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Abstract: In this study, we discuss how iterative solutions of QCD-inspired gap-equations at
the finite chemical potential demonstrate domains of chaotic behavior as well as non-chaotic
domains, which represent one or the other of the only two—usually distinct—positive mass gap
solutions with broken or restored chiral symmetry, respectively. In the iterative approach, gap
solutions exist which exhibit restored chiral symmetry beyond a certain dynamical cut-off energy.
A chirally broken, non-chaotic domain with no emergent mass poles and hence with no quasi-
particle excitations exists below this energy cut-off. The transition domain between these two
energy-separated domains is chaotic. As a result, the dispersion relation is that of quarks with
restored chiral symmetry, cut at a dynamical energy scale, and determined by fractal structures. We
argue that the chaotic origin of the infrared cut-off could hint at a chaotic nature of confinement
and the deconfinement phase transition.

Keywords: confinement; dynamical chiral symmetry breaking; quantum chaos; quantum chromodynamics;
QCD phase transitions

1. Introduction

In the early 1980s, Benoit Mandelbrot pioneered the methodical study and compu-
tational visualization of the iteration of quadratic functions and began to cartograph the
emerging fractal landscape [1], which, subsequently, has been named in his honor as the
Mandelbrot set. With the advance of personal computers during the mid 1980s, fractals
gained broad attention scientifically, as well as in popular science.

In 1986, Leo Kadanoff, in an article with the title “Fractals: Where’s the physics?” [2],
expressed concerned curiosity about an understanding of fractal properties in physics which
goes beyond the identification of fractal dimensions for certain problems. Kadanoff stated
that without a better understanding of how physical mechanisms result in a geometrical
form, it is difficult to trace types of questions with interesting answers. We wish to add that
even with a lack of such a deep understanding, it is, of course, possible to find these kinds
of questions; as mentioned by Mandelbrot: “I was asking questions which nobody else had asked
before, because nobody else had actually looked at certain structures.” [3].

An example for this explorative approach is Hofstadter’s butterfly, which is less pub-
licly known. In 1976, ten years before Kadanoff asked his curious question and four years
before Mandelbrot’s famous work on the quadratic map, Douglas Hofstadter observed
what he called a recursive structure in the computed spectrum of electrons in electromagnetic
fields [4], which was named after the visual appearance as Hofstadter’s butterfly. A first
experimental confirmation of this theoretical prediction was reported nearly twenty years
later in 1997 [5].

There is no strict definition of what a fractal is; however, most people would know
one when they see it. Common descriptors of fractals refer to their non-analycity, self-
similarity, non-linearity, iterative origin, chaotic behavior, and non-integer (Hausdorff and
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other) dimension, to name a few. This paper was motivated by the fact that QCD’s gap
equations are, by definition, highly non-linear and self-consistent. Self-consistency equates
the quantity of interest, or gaps, to a functional which depends on these gaps themselves.
QCD’s gap equations are organized in a hierarchy of inter-dependencies of an infinite
number of n-point Green-functions and it is at the heart of contemporary approaches in
this field to identify methods which reduce this infinite number in a manageable way
while preserving key features of QCD like dynamical mass generation and confinement.
While one can argue how to obtain physically meaningful gap equations, viz. which set
of approximations, truncations, etc., is the most reasonable, the self-consistent nature of
these equations is not debated. Already at the seemingly simple level of two-point Green
functions for a single quark flavor, appropriate truncation schemes allow to one compute
the mass spectrum of confined and deconfined quarks. The same methods allow for the
computation of meson and baryon spectra. Nothing of this is new and, although neither
trivial nor brought to a final solution, it is in a structural sense reasonably well understood
and dealt with in Dyson and Schwinger’s functional approach, which proved to be a
powerful tool to investigate the theories of QCD and QED. We refer to recent reviews for
examples and more detailed information [6–13].

