,−k); the system is diagrammatically depicted in Figure 6.
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Figure 6. The diagrammatic representation of the coupled system of Bethe–Salpeter equations (BSEs)
that governs the evolution of the functions C(r2) and C(r2).

Before turning to the numerical analysis, the BSE system must be passed to the
Euclidean space, following standard conversion rules. In doing so, we note that the integral
measure is modified according to d4k → id4kE; this extra factor of i combines with the λ
defined in Equation (44) to give real expressions.

As announced, the system of coupled equations given in Equation (46) represents the
BSEs that govern the formation of massless colored bound states out of two gluons and a
ghost–anti-ghost pair. The functions C(r) and C(r) are the corresponding BS amplitudes;
finding nontrivial solutions for them, i.e., something other than C(r) = C(r) = 0 identically,
is crucial for the implementation of the Schwinger mechanism.

The equations in Equation (46) are linear and homogeneous in the unknown functions.
There are two main consequences arising from this fact. First, the numerical solution of the
system will be reduced to an eigenvalue problem. Second, the overall scale of the solutions
is undetermined, since the multiplication of a given solution by an arbitrary real constant
produces another solution (The ambiguity originates from considering only leading terms
in the expansion around q = 0, and may be resolved if further orders in q are kept, see
e.g., [219,263,264]).

It turns out that the condition for obtaining nontrivial solutions, when expressed
in terms of the strong coupling, αs := g2/4π, states that they exist for αs = 0.63 when
the renormalization point µ = 4.3 GeV. The solutions obtained when αs acquires this
special value are shown in Figure 7; they have undergone scale fixing (The scale was fixed
by requiring the best possible matching with the result obtained for C(r) from the WI
displacement, see Section 12), and are denoted by C?(r) and C?(r). Observe that C?(r) is
significantly larger in magnitude than C?(r), implying that the three-gluon vertex accounts
for the bulk of the gluon mass, as originally claimed in [215].



Particles 2023, 6 327

0.0 1.0 2.0 3.0 4.0 5.0
-0.4

-0.3

-0.2

-0.1

0.0

0.1

D
is

p
la

c
e

m
e

n
t 

fu
n

c
ti
o

n
s

C⋆(r)

C⋆(r)

Figure 7. The solutions for C?(r) (purple dot-dashed) and C?(r) (red dashed) obtained from the
coupled BSE system of Equation (46).

It is important to compare the value of αs = 0.63, imposed by the BSE eigenvalue, with
the expected value for αs for the renormalization scheme employed: within the asymmetric
momentum subtraction (MOM) scheme (see Appendix B), we have that αs = 0.27 [71]. This
numerical discrepancy in the values of αs is clearly an artifact of the truncation employed,
and concretely of the approximation of the kernels Kij by their one-particle exchange
diagrams, K0

ij. A preliminary analysis reveals that mild modifications of the kernels Kij

lead to considerable variations in the value of αs, but leave the form of the solutions
for C?(r) and C?(r) practically unaltered. This observation suggests that, while a more
complete knowledge of the BSE kernels is required in order to bring αs closer to its MOM
value, the solutions obtained with the present approximations should be considered as
particularly stable.

5. Generation of the Gluon Mass

We next demonstrate in detail how the presence of the massless poles in the vertices
that enter the SDE of the gluon propagator generate a gluon mass.

Since the fundamental STIs of the theory remain intact under the action of the
Schwinger mechanism, Equations (7) and (8) remain valid, and the mass term m2 = ∆−1(0)
will appear in the transverse combination ∆−1(0)Pµν(q). However, the determination of
the mass proportional to gµν exposes an entirely different array of principles compared to
the corresponding computation for the qµqν/q2 component.

The calculation with respect to the qµqν/q2 component is rather direct; since the
massless poles in the vertices are themselves longitudinally coupled, their contribution
to the qµqν/q2 component of Πµν(q) is easily worked out, as will be illustrated in Section
5.1. In contrast, the emergence of a mass proportional to gµν is intimately connected with a
powerful relation, known as seagull identity [113,166], which in the absence of the Schwinger
mechanism would enforce the masslessness of the propagator, as will be discussed in
Section 5.2. In fact, one main conceptual difference between the two approaches is that
in the gµν case, the use of the PT-BFM-based version of the SDE given in Equation (19) is
crucial for the emergence of the correct result.

In order to simplify the technical aspects of the calculation without compromising its
conceptual content, we will determine the contribution to the gluon mass due to the pole
in the ghost–gluon vertex, namely Vα(r, p, q) in the case of IΓα(r, p, q), and Ṽα(r, p, q) in the
case of ĨΓα(r, p, q). To that end, we will focus on the subset of self-energy graphs containing
only ghost loops, i.e., graph (d3) in the case of Πµν(q), and graphs (a3) and (a4) in the case
of Π̃µν(q), shown in the upper and lower row of Figure 1, respectively.



Particles 2023, 6 328

5.1. Gluon Mass from the qµqν Component

Let us calculate the contribution to the gluon mass stemming from the ghost loop, i.e.,
the diagram (d3) of Figure 1, which, for general values of q, reads

(d3)µν(q) = g2CA

∫

k
(k + q)µD(k + q)D(k)IΓν(−k, k + q,−q) . (47)

To isolate the qµqν/q2 component of Equation (47) at the origin, we first decompose the
full vertex IΓν(−k, k + q,−q) as in Equations (33) and (34), and drop directly the pole-free
part since it does not contribute at q = 0. Then, denoting by (dV

3 )µν(q) the contribution of
Vν(−k, k + q,−q) to (d3)µν(q), we obtain

(dV
3 )µν(q) = −g2CA

qν

q2

∫

k
(k + q)µD(k + q)D(k)C(−k, k + q,−q) . (48)

Next, a Taylor expansion around q = 0, using Equations (39) and (40), yields

(dV
3 )µν(q) = −2g2CA

qνqρ

q2

∫

k
kµkρD2(k)C(k) . (49)

Evidently, the integral above can only be proportional to gµρ, such that

(dV
3 )µν(q) = −

2g2CA

d

(
qµqν

q2

) ∫

k
k2D2(k)C(k) , (50)

where the tensor structure qµqν/q2 is already isolated.
Then, let us denote by ∆−1

gh (0) the contribution to the mass originating in the qµqν/q2

of the ghost loop. Noting that the contribution of (dV
3 )µν(q) to the propagator is i times the

negative of its qµqν/q2 form factor, we obtain that

∆−1
gh (0) =

4λ

d

∫

k
k2D2(k)C(k) . (51)

At this point, we set d = 4 and renormalize Equation (51). This leads to the appearance of
the finite renormalization constant of the ghost–gluon vertex, Z1.

Next, we express the result in terms of the ghost dressing function F, pass to Euclidean
space, and employ hyperspherical coordinates, to obtain the final expression

∆−1
gh (0) = λ̂ Z1

∫ ∞

0
dy F2(y) C(y) , (52)

where λ̂ := CAαs/8π.
The derivation of the contributions from the diagrams (d1) and (d4) proceeds in a

completely analogous way, but is algebraically more involved, see [166] for details.
It is instructive to consider how the result of Equation (52) emerges in the context of

Equation (19). To this end, we consider the ghost block Π̃(2)
µν (q) of Figure 1, whose diagrams

have the expressions given in Equation (27); clearly, only diagram (a3)µν(q) can contribute

to the qµqν component of Π̃(2)
µν (q).

Then, we decompose ĨΓα(r, p, q) in complete analogy with Equations (33) and (34), i.e.,

ĨΓα(r, p, q) = Γ̃α(r, p, q) +
qα

q2 C̃(r, p, q) , (53)

and expand the (a3)µν(q) of Equation (27) around q = 0, isolating its qµqν/q2 component.
These steps eventually lead to

∆̃−1
gh (0) =

4λ

d

∫

k
k2D2(k)C̃(k) , (54)



Particles 2023, 6 329

where C̃(q) is defined in the exact same way as C(q), namely through Equation (41) but
with tildes over all relevant quantities. It is now easy to establish that Equation (54) is
completely equivalent to Equation (51), simply by multiplying both of its sides by Z1F(0),
and then using Equation (A4) on the r.h.s. and Equations (19) and (18) on the l.h.s.

Hence, when the mass is computed through the qµqν/q2 component of the self-energy,
the contributions originating from the ghost diagrams of either the BQ or the QQ propagator
furnish the same result. The same is not true for the calculation through the gµν component,
since the ghost diagram (d3)µν of the QQ propagator is not by itself transverse, and a
meaningful analysis is preferably carried out within the BFM.

5.2. Gluon Mass from the gµν Component: Seagull Identity and Ward Identity Displacement

The fact that the activation of the Schwinger mechanism is crucial for the self-consistent
generation of a gluon mass may be best appreciated in conjunction with the so-called seagull
identity [113,166]. The content of this identity is that

∫

k
k2 ∂ f (k)

∂k2 +
d
2

∫

k
f (k) = 0 , (55)

for functions f (k) that satisfy Wilson’s criterion [265]; the cases of physical interest are
f (k) = ∆(k), D(k). The general demonstration of the validity of Equation (55) has been
given in [166]; for a detailed discussion of how Equation (55) prevents the photon from
acquiring a mass in scalar electrodynamics, see [18].

What is so special about Equation (55) is that, within the PT-BFM formalism, the l.h.s.
of Equation (55) coincides with the contributions of loop diagrams to the gµν component of
the gluon mass. Therefore, Equation (55) enforces the non-perturbative masslessness of
the gluon in the absence of the Schwinger mechanism: even if a massive gluon propagator
(made “massive” through a procedure other than the Schwinger mechanism) were to be
substituted inside Equation (55), one would obtain zero as a contribution to the gluon
mass! For example, the simple choice f = (k2 −m2)−1, reduces the l.h.s of Equation (55) to
(dimensionally regularized) textbook integrals, which add up to give precisely zero [18].

In order to appreciate in some detail how the seagull identity prevents the gµν compo-
nent of the propagator from acquiring a mass in the absence of the Schwinger mechanism,
let us consider once again the ghost block Π̃(2)

µν (q) of Figure 1; now both graphs, (a3) and
(a4), contribute to the gµν component.