Practitioners in the field of Dyson–Schwinger equations frequently deal with problems
that can arise from their self-consistent nature. As an example, one technique to solve gap
equations is by means of iteration starting from an initial guess. There is no guarantee for
the convergence of such an iteration in general nor that the obtained solution is physical.
In order to cover ’all possible’ solutions in this approach, one would scan over different
initial guesses. Typically, one can ’tame’ diverging iterations by damping the impact of the
iteration itself. Instead of

g = F[g] (1)

one can write
g = αg + (1− α)F[g] (2)

where g is the gap, F a is functional of the gap, and α a is damping parameter close to but
less than one, thus avoiding strong responses of g to the iteration. One can wonder—we
claim one should—whether it is justified to apply such an algorithm. It looks innocent
in the sense that technically any solution of the original gap equation is a solution of the
damped iteration equation. Nevertheless, at identical initial values, both may provide
different answers and thus one can claim that the damping parameter might bear unwanted
physical significance, as it has been introduced ad hoc. We shall discuss this further in
Section 4. What happens if the gap equation is allowed to iterate itself freely? We found
only one, recently published, paper which asks exactly this question and comes to a clear
conclusion: if the system is strongly coupled, chaos emerges and one can observe an infinite
spectrum of ‘unexpected’ gap solutions with increasing coupling strength [14]. In the paper
we present, we provide a brief explanation why these unexpected solutions actually should
be expected. Further, we employ a model with momentum-dependent gap solutions. In an
iterative and inherently fractal context, this led us on a surprising journey, which answered
not all but plenty of the questions we asked and at the end of which we are left to wonder
whether looking at QCD as a fractal theory might be a key to understand confinement as an
emergent fractal phenomenon. The precise physical significance of our results, if any, are
uncertain at this time, but we hope they are hints at future avenues of study. Rather than
an attempt to offer new quantitative insights, we consider this work as a first qualitative
study to explore features of a QCD-inspired model in a fractal context.

Section 2 briefly motivates how iterative mapping generates new solutions of an equa-
tion while preserving the solutions of the non-iterated ‘seed’ equation; Section 3 reviews
the quark matter model by Munczek and Nemirovski (MN) in an extension for dense quark
matter. We chose it for our exploration as it exhibits confinement and dynamical chiral
symmetry-breaking, while being sufficiently simple to make it well suited for iterative
mapping and analytic treatment. The following Section 4 illustrates and cartographs chaotic
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features which emerge upon iteration of the gap equation. Seeking physical meaning in
such iterative chaos must be performed with caution, as chaos is generally a result of
the iterative solution method rather than directly a result of the equations, but different
solution methods, such as perturbation and lattice approaches, are known to highlight
different aspects of the as yet unknown full solution. Thus, Section 5 is a cautious attempt
to interpret physical meaning into the interplay of the chaotic and non-chaotic structures
we observe. Our study focuses on the structure of the mass pole. The appearance and
disappearance of the mass pole are highly driven by chaotic behavior. Further, the mass
gap itself is allowed to switch between different, usually distinct solutions. To our surprise,
the physical properties of the iterative solutions provide a reasonable picture of how de-
confinement could present itself in a model which possesses a gap equation with a single
solution only. Finally, we estimate how a finite width gluon interaction could affect the
observed behavior of the quark dispersion relation under iteration in Section 6 before we
conclude in Section 7.

2. Self-Consistency and the Emergence of New Roots amongst the Old

We investigate the possible consequences of chaos that appears in iterative solutions
of non-linear and self-consistent equations in the complex domain. For clarity of what we
consider physics and math, we start with the latter and briefly review Mandelbrot’s fractal,

which is obtained by the iteration z
z0=0;n→∞←−−−−−− f (z) with the explicit choice f (z) = z2 + c to

obtain the Mandelbrot set. We chose to use the symbol
z0;n←−− to have a distinguished notation

for the iterative mapping process—specifying the number of iterations n and the initial
value z0—over the equal sign =, which appears in the analytic equation z = z2 + c. It is
worthwile to look at the differences between these two. First, the polynomial equation has
exactly two solutions z1,2 for any given c, which are defined by the roots of the polynomial
P(z) = f (z)− z = z2 + c− z. It is further easily observed that one can determine c for a
desired root z0. For example, P(z0 = 0) = 0 if c = 0.

In the iterative approach, each iteration generates a new polynomial,

f1(z, c) =
(

z z,1←− z2 + c
)
= f (z) = z2 + c,

f2(z, c) =
(

z z,2←− z2 + c
)
= f ( f (z)) =

(
z2 + c

)2
+ c,

...

fm(z, c) =
(

z z,m←−− z2 + c
)
= f ( f (.. f (z)))

= f 2
m−1(z, c) + c, (3)

etc., ad infinitum. There is one trivial but fascinating property of this infinite set of equations
which essentially inspired the presented work. The left-hand side of each of the previous
equations was set to fi(z, c) = z in order to obtain the next iteration fi+1(z, c) = z. It
is thus safe to state that the roots of P1(z, c) = f1(z, c)− z are guaranteed to be roots of
P2(z, c) = f2(z, c)− z = f ( f1(z, c)) + c. As P2(z, c) is a 4th order polynomial, there are two
more roots which, of course, did not appear for P1(z, c), a second order polynomial. The
important lesson to be learned is that for a self-consistent non-linear equation z = f (z),
the iteration z z;n←− f (z) generates a new self-consistent equation. While the solutions of the
non-iterated equation remain a subset of solutions of the iterated equation, the iterated equations
can develop additional solutions.

This is a peculiar, almost awkward situation, if one wishes to assign physical meaning
to the original solutions of the equation f (z) = z. What makes these roots superior with
respect to any of the iterative clones if all, the original and clones, share these very same
original solutions? Evidently, there is an infinite number of (iterated) functions which
share the original roots. Is the original function with only these roots a superior or inferior
function? Is it worth pondering the meaning of the additional roots of iterated clones? Can
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we safely omit them? Do we miss important information when we ignore the duality of the
gap equation as the root-defining equation and mapping rule? We decided to explore and
ponder the possible meaning.

3. The Munczek–Nemirovsky Model

One approach to move towards an understanding of QCD is based on evaluating
QCD’s partition function by testing its response to external sources. This is the Dyson–
Schwinger formalism which results in sets of coupled n-point Green functions. Out of
these, we are interested in the quark propagator, which is obtained from the gap equation

S(p; µ)−1 = i~γ · ~p + iγ4(p4 + iµ) + m + Σ(p; µ), (4)

with the self-energy

Σ(p; µ) =
∫ d4q

(2π)4 g2(µ)Dρσ(p− q; µ)

×λa

2
γρS(q; µ)Γa

σ(q, p; µ). (5)

Here, m is the quark bare mass, µ is the quark chemical potential, Dρσ(p − q; µ) is the
dressed gluon propagator and Γa

σ(q, p; µ) is the dressed quark–gluon vertex. This is the
first of an infinite tower of gap equations which, without further approximations, couple
back to this one. Further, there are similar equations for the dressed gluon–propagator and
the quark–gluon vertex. Note that the gap equation is a self-consistent non-linear (in most
cases integral) equation: S−1 = F[S].

Within the Munczek–Nemirovsky model [15], the dressed quark–gluon vertex is
approximated by the free quark–gluon vertex, Γa

σ(q, p; µ) = λa

2 γσ. Gap equations applying
this approximation are referred to as rainbow gap equations. For the dressed gluon
propagator, the model is specified by the choice

g2(µ)Dρσ(k; µ) =

(
δρσ −

kρkσ

k2

)
4π4η2δ4(k). (6)

Due to the δ-function, which in a configuration space corresponds to a constant, this is a
very simplified approximation of the gluon–propagator, specified by the coupling strength
we set to η = 1.09 GeV in accordance with [15]. For non-zero relative momentum k,
the interaction strength in this model vanishes, thus making it super-asymptotically free.
Furthermore, the infrared enhanced δ-function is sufficient to provide for the dynamical
chiral symmetry breaking and confinement, both features of QCD which we wish to address.
Finally, the δ-function effectively turns the integral gap equation into an algebraic equation
which can be solved analytically.