Let us assume that the Schwinger mechanism is turned off; at the level of the Bcc vertex
this means that V̂α(r, p, q) vanishes identically, and ĨΓα(r, p, q) = Γ̃α(r, p, q). Consequently,
Γ̃α(r, p, q) saturates the STI of Equation (21),

qαΓ̃α(r, p, q) = D−1(p)− D−1(r) . (56)

Since the form factors of the vertex Γ̃α(r, p, q) do not contain any poles, the derivation from
Equation (56) of the corresponding WI proceeds in the standard textbook way: both sides
of Equation (56) undergo a Taylor expansion around q = 0, and terms at most linear in q
are retained. Thus, one arrives at the simple QED-like WI

Γ̃α(r,−r, 0) =
∂D−1(r)

∂rα
=⇒ D2(r)Γ̃α(r,−r, 0) = −2rα

∂D(r)
∂r2 . (57)

We now compute the gµν component of Π̃(2)
µν (q) at q = 0, or, equivalently, ∆̃−1

gh (0).
From Equation (27), we see that (a4)µν is proportional to gµν in its entirety. On the other
hand, (a3)µν(q) contains both gµν and qµqν components; however, the latter vanishes in the
limit q→ 0 if the vertex is pole-free. Then, it is straightforward to show that, as q→ 0,

∆̃−1
gh (0) =

2λ

d

[∫

k
kµD2(k)Γ̃µ(−k, k, 0) + d

∫

k
D(k)

]
. (58)
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At this point, employing the WI of Equation (57) (with r → −k), we get

∆̃−1
gh (0) =

4λ

d

[∫

k
k2 ∂D−1(k)

∂k2 +
d
2

∫

k
D(k)

]

︸ ︷︷ ︸
seagull identity

= 0 . (59)

Hence, the WI satisfied by the vertex in the absence of the Schwinger mechanism triggers
the seagull identity, which, in turn, enforces the masslessness of the propagator.

When the Schwinger mechanism is activated, the STIs that are satisfied by the vertices
of the theory retain their original forms but are resolved through the nontrivial participation
of the terms containing the massless poles [96,112,159–161,166,262,266]. In particular, the
full vertex ĨΓα(r, p, q) precisely satisfies Equation (21), namely

qα ĨΓα(r, p, q) = qαΓ̃α(r, p, q) + C̃(r, p, q)

= D−1(p)− D−1(r) . (60)

Notice in particular that the contraction of ĨΓα(r, p, q) by qα cancels the massless pole in q2,
leading to a completely pole-free result. Therefore, the WI obeyed by Γ̃α(r, p, q) may be
derived as before, through a standard Taylor expansion, leading to

qαΓ̃α(r,−r, 0) = −C̃(r,−r, 0) + qα





∂D−1(r)
∂rα

−
[

∂C̃(r, p, q)
∂qα

]

q=0



 . (61)

Evidently, the unique zeroth-order contribution appearing in Equation (61), namely C̃(r,−r, 0),
must vanish,

C̃(r,−r, 0) = 0 . (62)

Note that this particular property may be independently derived from the antisymmetry
of C̃(r, p, q) under r ↔ p, C̃(r, p, q) = −C̃(p, r, q), which is a consequence imposed by the
ghost–anti-ghost symmetry of the B(q)c̄(r)c(p) vertex. The above result, together with
Equation (A3), is used to prove Equation (39) in Appendix A.

Thus, Equation (61) becomes

qαΓ̃α(r,−r, 0) = qα

{
∂D−1(r)

∂rα
− 2rαC̃(r)

}
, C̃(r) :=

[
∂C̃(r, p, q)

∂p2

]

q=0

, (63)

and the matching of the terms linear in q yields the WI

Γ̃α(r,−r, 0) =
∂D−1(r)

∂rα
− 2rα C̃(r)︸ ︷︷ ︸

WI displacement

. (64)

Comparing Equations (57) and (64), it becomes clear that the Schwinger mechanism induces
a characteristic displacement to the WIs that are satisfied by the pole-free parts of the
vertices [166].

Returning to Equation (58), but now substituting in it the displaced version of
Equation (57), namely

D2(k)Γ̃µ(−k, k, 0) = 2kµ

[
∂D(k)

∂k2 + D2(k)C̃(k)
]

. (65)

When Equation (65) is substituted into Equation (58), the first term of its r.h.s. triggers
the seagull identity and vanishes, exactly as before; however, the second term survives,
precisely furnishing the result given in Equation (54).
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Completely analogous procedures may be applied to the remaining two blocks, Π̃(1)
µν (q)

and Π̃(3)
µν (q), by exploiting the Abelian STIs of Equations (20) and (22), respectively [161].

6. Renormalization Group Invariant Interaction Strength

The PT-BFM formalism provides the natural framework for the construction of the
RGI version of the naive one-gluon exchange interaction.

To fix the ideas, recall that in QED, the one-photon exchange interaction, defined as
α∆A(q), where α := e2/4π is the hyper-fine structure constant and ∆A(q) the photon propa-
gator, is an RGI combination, by virtue of the relation Ze = Z−1/2

A ; see comments following
Equation (15). Moreover, this particular combination is universal (process-independent)
because it may be identified within any two-to-two scattering process, regardless of the
nature of the initial and final states (electrons, muons, taus, etc). Instead, in QCD, the
corresponding combination αs∆(q) is (trivially) universal but not RGI. When the vertices
that connect the gluon to the external particles are “dressed” (Γ0 → Γ), the combination
Γ αs∆ Γ becomes RGI; however, it is no longer process-independent, because the vertices
Γ contain information on the characteristics of the external particles, e.g., the Γ is not the
same if the external particles are quarks or gluons. This apparent conundrum may be
resolved by resorting to the PT, which reconciles harmoniously the notions of RGI and
process independence.

Within the PT framework, the starting point of the construction involves “on-shell”
processes [14,96,100,193,194], such as those depicted in Figure 8. The fundamental obser-
vation is that the dressed vertices appearing there contain propagator-like contributions,
which may be unambiguously identified by means of a well-defined diagrammatic pro-
cedure. After discarding terms that vanish on the shell, the contributions extracted from
a vertex have a two-fold effect: (i) the genuine vertex contributions left behind form a
new vertex, Γ̃, which satisfies Abelian STIs, and (ii) when the propagator-like pieces from
both vertices are allotted to the conventional propagator, ∆µν(q), the resulting effective
propagator, ∆̂µν(q), captures all RG logarithms associated with the running of the coupling;
for example, at one loop and for large q2, one has

∆̂−1(q) ≈ q2
[
1 + bg2 ln(q2/µ2)

]
, (66)

where b = 11CA/48π2 is the first coefficient of the Yang–Mills β function. We emphasize
that the PT construction goes through all orders in perturbation theory, as well as non-
perturbatively, and all key properties of the PT Green’s function persist unaltered [194,195].

The correspondence between the PT and the BFM may be summarized by stating
that the PT rearrangement outlined above amounts effectively to replacing the Q-type
gluon that is being exchanged (carrying momentum q) by a B-type gluon [193,267–269];
external (on-shell) fields are always of the Q-type. Thus, the notation used above for
the PT effective Green’s functions (“tildes” and “hats”) corresponds precisely to the BFM
notation introduced in Section 2. Note that the formal expression of all PT rearrangements
implemented diagrammatically are the BQIs that relate conventional Green’s functions to
their BFM counterparts [14]. For example, in the case of the quark–gluon vertex, we have
that the vertices Γµ(q, k1,−k2) [with external fields Qa

µ(q)qb(k1)q̄c(−k2)] and Γ̃µ(q, k1,−k2)

[Ba
µ(q)qb(k1)q̄c(−k2)] are related by the BQI [270]

Γ̃µ(q, k1,−k2) = [1 + G(q)]Γµ(q, k1,−k2) + · · · , (67)

where the ellipsis denotes terms that vanish on the shell. Similarly, the BQI of Equation
(A5), when evaluated on-shell, yields a completely analogous result, to wit,

ĨΓµαρ(q, k1,−k2) = [1 + G(q)]IΓµαρ(q, k1,−k2) + · · · . (68)
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It is now clear how the PT gives rise to a process-independent propagator-like component:
regardless of the process ( i.e., the type of vertex connecting the internal gluon to the
external states), each vertex contributes to the conventional ∆(q) a factor of [1 + G(q)]−1,
finally leading to the BQI of Equation (11) [16].

The culmination of the above sequence of ideas is reached by noting that, by virtue of
Equation (15), the combination

d̂(q) := αs∆̂(q) =
αs∆(q)

[1 + G(q)]2
, (69)

is RGI: it retains exactly the same form before and after renormalization, and, consequently,
does not depend on the renormalization point µ [96]. The quantity d̂(q) has a mass dimen-
sion of −2, and is known in the literature as the “RGI running interaction strength” [16].
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Figure 8. Diagrammatic representation of the basic PT rearrangement in the case of quark–antiquark
scattering, corresponding to the S-matrix element Tqq̄→qq̄ of Equation (70) (left), and gluon–gluon
scattering, corresponding to Tgg→gg of Equation (71) (right).

The steps leading to the natural appearance of d̂(q) within any given process may be
summarized in the case of quark–antiquark, or gluon–gluon scattering.

Consider the S-matrix elements Tqq̄→qq̄, for the scattering of a quark and an antiquark,
and Tgg→gg, for the scattering of two gluons. The quark–antiquark scattering is depicted in
the left panel of Figure 8. Using the BQI of Equation (11) we obtain

Tqq̄→qq̄ =
[
gΓµ(q, k1,−k2)

]
∆(q)Pµν(q)[gΓν(−q, k3,−k4)]

PT
=
{

g[1 + G(q)]−1Γ̃µ(q, k1,−k2)
}

∆(q)Pµν(q)
{

g[1 + G(q)]−1Γ̃ν(−q, k3,−k4)
}

PT
= Γ̃µ(q, k1,−k2)

{
g2[1 + G(q)]−2∆(q)

}
Pµν(q)Γ̃ν(−q, k3,−k4)

PT
= Γ̃µ(q, k1,−k2)

[
g2∆̂(q)

]

︸ ︷︷ ︸
4πd̂(q)

Pµν(q)Γ̃ν(−q, k3,−k4) , (70)

where we omit color structures.
Similarly, the scattering of two gluons depicted in the right panel of Figure 8, yields

Tgg→gg =
[
gΓαµρ(k1, q,−k2)

]
∆(q)Pµν(q)

[
gΓβνσ(k3,−q,−k4)

]

PT
=
{

g[1 + G(q)]−1Γ̃αµρ(k1, q,−k2)
}

∆(q)Pµν(q)
{

g[1 + G(q)]−1Γ̃βνσ(k3,−q,−k4)
}

PT
= Γ̃αµρ(k1, q,−k2)

{
g2[1 + G(q)]−2∆(q)

}
Pµν(q)Γ̃βνσ(k3,−q,−k4)

PT
= Γ̃αµρ(k1, q,−k2)

[
g2∆̂(q)

]

︸ ︷︷ ︸
4πd̂(k)

Pµν(q)Γ̃βνσ(k3,−q,−k4) . (71)
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Evidently, the same d̂(q), defined in Equation (69), appears naturally in both Equations (70)
and (71): it is, in that sense, a process-independent RGI interaction capturing faithfully the
one-gluon exchange dynamics [3,16,20,79,96,129–131].