In order to obtain these solutions for the in-medium dressed-quark propagator, one
employs the general solution

S(p; µ)−1 = i~γ · ~pA(~p2, p4)

+iγ4(p4 + iµ)C(~p2, p4) + B(~p2, p4). (7)

Here, spatial momentum ~p and energy component p4 of the 4-vector p appear as explicitly
distinct degrees of freedom due to the presence of the chemical potential µ. Substitution
into the dressed-quark gap-equation and appropriate tracing over the Dirac γ-matrices
results in three-coupled gap equations, of which two (for A and C) are identical:

A(p, µ) = 1 +
η2

2
A(p, µ)

p̃2 A2(p, µ) + B2(p, µ)
(8)

B(p, µ) = m + η2 B(p, µ)

p̃2 A2(p, µ) + B2(p, µ)
. (9)
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We introduced p̃2 = ~p2 + (p4 + iµ)2. In the chiral limit (m = 0), one finds two distinct sets
of solutions; one of them is chirally symmetric and referred to as the Nambu phase,

A(p, µ) =
1
2

(
1±

√
1 +

2η2

p̃2

)
(10)

B(p.µ) = 0 (11)

whereas for the other solution, the Wigner phase, the chiral symmetry is broken for
R( p̃2) < η2/4,

A(p, µ) = 2 (12)

B(p, µ) =
√

η2 − 4p̃2. (13)

If the real part R( p̃2) > η2/4, the gap solution of the Wigner phase coincides with the
Nambu solution. Note that these solutions are obtained in the Euclidean metric, but hold in
the Minkowski metric after a simple transformation, p̃2

E → p̃2
M, with p̃2

E = ~p2 + (p4 + iµ)2

and p̃2
M = ~p2 − (p4 + iµ)2. Due to our interest in particle mass poles, our investigation of

the model is performed in the Minkowski metric. For the next section, however, the specific
metric is not relevant; we will only work with the fact that p̃2 is complex-valued and thus
can be decomposed into a real and imaginary part, viz. p̃2 = z2

R + iz2
I . We chose to label

the real and imaginary part with squared quantities as a reminder that they come in units
of the energy square.

4. Iterative Chaos

Gap Equations (8) and (9) lead to fourth -order polynomial equations with up to four
distinct and complex valued solutions at a given p̃2 for each gap.

Generally, this is the whole solution space one would consider; the only task left is
to identify the one physical solution. However, the self-consistent nature of (8) and (9) is
evident and, according to our reasoning in the previous section, there is a possibility for
iterated functions with the same four and additional solutions.

Before we discuss our analysis, a few comments should be made. Defined by the
contact interaction in a momentum space, we chose a very simple model for the effective
gluon propogator. For dressed-gluon propagators with finite width in momentum space,
the corresponding gap equations turn into integral equations. Thus, the momenta couple
and the simplicity of the MN model, which we take advantage of for this exploration, is
lost. We address this issue in more detail in the last section of this paper.

As sketched in the introduction, for models with a sophisticated non-trivial interaction-
kernel, the iteration is a practical path to find gap solutions. We outlined before that this
leaves us with the possibility that the iteration generates new functions which possess roots
that correspond to solutions of the original gap equation and potentially an infinite number
of additional roots.

We start our iteration from the non-interacting solution (B0 = m, A0 = 1) and treat
p̃2 = z2

R + iz2
I , as one would consider the constant c for the Mandelbrot set z←− z2 + c. For

the moment, this reduces the number of independent variables from three (~p2, p4, µ) to two.
The result of such an iteration is shown in Figure 1 for the real part of the scalar gap B at
two different bare-quark masses of 10 MeV and 100 MeV, respectively.
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Figure 1. Real part of the scalar gap B after 300 iterations starting from A0 = 1 (top, bottom), and
B0 = m = (10 MeV (top), 100 MeV (bottom)).