The actual determination of d̂(q) proceeds by means of the second equality in
Equation (69), i.e., by combining the standard gluon propagator, ∆(q), together with
the function 1 + G(q). In the top left panel of Figure 9 we show lattice data for the conven-
tional gluon propagator from [85] (points) and a physically motivated fit (blue continuous),
given by Equation (C11) of [124]. In the top right panel of the same figure, we show the
1 + G(q) auxiliary function, which can be computed by contracting Equation (12) with
Pµν(q)/3 (see e.g., [131]), using the results of [228] for the ghost–gluon kernel, Hνµ(r, p, q).
Then, in the bottom left panel of Figure 9 we show the d̂(q) that results from combining
the fit for ∆(q) and the 1 + G(q) shown in the top panels of the same figure and using
αs = 0.27 [71] and Z1 = 0.9333 [see Section 8].
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Figure 9. Top left: Gluon propagator, ∆(q), from lattice simulations of Reference [85] (points) and a
fit given by Equation (C11) of [124] (blue continuous). Top right: The auxiliary function 1 + G(q),
defined in Equation (12). Bottom left: The renormalization group invariant (RGI) running interaction
strength d̂(q) defined in Equation (69), computed using the ∆(q) and 1 + G(q) shown in the top
panels, with αs = 0.27 [71] and Z1 = 0.9333 [see Section 8]. Bottom right: The corresponding
dimensionless RGI interaction I(q), defined in Equation (72).

From the d̂(q) of Equation (69) one may define the dimensionless RGI interaction [16],
I(q),

I(q) := q2d̂(q) . (72)

As explained in [16], this quantity provides the strength required in order to describe
ground-state hadron observables using SDEs in the matter sector of the theory. In that sense,
I(q) bridges a longstanding gap that has existed between non-perturbative continuum
QCD and ab initio predictions of basic hadron properties.



Particles 2023, 6 334

7. Three-Gluon Vertex and Its Planar Degeneracy

The three-gluon vertex, IΓαµν(q, r, p), plays a pivotal role in the dynamics of QCD [234],
manifesting its non-Abelian nature through the gluon self-interaction. In fact, the most cel-
ebrated perturbative feature of QCD, namely asymptotic freedom, hinges on the properties
of this particular interaction vertex. Its importance in the non-perturbative domain has led
to an intense effort for unveiling its elaborate features [21,28,33–36,41,50,68,69,71,78,81,86,
87,122,172–180,271]. Indeed, as we have seen in Sections 3 and 4, the pole structure of the
three-gluon vertex is crucial for the onset of the Schwinger mechanism and the dynam-
ical generation of a gluon mass. Moreover, its pole-free part provides highly nontrivial
contributions to the SDEs of several Green’s functions, most notably the gluon propagator
(cf. Figure 1), as well as in the Bethe–Salpeter and Faddeev equations that determine the
properties of glue balls [235,236,238–240] and hybrid mesons [237], respectively.

For general momenta, IΓαµν(q, r, p) is a particularly complicated function, comprised
by 14 tensor structures and their associated form factors [251]. Fortunately, in the Landau
gauge, considerable simplifications take place, making the treatment of the three-gluon
vertex less cumbersome. Indeed, in the latter gauge, quantities of interest require only the
knowledge of the transversely projected three-gluon vertex [126,174,175,223], Γαµν(q, r, p),
defined as

Γαµν(q, r, p) = IΓα′µ′ν′(q, r, p)Pα′α(q)Pµ′µ(r)Pν′ν(p)

= Γα′µ′ν′(q, r, p)Pα′α(q)Pµ′µ(r)Pν′ν(p) . (73)

Note that Γαµν(q, r, p) does not contain massless poles, by virtue of Equation (35). Further-
more, Γαµν(q, r, p) can be parameterized in terms of only 4 independent tensor structures,
i.e.,

Γαµν(q, r, p) =
4

∑
i=1

Γ̃i(q2, r2, p2)λ̃
αµν
i (q, r, p) . (74)

Due to the Bose symmetry of Γαµν(q, r, p), the λ̃
αµν
i (q, r, p) can be chosen to be individually

Bose symmetric, such that its form factors Γ̃i(q2, r2, p2) are symmetric under the exchange
of any two arguments [86]. In fact, they can only depend on three totally symmetric
combinations of momenta.

Quite remarkably, lattice [86–88] and continuum [174,175,223] studies alike, have
demonstrated that, to a very good level of accuracy, the Γ̃i depend exclusively on a single
judiciously chosen variable. Specifically, the Γ̃i computed on the lattice in [86–88] can be
parameterized in terms of the special Bose symmetry combination

s2 =
1
2

(
q2 + r2 + p2

)
. (75)

Thus, the Γ̃i are the same for any combination of q2, r2, and p2 that fulfils Equation (75)
for a given value of s2. This property has been denominated planar degeneracy, because
Equation (75) with fixed s defines a plane, normal to the vector (1, 1, 1), in the first octant of
the coordinate system (q2, r2, p2).

In particular, the form factor Γ̃1(q2, r2, p2) of the classical tensor structure is rather
accurately approximated by

Γ̃1(q2, r2, p2) ≈ Γ̃1(s2, s2, 0) ≈ Lsg(s) . (76)
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In the above equation, Lsg is the single transverse form factor of the three-gluon vertex in
the soft gluon limit [124], and is obtained in lattice simulations as the q = 0 limit of the
following totally transverse projection [84]

Lsg(r) =
Γαµν

0 (q, r, p)Pαα′(q)Pµµ′(r)Pνν′(p)IΓα′µ′ν′(q, r, p)

Γαµν
0 (q, r, p)Pαα′(q)Pµµ′(r)Pνν′(p)Γα′µ′ν′

0 (q, r, p)

∣∣∣∣∣∣
q→0

. (77)

A particular realization of the planar degeneracy property is shown in Figure 10,
where we show the classical form factor Γ̃1(q2, r2, p2), obtained from the lattice simulation
of [86]; we consider three different kinematic configurations, characterized by a single
momentum. Specifically, the orange stars correspond to the soft-gluon limit, q = 0, which
implies p2 = r2; the green diamonds denote the symmetric limit, where all of the momenta
have the same magnitude, q2 = p2 = r2; and the purple circles represent points with
p2 = r2 and q2 = 2r2. When plotted against the momentum r, the three configurations
of Γ̃1(q2, r2, p2) produce three clearly distinct curves; however, when plotted in terms of
the Bose symmetry variable s of Equation (75), they become statistically indistinguishable,
manifesting the validity of Equation (76).
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Figure 10. Lattice data from Reference [86] for the classical form factor, Γ̃1(q2, r2, p2), of the trans-
versely projected three-gluon vertex in three different kinematic configurations: the soft-gluon (q = 0,
p2 = r2, orange stars), the symmetric limit (q2 = p2 = r2, green diamonds), and the case p2 = r2 with
q2 = 2r2 (purple circles). In the left panel Γ̃1(q2, r2, p2) is plotted as a function of r, while in the right
it is plotted as a function of the Bose symmetry variable s defined in Equation (75).

In addition to the planar degeneracy property, lattice [84,86–88] and continuum
[174,175,179,223] results show a clear dominance of the classical form factor Γ̃1 over the
remaining ones. Based on these considerations, the special approximation

Γαµν(q, r, p) ≈ Lsg(s)Γ
αµν
0 (q, r, p) , (78)

has been put forth, where Γαµν
0 (q, r, p) is the tree-level value of Γαµν(q, r, p), i.e., Equation (73)

with Γα′µ′ν′(q, r, p)→ Γα′µ′ν′
0 (q, r, p), and the form factor Lsg(s) has been defined in Equation

(77). We emphasize that the shape of Lsg(r) has been very precisely determined through
dedicated lattice studies with large-volume simulations [68,71,84,85]. The outcome of this
exploration is shown in Figure 11, where we plot the lattice data of [84] for Lsg(r), together
with a physically motivated fit given by Equation (C12) of [124] (blue continuous curve).
The corresponding fitting formula is rather complicated and will not be reported here;
note, however, that the simple expression given in Equation (102) captures rather well the
qualitative behavior of Lsg(s).

Equation (78) provides an accurate and exceptionally compact approximation for
Γαµν(q, r, p) in general kinematics. This approximation, with the fit for Lsg shown in
Figure 11, will be used explicitly in Sections 8 and 11, where the Γαµν(q, r, p) in general



Particles 2023, 6 336

kinematics will be needed as input for the determination of other physically important
quantities.

Figure 11. Lattice data from Reference [84] for Lsg(q), compared to the fit for it given by Equation
(C12) of [124] (blue continuous curve).

8. Ghost Dynamics from Schwinger–Dyson Equations

We next turn our attention to the ghost sector of the theory, whose scrutiny is im-
portant for several reasons. First, it has been connected to particular scenarios of color
confinement [272,273]. Second, Green’s functions associated with the ghost sector appear
as ingredients in the SDEs of several key functions, such as the gluon propagator and
the three-gluon vertex [41,50,68,69,71,81,122,172–179,274], affecting their non-perturbative
behavior in nontrivial ways, as will be discussed in Section 9. Third, the SDEs governing
the ghost sector are simpler than their gluonic counterparts because they are comprised
by fewer diagrams; in fact, the SDE of the ghost propagator contains a single diagram, see
Figure 12. Fourth, in the Landau gauge, the validity of Taylor’s theorem [207] facilitates
considerably the task of renormalization.

Consequently, the SDEs of the ghost sector are an excellent testing ground for (a)
probing the impact of the gluonic Green’s functions that contribute to them [85]; (b)
assessing the reliability of truncation schemes [275,276]; and (c) testing the agreement
between lattice and continuum approaches.

One of the central results of numerous studies in the continuum [21,62,85,112,178,
225,227–233] as well as a variety of lattice simulations [42,47,49,51,56,63,73,79] may be
summarized by stating that the ghost propagator, D(q), remains massless, while the
corresponding dressing function, F(q), saturates at the origin. As we will discuss in
Section 9, the non-perturbative masslessness of the ghost has important implications for
the infrared behavior of the gluon propagator and the three-gluon vertex.

In what follows we provide a concrete example of the state-of-the-art SDE analysis of
the ghost sector, by solving the coupled system of equations that governs the ghost-dressing
function and the ghost–gluon vertex. In order to obtain a closed system of equations, we
use lattice results for the gluon propagator, the three-gluon vertex, and the value of the
coupling constant in the particular renormalization scheme employed.

The main points of this analysis may be summarized as follows.
(i) We begin by considering the coupled system of SDEs given in Figure 12, which

determines the ghost propagator and ghost–gluon vertex. The treatment will be simplified
by neglecting the diagram (dν

3) of Figure 12, thus eliminating the dependence on the
ghost–ghost–gluon–gluon vertex, Γµσ. This is a particularly robust truncation, because the
impact of the neglected diagram on the ghost–gluon vertex has been shown to be less than
2% [275].

(ii) Note that due to the fully transverse nature of the gluon propagators in the Landau
gauge, in conjunction with the fact that various projections need to be implemented during
the treatment of this system, the pole parts V of all fully dressed vertices appearing in
Figure 12 will be annihilated; thus, we will have throughout the replacement IΓ→ Γ.
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(iii) We proceed by decomposing the pole-free part, Γν(r, q, p), of the ghost–gluon
vertex into its most general Lorentz structure, namely

Γν(r, q, p) = rνB1(r, q, p) + pνB2(r, q, p) , (79)

whose scalar form factors reduce to B0
1 = 1 and B0

2 = 0 at the tree level. Evidently, due to
the transversality of the gluon propagator, only the classical tensor rν, accompanied by the
form factor B1, will survive in all SDE diagrams of Figure 12.

+
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Figure 12. Top: SDE governing the momentum evolution of the ghost propagator. Bottom: SDE for
the ghost–gluon vertex, IΓν(r, q, p).

(iv) The SDE of Figure 12 is given by

F−1(r) = 1 + 2λ
∫

k
f (k, r)B1(−r, k + r,−k)∆(k)D(k + r) , (80)

where λ is given by Equation (44), and we define

f (k, r) := 1− (r · k)2

r2k2 . (81)

(v) Next, we note that the form factor B1(r, q, p) can be extracted from Γν(r, q, p)
through the projection

B1(r, q, p) = ενΓν(r, q, p) , εν :=
p2rν − (r · p)pν

r2 p2 − (r · p)2 . (82)

Hence, acting with εν on the diagrams in the second line of Figure 12, we obtain

B1(r, q, p) = 1− λ[a(r, q, p)− b(r, q, p)] , (83)

where

a(r, q, p) = qαrµεν
∫

k
D(k)D(k− p)∆(k + r)B1(p− k, q, k + r)B1(−k, k− p, p)Pαµ(k + r)kν ,

b(r, q, p) = qαrµεν
∫

k
∆(k)∆(k− p)D(k + r)B1(k + r, q, p− k)Γνµα(p,−k, k− p) . (84)
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(vi) At this point, we invoke the property of the planar degeneracy of Γαµν(q, r, p),
discussed in Section 7. Employing Equation (78) into the SDE for B1, the term b(r, q, p) of
Equation (84) becomes

b(r, q, p) = qαrµεν
∫

k
∆(k)∆(k− p)D(k + r)B1(k + r, q, p− k)Γ0

νµα(p,−k, k− p)Lsg(s̄) , (85)

with s̄2 = p2 + k2 − 2(k · p).
We emphasize that although Equation (78) constitutes in general an approximation,

there is one particular kinematic limit in which the expression for b(r, q, p) given in Equation
(85) becomes exact. Specifically, in the soft gluon limit (p = 0), it can be shown exactly
that [85]

Pµ′
µ (k)Pν′

ν (k)Γαµ′ν′(0, k,−k) = 2Lsg(k)kαPµν(k) . (86)

Then, starting from either the general expression for b(r, q, p) of Equation (84) and using
Equation (86), or the approximate version given by Equation (85), it can easily be shown
that the p = 0 limit is the same. As such, the use of Equation (78) yields not only an
excellent approximation in general kinematics, but also the exact soft gluon limit for the
contribution of the three-gluon vertex to the form factor B1.

(vii) Now we consider the renormalization of the coupled system of equations. Since
the ghost–gluon vertex is finite in the Landau gauge [207], most SDE treatments [85,
224–228] of the ghost sector employ the so-called Taylor renormalization scheme (see
Appendix B), defined in such a way that the finite renormalization constant of the ghost–
gluon vertex has the exact value Z1 = 1 [54,60,80,85,207].

However, in order to employ Equation (78) most expeditiously, it is more convenient
to renormalize in the so-called asymmetric MOM scheme, defined in Appendix B, because
this is precisely the scheme employed in the lattice calculations of Lsg [68,71,84,85]. Past
this point, we denote by Z̃1 the finite value of the ghost–gluon renormalization constant in
the asymmetric MOM scheme. Evidently, Equations (15) and (79) imply that BR

1 = Z̃1B1.
The renormalization of Equations (80) and (83) proceeds by substitution of the un-

renormalized quantities by their renormalized counterparts, following Equation (15), and
imposing Equation (A8) for F(µ2).

Note that, in principle, Z̃1, may be determined from the relation Z̃1 = Z3ZcZ−1
A ,

imposed by the corresponding STI [277]; however, these renormalization constants are not
available to us, given that Green’s functions have been obtained from the lattice. Therefore,
Z̃1 is treated as an adjustable parameter, whose value is determined by requiring that the
solution of the SDE for F(q) reproduces the corresponding lattice data of [73,85] as well as
possible.

(viii) Finally, we transform Equations (80) and (83) from Minkowski to the Euclidean
space, using standard conversion rules. Note that, once in Euclidean space, we will express
the functional dependence of B1(r, q, p) in terms of the squared momenta of the anti-ghost
and gluon legs, r2 and p2, and the angle, θ, between them, i.e., B1(r, q, p) ≡ B1(r2, p2, θ).

The result of these manipulations is that Equations (80) and (83) become

F−1(r) = 1− αsCAZ̃1

2π2

∫ ∞

0
dk2k2∆(k)

∫ π

0
dφ s4

φ

×
[

B1(r2, k2, φ)
F(
√

z)
z
− B1(µ

2, k2, φ)
F(
√

u)
u

]
, (87)

and

B1(r2, p2, θ) = Z̃1 −
αsCAZ̃1

8π2

[
a + 2b

]
, (88)



Particles 2023, 6 339

respectively, with

a =
1
sθ

∫ ∞

0
dk2k2F(k)

∫ π

0
dφs3

φ
∆(
√

z)
z

∫ π

0
dωsω

F(
√

v)
v

B1(k2, p2, α)B1(v, z, β)Ka , (89)

b =
1
sθ

∫ ∞

0
dk2k2∆(k)

∫ π

0
dφs3

φ
F(
√

z)
z

∫ π

0
dωsω

∆(
√

v)
v

B1(z, v, β)Lsg(s)Kb .

In the above equations, we employ the notation cx := cos x and sx := sin x, and define the
following variables

r · k := rkcφ , p · k := pk(cθcφ + sθsφcω) ,

z := r2 + k2 + 2rkcφ , u := µ2 + k2 + 2µkcφ ,

s2 := (p2 + k2 + v)/2 , v := p2 + k2 − 2pk(cθcφ + sθsφcω) ,

α := π − cos−1[cθcφ + sθsφcω

]
, β := cos−1

[
k(pcθcφ + psθsφcω − rcφ) + prcθ − k2

√
vz

]
.

Finally, the kernels Ka and Kb are given by

Ka =(cθcωsφ − cφsθ)
[
ksφ(pcθ + r)− pcθcω(kcφ + r)

]
,

Kb =cω

{
k2 pcφ

[
cθ p
(

s2
θ(s

2
φs2

ω − 4s2
φ + 1) + s2

φ

)
+ r
(

s2
φ − s2

θ(2s2
φ + 1)

)]

− k3
[
s2

φ

(
rcθ − 2ps2

θ + p
)
+ ps2

θ

]
+ kp2

[
s2

φ

(
2s2

θ(p− rcθ)− rcθ − p
)
+ s2

θ(rcθ − p)
]

−cφ p3rs2
θ

}
+ sθsφ

{
cθ p
[
r
(

p2 − k2(s2
ω + s2

φs2
ω − 2s2

φ)
)
− cφk(s2

ω − 2)(k2 + p2)
]

+ k
[
cφk2r− cφ p2r

(
s2

θ(s
2
ω − 2) + s2

ω

)
+ kp2

(
3s2

θs2
φs2

ω − 2s2
θs2

ω − 4s2
θs2

φ + 3s2
θ

+(3− 2s2
ω)s

2
φ − 2

)]}
.

We are now in a position to solve Equations (87) and (88) numerically. We choose the
renormalization point at µ = 4.3 GeV and employ for ∆(q) and Lsg(q) the fits to the lattice
data shown in Figures 9 and 11, respectively. Note that for large momenta these fits recover
the behaviors dictated by the corresponding anomalous dimensions [124]. For the strong
coupling, we use the value αs(4.3 GeV) = 0.27, determined from the lattice simulations
of [71].

Below, we discuss the main results of this analysis:
The value of Z̃1 was obtained by solving the SDE system for various values of this

constant until the χ2 of the comparison between the solution for F(q) and the lattice data
of [73,85] was minimized. This procedure yields Z̃1 = 0.9333± 0.0075.

In the left panel of Figure 13, we show as a blue continuous line the SDE result for
F(q), with the above value of Z̃1. The result is compared to the lattice data of [73,85], which
have been cured from discretization artifacts. As it turns out, the SDE and lattice results for
F agree within 1%.