Unlike the Mandelbrot fractal, this fractal does not diverge; chaos exhibits in domains
in which the gaps for infinitesimal changes of energy and momentum take vastly different
but finite values in a seemingly random pattern. This fractal region is contained within an
almost perfectly shaped ellipsoid, which we fit accordingly with(

z2
R + z2

R,0

R2
R

)2

+

(
z2

I
R2

I

)2

= 1. (14)

(z2
R,0, R2

R, R2
I ) differs slightly for m = 10 MeV (0.98, 1.26, 0.77) MeV2 and for m = 100 MeV

(0.99, 1.28, 0.80) MeV2. The inner almond shape with the less obvious chaotic behavior is
well approximated by the same function with (1.115, 1.085, 0.310) MeV2 for m = 10 MeV,
and (1.150, 1.100, 0.340) MeV2 for m = 100 MeV. As for the Mandelbrot set, one would be ill
advised to understand these figures as a valid representation of the fractal; the appearance
of the fractal changes with each new iteration. We identify regions with identical periodicity,
ranging from a stable, period one solution in the region outside of the covering ellipse
over a period two region within the almond shape, up to higher and higher periodicity in
between these two regions. This is illustrated in Figure 2 for m = 100 MeV for a periodicity
of up to ten.
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Figure 2. Periodicity of the iterative mass gap solution at m = 100 MeV. The outer, indigo region of
the plot are absolutely stable under iteration, the inner almond shape has periodicity two, and the
area in between exhibits chaos with increasing periodicity. For this plot, areas with periodicity larger
than ten are plotted in black.

Keeping in mind that the analytic gap equations possess four distinct solutions, it
seems interesting that there is an extended stable domain (periodicity one) which favors
one, and only one solution. We follow the gap solution along a vertical path at fixed z2

R and
vary z2

I . For reasons which become more clear at a later stage, we chose z2
R = 0.1 MeV2.

Along this line, one notices that one passes from an outer stable region into an inner stable
region by traversing a small chaotic domain. This is illustrated in Figure 3. As within this
chaotic domain the value of the gap function can change with each iteration, we plot all
obtained values of R(B) over 300 iterations in gray scale according to how frequently a
particular solution has been obtained. Evidently, there is a transition between two distinct
analytic solutions of the non-iterated fourth-order polynomial gap equations. This result
seems remarkable if one recalls how one would usually deal with different gap solutions
for a given model: each solution is understood as a distinct phase, then one examines
the stability of each individual solution and picks the energetically favored solution as
the physical one. Upon iteration, we are lead to a different conclusion. Although each
of the analytic solutions indeed is a solution of the gap equations, only one of them can
be stable upon iteration at a given energy and momentum. However, the stable iterative
solution over a finite range of energies can switch between distinct analytic solutions. It
is further remarkable that the iteratively stable solution is massive (similar to the Wigner
solution) when low and massless (similar to the Nambu solution) at high energy. Amongst
all the possibilities chaos seems to offer, this seems a very reasonable one. While the exact
meaning is unclear, it seems unlikely to be coincidence that iteration favors massive and
massless solutions in precisely the energy regimes where confinement and asymptotic
freedom are required.

The notion of analytic solutions describing different phases, however, is not sup-
ported from an iterative perspective; there is one, and only one, iterative solution to the
gap equation.
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Figure 3. Real part of the mass gap B at z2
R = 0.1 MeV2. The color coding indicates how frequently a

solution has been found over 300 iterations after the first 100 iterations which are sufficient to shape
the fractal as seen. For reference, all analytic solutions to the polynomial gap equations are plotted in
color. Iteration switches from massive solutions (blue) at small I(z2) to bare-mass solutions (green) at
larger values. Except for the chaotic transition domain, the iterative approach picks positive mass-gap
solutions, only. Note, that the chaotic domain has solutions of periodicity of two and higher; it is
truly unstable. Hence, we add a gray scale to measure the frequency of a particular solution over the
final 300 iterations.