We next consider the form factor B1. In the right panel of Figure 13 we show
B1(r2, p2, θ) as a surface, for arbitrary values of the magnitudes of the momenta r and
p, and for the angle θ formed between them at θ = 2π/3. In the same panel, we highlight
as a red dot-dashed curve the soft gluon limit B1(r2, 0, 2π/3) of the general kinematics
B1(r2, p2, 2π/3) (The soft gluon limit is approached by taking p→ 0 in B1(r2, p2, θ); in the
non-perturbative case, this limit is independent of the value of θ).
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Figure 13. (Left): ghost dressing function F(q) obtained from the coupled system of SDEs of
Equations (80) and (83) (blue continuous line) compared to the lattice data of Reference [73,85].
(Right): The corresponding result for B1(r2, p2, θ) for arbitrary magnitudes of the anti-ghost and
gluon momenta, r and p, respectively, and a representative value of θ = 2π/3 for the angle between
them. The red dot-dashed curve highlights the soft gluon limit (p = 0).

The only available SU(3) lattice data for B1 were obtained in the soft gluon limit [42,43],
and have sizable error bars. Furthermore, they have been computed within the Taylor
scheme, while in the present work, we used the asymmetric MOM scheme. Nevertheless,
we can meaningfully compare our SDE results with those of the lattice, and perform a
statistical analysis to assess their agreement.

Specifically, denoting by BT
1 the Taylor scheme value of the form factor B1, it can easily

be shown that
B1(r2, p2, θ) = Z̃1BT

1(r
2, p2, θ) , (90)

which allows us to carry out the desired comparison.
Then, we use Equation (90) to compute BT

1(r
2, 0, θ) from the B1(r2, 0, 2π/3) slice (red

dot-dashed curve) in the right panel of Figure 13, and compare the result to the lattice data
of [42,43] (points) in Figure 14. Evidently, the SDE determination agrees with the lattice
results.

0 1 2 3 4 5
1.0

1.1

1.2

1.3

Figure 14. Soft gluon limit, BT
1(r

2, 0, θ), of the classical form factor of the ghost–gluon vertex in the
Taylor scheme. The points correspond to the lattice data of Reference [42,43]. The red dot-dashed line
shows the SDE solution with the three-gluon vertex dressed according to Equation (78), while the
green dashed represents the SDE solution with tree-level three-gluon vertex.

In order to quantify this agreement, we next conduct a χ2 analysis. To this end, we
consider only the 22 lattice points ri in the interval ri ∈ [0.3, 2.5] GeV, where the signal is
most pronounced. Then, we compute the χ2 of the data through

χ2
j = ∑

i

[Blat
1 (r2

i , 0, θ)− gj(ri)]
2

εB1(r
2
i , 0, θ)

, (91)
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where Blat
1 (r2

i , 0, θ) are the lattice points shown in Figure 14, εB1(r
2
i , 0, θ) are their respec-

tive errors, and gj(ri) are the three hypotheses that we will compare to the lattice data.
Specifically, for the gj we consider the three cases

gj(ri) =





1 if j = 1 ,
SDE with Γαµν = Γαµν

0 Lsg(s) if j = 2 ,
SDE with Γαµν = Γαµν

0 if j = 3 ,

(92)

i.e., g1 is the tree-level value of B1, g2 is the solution of the SDE using Equation (78) for
dressing the three-gluon vertex, corresponding to the red dot-dashed curve of Figure 14,
and g3 is the solution of the SDE obtained by setting the three-gluon vertex to the tree level,
which amounts to the substitution Lsg → 1 in Equation (88), and is represented by a green
dashed curve in Figure 14.

Then, for each χ2
j we compute the probability Pj that normally distributed errors

would yield a χ2 at least as large as χ2
j , through

Pj =
∫ ∞

χ2
j

χ2
PDF(22, x)dx =

Γ(nr/2, χ2/2)
Γ(nr/2)

∣∣∣∣
χ2=χ2

j

nr=22
. (93)

In the above equation, χ2
PDF(n, x) = xn/2−1e−x/2/[2n/2Γ(n/2)] denotes the χ2 probability

distribution function with n degrees of freedom, while Γ(z, x) is the incomplete Γ function.
The results of the above analyses are collected in Table 2. We note that the case g1,

i.e., the tree-level value of B1, is discarded at the 5.1σ confidence level. As for case g3, it
is discarded at the 3.4σ level. On the other hand, the SDE result with dressed three-gluon
vertex, g2, is statistically indistinguishable from the lattice data.

Table 2. Statistical results of the χ2 analysis for the three hypotheses given in Equation (92) for the
form factor B1. For each case (first column), we give the corresponding χ2

j computed from Equation
(91) (second column), probability Pj computed from Equation (93) (third row), and the same Pj

expressed in terms of confidence levels σ (fourth row).

Case (j) χ2
j Pj Confidence Level in σ

1 71.37 4.0× 10−7 5.1

2 3.399 1 − 1.8× 10−6 2.2× 10−6

3 50.03 5.8× 10−4 3.4

Lastly, we point out that for both F and B1, we find a good qualitative agreement with
various related studies [21,29,178,179,224,226–228,278,279], including kinematics other than
the soft gluon limit considered in Figure 14.

9. Divergent Ghost Loops and Their Impact on the QCD Green’s Functions

The masslessness of the ghost propagator, discussed in Section 8, has important
implications for the infrared behavior of Green’s functions. Specifically, while the saturation
of the gluon propagator renders gluon loops infrared finite, ghost loops furnish infrared
divergent contributions [172], akin to those encountered in perturbation theory. In this
section, we highlight (with two characteristic examples) how the effects of ghost loops
manifest themselves at the level of the two- and three-point functions. Specifically, the
ghost loops induce the appearance of a moderate maximum in the gluon propagator and
are responsible for the zero-crossing and the logarithmic divergence at the origin displayed
by the dominant form factors of the three-gluon vertex.

The basic observation at the level of the gluon SDE shown in Figure 1 is that, the
ghost loop of (d3), due to the masslessness of its ingredients, furnishes “unprotected”
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logarithms, i.e., terms of the type ln q2, which diverge as q2 → 0. Instead, gluonic loops
contain infrared finite gluon propagators and, therefore, give rise to contributions that
remain finite as q2 → 0, i.e., they may be described in terms of “protected” logarithms of
the type ln(q2 + m2).

The circumstances described above may be modeled by

∆−1(q) = q2 + m2 + c1q2 ln
(

q2 + ρm2

Λ2

)

︸ ︷︷ ︸
f (q)

+c2q2 ln
(

q2

Λ2

)
, (94)

where m is the gluon mass, Λ the mass scale of QCD, and c1, c2, and ρ are constants; note
that ∆−1(0) = f (0) = m2

Differentiating Equation (94) with respect to q2, we obtain

d∆−1(q)
dq2 =

d f (q)
dq2 + c2

[
1 + ln

(
q2

Λ2

)]
. (95)

The second term on the r.h.s. of Equation (95) is infrared divergent, and necessarily
dominates the behavior of the derivative of the propagator for sufficiently small q. More-
over, the value of the coefficient c2 can be computed explicitly by expanding the ghost
block Π̃(2)

µν (q) of Figure 1 around q = 0 and using Equation (19), which yields

c2 =
αsCAZ̃2

1 F2(0)
48π

. (96)

Therefore, d∆−1(q)/dq2 has the asymptotic behavior

lim
q→0

d∆−1(q)
dq2 =

[
αsCAZ̃2

1 F2(0)
48π

]
ln
(

q2

Λ2

)
, (97)

which diverges to −∞ as q→ 0. Now, since the gluon propagator is a decreasing function
in the ultraviolet, we have that d∆−1(q)/dq2 is positive for large momenta. Therefore, there
must exist a special momentum, denoted by q?, such that [d∆(q)/dq2]q=q? = 0, which
corresponds to a maximum of ∆(q) (Note that d∆−1(q)/dq2 is an increasing function since
it is negative in the infrared and positive in the ultraviolet, i.e., d2∆−1(q)/d(q2)2 > 0.
Therefore, assuming that d∆−1(q)/dq2 only crosses zero once, q = q? must be a maximum
of ∆(q)).

The maximum of ∆(q), predicted by means of the simple arguments presented above,
is observed in lattice simulations of the gluon propagator [49,56,85]. In particular, it is
clearly visible in Figure 15, where the data from the two largest volume lattice setups of [49]
are shown. The red dashed lines represent smooth functions, fitted to each of the data sets,
in the window q ∈ [0, 0.5] GeV. For each of the volumes considered, V = 724 (left panel)
and V = 804 (right panel), the estimate obtained for q? is q? = 140 MeV.
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Figure 15. Lattice data for the gluon propagator in the deep infrared. The data displayed correspond
to the two lattice setups with the largest volumes of [49], namely, V = 724 (left) and V = 804 (right).
The red dashed lines are smooth fits from which the position of the maximum can be estimated.

It is interesting to observe in passing that the existence of a maximum of ∆(q) has an in-
teresting implication on the form of the spectral function of the gluon propagator [280–285].
In particular, the standard Källén-Lehmann representation [286,287] states that

∆(q) =
∫ ∞

0
dλ2 ρ(λ2)

q2 + λ2 , (98)

where ρ(λ2) is the gluon spectral function (with a factor 1/π absorbed in it). Thus, the
differentiation of both sides of Equation (98) with respect to q2 yields

d∆(q)
dq2 = −

∫ ∞

0
dλ2 ρ(λ2)

(q2 + λ2)2 . (99)

Then, from Equation (99) follows that the existence of a maximum for ∆(q) at q = q? leads
necessarily to the violation of reflection positivity [11,167,168,171], because the condition

∫ ∞

0
dλ2 ρ(λ2)

(q2
? + λ2)2 = 0 , (100)

may be fulfilled only if ρ(λ2) reverses its sign. Note that an analogous argument based on
the existence of an inflection point has been presented recently in [8].

Turning to the three-gluon vertex, it is well-known that the corresponding ghost loops
induce characteristic features to the form factors associated with its classical (tree-level)
tensors. There are two complementary continuum descriptions of the dynamics that deter-
mine the behavior of these form factors: (i) the SDE of the three-gluon vertex [174–176,226],
depicted diagrammatically in Figure 16, and (ii) the STI of Equation (23) [172], which, in
the limit of vanishing gluon momentum, and when the displacement function and the
ghost sector are neglected, yields the approximate WI

IΓαµν(0, r,−r) ≈
∂∆−1

µν (r)
∂rα

, (101)

which transmits the properties of the propagator derivative to the vertex form factors, as
shown schematically in Figure 17.

In the simplified kinematic circumstances where only a single representative momen-
tum is considered, to be denoted by r, the conclusions drawn by either method may be
qualitatively described in terms of a simple model, namely

L(r) = b0 + bgl ln
(

r2 + m2

Λ2

)
+ bgh ln

(
r2

Λ2

)
, (102)
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where L(r) denotes the particular combination of form factors, such that, at tree level,
L0(r) = 1, and b0, bgl, and bgh are positive constants. The model in Equation (102) encom-
passes two important cases studied on the lattice [68,69,71,81], namely (i) the soft gluon limit,
L(r) → Lsg(r), corresponding to the kinematic choice q → 0 , p = −r , θ := p̂r = π,
defined in Equation (77), and (ii) totally symmetric limit, L(r)→ Lsym(r), corresponding to
q2 = p2 = r2 , θ := q̂r = q̂p = r̂p = 2π/3.

+ + · · ·

(e1) (e2)

µ, b

α, a

p
= +

α, a

ν, c

q

p r

ν, c µ, b

q

r

Figure 16. The SDE of the three-gluon vertex at the one-loop dressed level. Diagrams (e1) and (e2)

are the gluon and the ghost triangle contributions entering the skeleton expansion of the three-gluon
vertex.

Upon inspection of Equation (102) we note that, as r → 0, the term with the unpro-
tected logarithm will eventually dominate, forcing L(r) to reverse its sign (zero crossing),
and finally display a logarithmic divergence, L(0)→ −∞. Given that, in practice, bgl is
considerably larger than bgh, the unprotected logarithm overtakes the protected one rather
deep in the infrared: the location of the zero-crossing is at about 160 MeV [71]. Conse-
quently, in the intermediate region of momenta, which is considered relevant for the onset
of non-perturbative dynamics, we have L(r) < 1; this effect is known in the literature as
the infrared suppression of the three-gluon vertex.

⊃

⊃

STI

Figure 17. The ghost triangle present in the three-gluon vertex SDE (top) and the ghost loop con-
tributing to the gluon propagator in the corresponding equation (middle). The infrared divergences
arising from these diagrams are connected through the Slavnov–Taylor identity (STI) of Equation
(23), as shown schematically in the bottom panel.

Most importantly, the special features of infrared suppression, zero-crossing, and
logarithmic divergence at the origin have been corroborated through a variety of lattice
results [50,68,69,71,72,81,84], as shown, e.g., in Figure 11. The central curve of this figure is
presented as the blue line in Figure 18, where the aforementioned characteristics have been
explicitly marked for the benefit of the reader. Note the close proximity of the blue curve to
the d∆−1(r)/dr2 (red dashed line), especially below 1 GeV.
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Figure 18. Comparison of Lsg(r) (blue continuous) from Figure 11 and d∆−1(r)/dr2 (red dashed)
resulting from the fit for ∆(r) of Figure 9. Note that both display the characteristic features of infrared
suppression with respect to their tree-level values (which is 1 for both quantities), zero-crossing, and
logarithmic divergence at the origin.

We end this section by pointing out that, in the case of Yang–Mills in d = 3 [28,
172,223,288–302], the situation is qualitatively similar to the one described above, but the
divergences induced due to the masslessness of the ghost are stronger. Specifically, as may
be already established at the level of a simple one-loop calculation [302], the first derivative
of the gluon propagator diverges at the origin as 1/q rather than ln q2. Consequently, the
corresponding effects are significantly enhanced; in particular, the maximum of the gluon
propagator is considerably more pronounced, becoming plainly visible on the lattice [53].
Similarly, an abrupt negative divergence is observed in the corresponding vertex form
factors [41,82].

10. Ward Identity Displacement of the Three-Gluon Vertex

In complete analogy to the case of the ghost–gluon vertex discussed in Section 5.2, the
WI satisfied by the pole-free part of the three-gluon vertex is also displaced in the presence
of longitudinally coupled massless poles. Quite importantly, the associated displacement
function, C(r), coincides with the BS amplitude that controls the formation of a (colored)
scalar bound state with vanishing mass out of a gluon pair. The displacement of the WI
circumvents the seagull cancellation involving the gluon propagator [ i.e., f = ∆ in Equation
(55)], furnishing to the gµν component the mass originating from graphs (d1) and (d4) in
Figure 1. In addition, it permits the indirect determination of the displacement function
C(r) from the lattice; this is particularly important, given that, by virtue of Equation (35),
the lattice “observables” do not perceive directly the presence of the massless poles.

The starting point of the analysis is the STI satisfied by the three-gluon vertex,
IΓαµν(q, r, p), given by Equation (23). In order to eliminate the poles in r and p, thus
isolating the displacement of the WI originating from the pole in the channel q, we contract
that equation with Pµ

µ′(r)Pν
ν′(p). Note that this procedure also eliminates any longitudinal

pole terms in the ghost kernels Hσµ(p, q, r) and Hσν(r, q, p); for the diagrammatic definition
of the ghost–gluon kernel, see Figure 2.

Then, we decompose IΓαµν(q, r, p) into pole-free and longitudinally coupled massless
pole parts, as in Equation (33), and use Equation (38), to obtain

Pµ
µ′(r)Pν

ν′(p)
[
qαΓαµν(q, r, p) + gµνC1(q, r, p) + qµqνC5(q, r, p)

]
= Pµ

µ′(r)Pν
ν′(p)Rνµ(p, q, r) , (103)

where

Rνµ(p, q, r) := F(q)
[
∆−1(p)Pσ

ν (p)Hσµ(p, q, r)− ∆−1(r)Pσ
µ (r)Hσν(r, q, p)

]
. (104)
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At this point, we expand Equation (103) around q = 0 and match coefficients of equal
orders. At the zeroth order in this expansion, we immediately obtain that

C1(0, r,−r) = 0 , (105)

in exact analogy to Equation (62). Note that we have arrived once again at the result of
Equation (39), but through an entirely different path: while Equation (39) is enforced by the
Bose symmetry of the three-gluon vertex, Equation (105) is a direct consequence of the STI
that this vertex satisfies.

We next gather the terms in the expansion of Equation (103) that are of first order in q.
Evidently, the term C5 does not contribute to this order. Then, the expansion leads to the
appearance of derivatives of the gluon propagator, in analogy to Equation (64), but also of
the ghost–gluon kernel. Specifically, we obtain for the WI of the three-gluon vertex and its
displacement the expression

Lsg(r) = F(0)
{

Z̃1
d∆−1(r)

dr2 +
W(r)

r2 ∆−1(r)
}
−C(r) . (106)

In the above equation, Lsg(r) is the form factor of the three-gluon vertex defined in Equation
(77) and with lattice results shown in Figure 11, whileW(r) is a particular derivative of the
ghost–gluon kernel, namely [124,241]

W(r) = − 1
3r2 Pµν(r)

[
∂Hνµ(p, q, r)

∂qα

]

q=0
. (107)

For the detailed derivation of Equation (106), we refer to [93,124].
In the following section, we will use Equation (106) to determine the displacement

amplitude C(r) from lattice inputs. To this end, we must first pass to Euclidean space,
where we note that

CE(r2
E) = −C(r)|r2=−r2

E
, (108)

with the extra sign originating from the fact that C is a derivative [see Equation (41)]. Then,
suppressing the indices “E” and solving for C(r2), we obtain the central relation

C(r) = Lsg(r)− F(0)
{W(r)

r2 ∆−1(r) + Z̃1
d∆−1(r)

dr2

}
. (109)

For the determination of C(r), we use lattice inputs for all the quantities that appear
on the r.h.s. of Equation (109), with the exception of the function W(r), which will be
computed from the SDE satisfied by the ghost–gluon kernel derived and analyzed in the
next section.

11. The Ghost-Gluon Kernel Contribution to the Ward Identity

In this section, we derive the SDE that determines the key functionW(r); the resulting
SDE will be solved using lattice inputs for the various quantities entering it. In addition,
the infrared behavior ofW(r) will be analyzed in detail, following an analytic procedure.

Our discussion starts with the SDE of the ghost–gluon kernel, Hµν(r, q, p), shown
diagrammatically in Figure 19, from whichW(r) can be obtained using Equation (107).

Note that the similarity between the diagrams shown in Figure 19 and those in the
bottom panel of Figure 12, depicting the SDE of the ghost–gluon vertex, is a simple reflection
of the fundamental STI relating the ghost–gluon kernel with the ghost–gluon vertex,

Γν(r, q, p) = rµHµν(r, q, p) . (110)

Specifically, Equation (110) is preserved by the SDEs of Γν(r, q, p) and Hµν(r, q, p); indeed,
contraction of each diagram (hµν

i ) of Figure 19 by rµ yields the corresponding diagram
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(gν
i ) of Figure 12 (up to a shift of k → −k − r for i = 1, introduced to simplify certain

expressions). Note that, in Figure 19, the diagram corresponding to the (g3) of Figure 12
has been omitted, for the reason explained in item (i) of Section 8.

= gµν + +

k − q

q

p

k + r

r

k

ν, a

µ, b

(hµν
1 )

k + r

k − p

p

k

r

ν, a

q
µ, b

(hµν
2 )

c c

µ, bk

q

ν, a

p

r

k + r

c

Figure 19. SDE for the ghost–gluon scattering kernel, Hµν(r, q, p). We omit a diagram containing a
1PI four-point function.

It is well-known that, in the Landau gauge, the momentum q of the ghost field in
Hµν(r, q, p) factors out of its quantum corrections [1], allowing us to write [124,228,241]

Hµν(r, q, p) = gµν + qαKµνα(r, q, p) , (111)

where no particular assumptions are made about the structure of the function Kµνα(r, q, p).
Following Equation (107), we differentiate the r.h.s. of Equation (111) with respect to q and
subsequently set q = 0, to obtain

W(r) = −1
3

rαPµν(r)Kµνα(r, 0,−r) . (112)

Lastly, the finite renormalization of W in the asymmetric MOM scheme proceeds
through the use of Equation (15), which leads to the appearance of an overall factor of Z̃1
in the equations.

The outcome of the above steps is thatW(r) can be written as

W(r) =W1(r) +W2(r) , (113)

where theWi(r) are the contributions originating from the diagrams (hµν
i ) in Figure 19,

respectively, and read

W1(r) =
λZ̃1

3

∫

k
∆(k)D(k)D(k + r)(r · k) f (k, r)B1(k + r,−k,−r)B1(k, 0,−k) ,

W2(r) =
λZ̃1

3

∫

k
∆(k)∆(k + r)D(k + r)B1(k + r, 0,−k− r)IW (−r,−k, k + r) , (114)

where f (k, r) is given by Equation (81), and we define the specific contribution of the
three-gluon vertex to the kernel ofW(r2) as

IW (q, r, p) :=
1
2
(q− r)νΓα

αν(q, r, p) . (115)

Note that, from Equation (115) and the Bose symmetry of the Γαµν(q, r, p) under the ex-
change {q, α} ↔ {r, µ}, it follows that

IW (q, r, p) = IW (r, q, p) . (116)
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At this point, by capitalizing on the planar degeneracy of Γαµν(q, r, p) discussed in
Section 7, we obtain a compact, and yet accurate, approximation for IW . Specifically, using
Equation (78), we find

IW (q, r, p) ≈ I0
W (q, r, p)Lsg(s) , (117)

where I0
W (q, r, p) is the tree-level value of IW , given by

I0
W (q, r, p) :=

2 f (q, r)
p2

[
2q2r2 − (q2 + r2)(q · r)− (q · r)2

]
. (118)

We remark that the approximation given by Equation (117) becomes exact in the limit p = 0.
Using the above approximation for IW , the contributionW2(r) reads

W2(r) =
2λZ̃1

3

∫

k
∆(k)

∆(k + r)D(k + r)
(k + r)2 B1(k + r, 0,−k− r) f (k, r)

×
[
2r2k2 − (r2 + k2)(r · k)− (r · k)2

]
Lsg(ŝ) , (119)

where we now have ŝ2 = r2 + k2 + (r · k).
Lastly, we transform W1 of Equation (114) and W2 of Equation (119) to Euclidean

space to obtain the final expression to be used for the numerical determination ofW ,

W1(r) = −
rαsCAZ̃1

12π2

∫ ∞

0
dk2k∆(k)F(k)B1(k2, k2, π)

∫ π

0
dφs4

φcφ
F(
√

z)
z

B1(z, r2, χ) ,

W2(r) = −
rαsCAZ̃1

6π2

∫ ∞

0
dk2 k3∆(k)

∫ π

0
dφ s4

φ∆(
√

z)B1(z, z, π)
F(
√

z)
z2

[
kr(2 + c2

φ)− zcφ

]

× Lsg

(
r2 + k2 + rkcφ

)
, (120)

where z has been defined below Equation (89) and

χ := cos−1
[
− (r + kcφ)√

z

]
. (121)

We emphasize that for the SDEs of both B1 and W , given by
Equations (88) and (120), respectively, we used the same approximation for the three-
gluon vertex, namely Equation (78). Therefore, our analyses of B1 andW are self-consistent,
in the sense that the STI in Equation (110) is strictly preserved.

Before embarking on the numerical determination of W(r) for the entire range of
Euclidean momenta, we discuss the infrared behavior of this function and demonstrate an
important self-consistency proof involving C(r).

Specifically, as discussed in Section 9, the Lsg(r) and d∆−1(r)/dr2 that appear in
Equation (109) are infrared divergent, due to the massless ghost loops present in their SDEs.
Nevertheless, the BSE solutions for the amplitude C(r) are all found to be finite at r = 0,
(cf. Figure 7) [117,121,124,215]. Therefore, in order for the WI displacement of Equation (109)
to be consistent with the finite C(0) obtained from BSE solutions, the infrared divergences
of the ingredients appearing in Equation (109) must cancel against each other.

Indeed, a careful analysis of diagram (e2) of Figure 16 yields

lim
r→0

Lsg(r) =

[
αsCAZ̃3

1 F3(0)
96π

]
ln
(

r2

µ2

)
, (122)

up to infrared finite terms (We note that the results identical to Equations (97) and (122) for
the infrared divergences of d∆−1(r)/dr2 and Lsg(r), respectively, have been previously de-
rived within the Curci–Ferrari model [180]). Then, assuming that only Lsg(r) and d∆−1/dr2
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diverge, and using the asymptotic form of d∆(r)/dr2 given in Equation (97) to Equation
(109), we find that the divergences do not fully cancel. Therefore, the finiteness of C(0)
demands that the termW(r)/r2 appearing in the WI must be infrared divergent.

Now, it is evident from Equation (120) thatW(r) vanishes as r → 0. Nevertheless,
the ratioW(r)/r2 is found to diverge at the origin. Specifically, expanding Equation (120)
around r = 0, it can be shown thatW(r)/r2 has the asymptotic behavior

lim
r→0

W(r)
r2 = −

[
αsCAZ̃3

1∆(0)F2(0)
96π

]
ln
(

r2

µ2

)
. (123)

Then, combining Equations (97), (122) and (123) we find that the infrared divergences in
Equation (109) cancel out exactly, leaving a finite C(0), in full agreement with the BSE
results.

We finish the discussion of the infrared finiteness of C(0) with a remark. In the absence
of the Schwinger mechanism, i.e., for an identically zero C(r), the infrared divergences
of Lsg(r),W(r)/r2, and d∆−1(r)/dr2 must also cancel in Equation (109). For instance, this
cancellation can be explicitly verified at the one-loop level (in the perturbative realization
of Equation (109) F(0) also diverges, participating in the overall cancellation of infrared
divergences), where, evidently, C(r) = 0. In that case, however, the gluon propagator is also
massless, causing the gluonic loops that contribute to the functions that enter Equation (109)
to also diverge, such that the cancellation occurs among all radiative diagrams. In contrast,
in the presence of a gluon mass, the cancellation of the remaining infrared divergences
takes place at the level of the ghost loops only, as illustrated diagrammatically in Figure 20.

r

r

0

µ

νρ

−F (0)Z̃1
d
dr2

r

r

0

µ

νρ

− F (0)

∆(0)
lim
r2→0

= IR finite

r

µ ν

︸ ︷︷ ︸
Kµνρ(r, 0,−r)

Figure 20. Diagrammatic representation of the cancellation of the infrared divergences originating
from massless ghost loops in Equation (109) to yield a finite C(0). The red cross indicates that the
overall ghost momentum is factored out before being set to zero.

We now return to the numerical determination ofW(r) from Equation (120). To this end,
we employ the fits to the lattice data of [84] for ∆(q) and Lsg(q), shown in Figures 9 and 11,
respectively, and the SDE solution for F(q) is shown in the left panel of Figure 13. All of
the fits employed are constructed so as to reproduce the correct ultraviolet behavior of
Green’s functions. For the value of the coupling in the asymmetric MOM scheme, defined
in Appendix B, we employ g2 = 4παs, with αs(4.3 GeV) = 0.27, as determined in the lattice
study of [71]. Lastly, for B1 we use the SDE result of Section 8, shown in the right panel
of Figure 13, which reproduces accurately the available lattice data for the ghost–gluon
vertex.

Using the above ingredients in Equation (120) we obtain theW(r) shown as the blue
solid curve in Figure 21. The blue band in Figure 21 represents the error estimate on our
results; the procedures followed to obtain it are described in detail in [126].
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Figure 21. W(r) obtained using the approximation Equation (117) based on the observed planar
degeneracy of the three-gluon vertex in its kernel (blue solid curve) together with uncertainty estimate
(blue band).

12. Displacement Function from Lattice Inputs

In this section, we determine C(r) from the main relation given in Equation (109).
ForW(r) we use the result shown in Figure 21, together with the curves for Lsg(r)

from Figure 11, ∆(r) and d∆−1(r)/dr2 from Figures 9 and 18, respectively, and the F(r) of
Figure 13. The C(r) obtained is shown as a black solid curve in the left panel of Figure 22.
In the same panel, we show as points the estimates of C(r) obtained by using into Equation
(109) the lattice data points of [84] directly, rather than a fit. Note that these data points,
as well as those used for the propagators [85], have been carefully extrapolated to the
continuum, through the methods explained in [73,85]. These methods exploit the H4
symmetry of the hypercubic lattice, and are quite effective at minimizing discretization
artifacts [54,60,62,63,70,71,73,76,80,85]. As a result of this treatment, the systematic errors
are expected to be small. To estimate the uncertainty in the resulting C(r), we combine the
error estimate ofW(r), represented by the blue band in Figure 21, with the statistical error
of the lattice data points for Lsg(r) of [84], and neglect the error in the gluon propagator,
which is much smaller than the errors in Lsg andW . Then, a conservative error propagation
analysis was carried out in [126], which takes into account an observed correlation between
the errors in W(r) and Lsg(r); the results of the analysis are the error bars shown in
Figure 22.

C
(r
)

C(r)

C
(r
)

C(r)
C⋆(r)

Figure 22. Left: Result for C(r) (black continuous line) obtained from Equation (109) using the
W(r) shown in Figure 21, the fits to lattice data for ∆(r) and Lsg(r) are shown in Figures 9 and 18,
respectively, and the SDE solution for F(r) shown in Figure 13. The points are obtained using for
Lsg(r) the data in Reference [84], with error bars denoting the error propagated from Lsg andW . The
green band is obtained by fitting the upper and lower bounds of the points and guiding the eye to the
typical error associated with C(r). Right: The C(r) of the left panel is compared to the BSE prediction
C?(r) (purple dot-dashed and error band) of Figure 7.
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At this point, we quantify the significance of the C(r) obtained above, in comparison
to the null hypothesis result; evidently, in the absence of the Schwinger mechanism, this
latter quantity, to be denoted by C0 in what follows, vanishes identically, namely C0 = 0.
To this end, we first compute the χ2 of our points as

χ2 = ∑
i

[C(ri)−C0(ri)]
2

ε2
C(ri)

, (124)

i.e., the null hypothesis is taken as the estimator for our data. The sum runs over the
nr = 515 indices i such that ri ∈ [0.3, 4.3] GeV, the interval of momenta for which the
systematic error in our calculation of W(r) is best known, and εC(ri) denotes the error
estimate of C(ri). Then we obtain χ2 = 2 630, corresponding to χ2

d.o.f. = 5.11. The
probability PC0 that our result for C is consistent with the null hypothesis s vanishingly
small, given by the formula

PC0 =
∫ ∞

χ2=2 630
χ2

PDF(515, x)dx =
Γ(nr/2, χ2/2)

Γ(nr/2)

∣∣∣∣
χ2=2 630

nr=515
= 7.3× 10−280 . (125)

Naturally, further correlations in the input data, as well as residual systematic errors,
may have escaped the analysis leading to the error estimates shown in Figure 7 for C(r).
Since PC0 changes rapidly with χ2, these unknown errors can substantially alter its value.
As such, Equation (125) is to be understood as meaning that in the absence of additional
uncertainties, the null hypothesis C0 is excluded. Moreover, it is apparent in Figure 22 that
even if the errors had been significantly underestimated, the null hypothesis C0 would still
be unlikely. In fact, even if the errors in all data points for C(r) were 95% larger, i.e., nearly
doubled, we could still discard C0 at the 5σ confidence level.

In the right panel of Figure 22, we compare C(r) to the BSE prediction, C?(r), of
Figure 7, shown as a purple dot-dashed curve and corresponding error band. In that
panel, we observe an excellent qualitative agreement between the two results. The most
noticeable quantitative difference is in the position of the minimum. Specifically, C reaches
the minimum value of −0.36± 0.11 at r = 1.93+0.09

−0.06 GeV, while the minimum of C? is
−0.341± 0.003 at r = 1.5± 0.1.

Nevertheless, it is clear in the right panel of Figure 22 that the BSE prediction lies
within the error estimate of the lattice-derived C(r). In fact, defining a χ2 measure for the
discrepancy between C and C? as

χ2
? = ∑

i

[C(ri)−C?(ri)]
2

ε2
C(ri)

, (126)

we obtain χ2
? = 258.5, which is smaller than the number of degrees of freedom. Then, this

value of χ2
? amounts to a probability of

PC?
=

Γ(nr/2, χ2
?/2)

Γ(nr/2)

∣∣∣∣
χ2
?=258.5

nr=515
= 1− 2.0× 10−23 , (127)

showing that C? is statistically compatible with the lattice-derived C, with probability
extremely near the unit.

13. Conclusions

The gauge sector of QCD is host to a wide array of subtle mechanisms that are of vital
importance for the self-consistency and infrared stability of the theory. In the present work,
we offered a comprehensive review of the intricate dynamics that account for some of the
most prominent infrared phenomena, such as the generation of a gluon mass through the
action of the Schwinger mechanism, the non-perturbative masslessness of the ghost, and
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the characteristic features induced by this particular mass pattern to the form factors of the
three-gluon vertex.

The SDEs, supplemented by the judicious use of certain key results from lattice QCD,
provide a robust continuum framework for carrying out such a demanding investigation.
In fact, the results obtained from the SDEs are increasingly reliable, passing successfully all
sorts of tests imposed on them. A particularly impressive, and certainly not isolated, case
of such a success has been outlined in detail in Section 6.

Symmetry and dynamics are tightly interwoven; therefore, the information encoded
in the STIs and WIs of the theory is particularly decisive for unraveling basic dynamical
patterns. A striking manifestation of the profound connection between symmetry and
dynamics is provided by the dual role played by the function C(r), i.e., the BS amplitudes
of the massless states composed by a pair of gluons, and the quantity that embodies the
displacement induced to the WIs by the presence of these states.

In our opinion, the determination of C(r) described in Section 12 represents a major
success of the entire set of concepts and techniques surrounding the generation of a gluon
mass through the action of the Schwinger mechanism. Thus, fifty years after the genesis
of QCD, we seem to be closing in on the mechanism that the theory uses for curing the
infrared instabilities endemic to perturbation theory. We hope to be able to report further
progress in this direction in the near future.
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Abbreviations
The following abbreviations are used in this work:

BFM background field method
BQI background-quantum identity
BRST Becchi–Rouet–Stora–Tyutin
BS Bethe–Salpeter
BSE Bethe–Salpeter equation
EHM emergent hadron mass
MOM momentum subtraction (renormalization scheme)
PT pinch technique
QCD quantum chromodynamics
QED quantum electrodynamics
RGI renormalization group invariant
SDE Schwinger–Dyson equation
STI Slavnov–Taylor identity
WI Ward identity

Appendix A. BQIs for the BSE Amplitudes

In this appendix, we use two BQIs in order to relate the displacement functions (C and
C) with their BFM counterparts, i.e., C̃ and C̃, respectively.
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The ghost–gluon vertices IΓµ(r, p, q) and ĨΓµ(r, p, q) are related via a BQI [14], which
reads

ĨΓµ(r, p, q) =

{
[1 + G(q)]gν

µ + L(q)
qµqν

q2

}
IΓν(r, p, q)

+F−1(p)pνKµν(r, q, p) + r2F−1(r)Kµ(r, q, p) , (A1)

where Kµ and Kµν are two auxiliary functions, shown diagrammatically in Figure A1, while
G(q) and L(q) are the form factors of Λµν(q), defined in Equation (12).

−gfamnKµ(r, q, p) =

nµ, a

pm

q r

−gfanmKµν(r, q, p) = gfamngµν +

pν,m

n

µ, a

q

r

Figure A1. The auxiliary functions Kµ(q, r, p) and Kµν(q, r, p) in the BQI of Equation (A1).

Next, we decompose the ĨΓµ(r, p, q) and IΓµ(r, p, q) in Equation (A1) into their regular
and pole parts, using Equations (33) and (53), respectively. Note that the second and third
terms in Equation (A1) do not contain poles in q2; this is so because Kµν(r, q, p) can contain
(longitudinally coupled) poles only in the pν channel, whereas Kµ(r, q, p) has no external
gluon legs (and, hence, no poles).

Then, multiplying Equation (A1) by q2 we obtain

qµC̃(r, p, q) = qµ[1 + G(q) + L(q)]C(r, p, q) +O(q2) . (A2)

Setting q = 0 in Equation (A2) and using Equation (18), we find

C(r,−r, 0) = Z1F(0)C̃(r,−r, 0) . (A3)

Hence, using Equation (62), we obtain the result in Equation (39).
Then, expanding Equation (A2) to first order in q, using Equation (41) for C(r, p, q)

and Equation (63) for C̃(r, p, q), entails

C(r) = Z1F(0)C̃(r) , (A4)

which is one of the main results of this appendix.
A relation identical to Equation (A4) can be obtained for C(r) and its BFM analog,

C̃(r). The starting point of the derivation is the BQI [14]

ĨΓαµν(q, r, p) =

{
[1 + G(q)]gρ

α + L(q)
qαqρ

q2

}
IΓρµν(q, r, p) (A5)

+Kρνα(r, q, p)Pρ
µ(r)∆−1(r)− Kρµα(p, q, r)Pρ

ν (p)∆−1(p) ,

where Kµνα(r, q, p) is the function defined in Equation (111).
Then, we note that the only longitudinal poles at q = 0 present in Equation (A5) are

those contained in the IΓαµν(q, r, p) and ĨΓαµν(q, r, p) vertices, with the auxiliary functions
Kανρ(q, p, r) having poles only in the rµ and pν channels. As such, isolating the qαgµν/q2

pole and expanding around q = 0, one eventually finds

C̃1(0, r,−r) = Z−1
1 F−1(0)C1(0, r,−r) = 0 , (A6)

and
C(r) = Z1F(0)C̃(r) , (A7)

where C̃1(q, r, p) and C̃(r2) are defined in analogy to Equations (37) and (41), and we used
Equation (39).
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Appendix B. The Asymmetric MOM Scheme

In this appendix, we provide a brief overview of the asymmetric MOM scheme
[68,71,84,85,241] that we employ throughout this work.

The set of boundary conditions imposed on the renormalized quantities defines the
renormalization scheme employed. Within the MOM schemes [277], propagators assume
their tree-level values at the subtraction point µ, namely

∆−1
R (µ) = µ2 , FR(µ) = 1 . (A8)

Past this point, the various MOM schemes are differentiated according to the way the
three-point functions are renormalized.

In Landau gauge, a common choice of renormalization prescription is the so-called
“Taylor scheme” [54,60,80,85,207]. This scheme capitalizes on the Taylor theorem [207], i.e.,
the observation that the unrenormalized ghost–gluon vertex in the Landau gauge reduces
to its tree-level form in the soft-ghost configuration,

IΓν(r, 0,−r) = rν . (A9)

The Taylor scheme is defined by requiring Equation (A9) to hold after renormalization
[54,60,80,85,207]. Using Equation (15), this requirement yields Z1 = 1.

Alternatively, in lattice simulations of the three-gluon vertex, it is convenient to
impose a renormalization prescription for its classical tensor structure. For example,
one may choose the classical form factor to reduce to tree-level in the symmetric point,
q2 = r2 = p2 = µ2. This condition defines the “symmetric scheme” [68,71,84].

In the present work, the classical form factor of the three-gluon vertex in the soft-gluon
limit, which is denoted by Lsg(r) and defined in Equation (77), plays a key role. Indeed, it is
the central ingredient in the approximation of the three-gluon vertex given by Equation (78),
which is used in the SDE analysis of the ghost–gluon vertex and kernel in Sections 8 and 11,
respectively. Moreover, Lsg(r) is one of the inputs necessary for the determination of the
displacement amplitude C(r) in Section 12, which signals the activation of the Schwinger
mechanism. As such, it is convenient to employ throughout the scheme where Lsg(r)
is most readily renormalized in lattice simulations, which is the so-called “asymmetric
scheme” [68,71,84,85,241].

The asymmetric MOM scheme is defined by imposing that Lsg(r) reduces to the
tree-level at q2 = µ2, i.e.,

Lsg(µ) = 1 . (A10)

Note that in this scheme the finite renormalization constant of the ghost–gluon vertex is
no longer equal to 1 [85,241]. Instead, the special value of Z1 in the asymmetric scheme is
denoted by Z̃1, and is determined to be Z̃1 = 0.9333± 0.0075 [126], at µ = 4.3 GeV, through
the SDE analysis discussed in Section 8.
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