Before we go into a further interpretation of what this result implies, we wish to
address a question related to the previous paragraph. Initially, we remarked that our
iteration starts from the non-interacting solution A = 1, B = m. As we try to proceed
as carefully as possible, let us investigate the iterative stability of the four analytic gap
solutions as plotted in the upper panels of Figure 4, where we demonstrate again the real
part of the mass gap. The lower panel of Figure 4 shows the result after 300 iterations of
these algebraic solutions as an initial value. It is safe to say that none of them is stable
under iteration. Further, there is a visibly favored solution at large values of z2

R, which
does not depend on the initial gap that seeded the iteration. From a global perspective, the
fractal keeps the general shape but shows differences for each different seed solution. This
is to be expected and would happen in a similar fashion to the Mandelbrot set if the initial
value was arbitrarily changed.

Figure 4. Upper panel: Solutions of the polynomial gap equations for m = 100 MeV . Each is
plotted on a scale that most accentuates its structure. Solution 1 and 3 (from the left) are stable in
some, mutually exclusive domains under iteration, as illustrated in Figure 3. Lower panel: After
300 iterations, using the corresponding solution of the polynomial gap equations from the upper
panel as initial seed for the iteration. In the outer, non-chaotic domain, all four cases produce nearly
identical results with positive mass gap only.



Particles 2023, 6 478

Comparing the iterations to the algebraic solutions of the gap equations in the upper
panel of Figure 4, one can graphically identify which of them is stable under the iteration
and in which domain. As observed, this is the case only for the positive mass-gap solutions
1 and 3 from Figure 4, as illustrated in Figure 5. In other words, although the chaotic domain
will vary, the described features of Figure 3, with respect to the analytic gap solutions, do
not critically depend on the chosen initial gap.

Figure 5. Difference between gap solution 1 and 3 (from the left) in the top panel of Figure 4 and
iterative solutions seeded with the non-interacting solution (A = 1, B = m) after 500 iterations. White
domains show no difference between iterative solutions seeded with an analytical model solution
or seeded with the non-interacting solution. Solution 2 and 4 show no agreement anywhere in the
stable domain of periodicity one (not shown).

This iterative preference for one solution over the others seems to illustrate a case
where Equation (1) favors a particular solution, while Equation (2) can be tuned to converge
to any of the four analytic solutions. We take a moment, therefore, to discuss this further.

Precisely at an analytic solution, Equation (1) should be an identity so that with infinite
precision, all of the solutions should stay precisely at their analytical value. However, any
real solution will have at least some error, so that our numerical approximation is only in
the neighborhood of the analytical solution. That is

gn = ga + ε (15)

where ga and gn represent the analytical solution and its numerical approximation, respec-
tively. If we input gn into Equation (1), we obtain

gn = F[gn]

= F[ga] +
δF[g]

δg
|g=ga ε

= ga + F′[ga]ε (16)

Hence, the solution will be stable if and only if the functional’s derivative has a magnitude
of less than 1.

|F′[ga]| < 1 (17)

Equation (2) resolves this so that if α = 1− ∆ then after iteration

gn = ga + (1− ∆ + ∆F′[ga])ε. (18)

In this situation, we can always choose the sign (or phase) of ∆ such that 1−∆+∆F′[ga] < 1
near a specific analytical solution. Hence, we can make any of the analytical solutions
stable by using Equation (2), but at most one such solution is stable under Equation (1),
and that solution changes abruptly between very massive and nearly massless behavior in



Particles 2023, 6 479

just the locations where we expect massive and massless behavior of the quarks. Whether
this is a lucky coincidence, an actual effect of chaos, or a hint at something else in the true
and final solution, is yet to be determined.

5. Mass Poles

Up to this point, we refrained from searching for meaning in our study. In spite of the
fact that iterative mass gap solutions result in a large domain of chaotic behavior, which
may or may not hide future surprises, we cannot help but wonder whether the switching
between massive and mass-less gap solutions in the stable domains offers meaning. Before
we go further, we want to recall that MN is considered to be a confining model. This
is observed by the fact that the inverse propagator has no roots in the chirally broken
phase and, therefore, the integration over the four-momentum does not pick up weight
to generate a finite particle number. Hence, although confined quarks generate mass via
chiral symmetry breaking, the absence of a mass pole results in the absence of a dispersion,
viz., there is no explicit relation between specific momenta and energy. For the vacuum
MN model, this is easily understood by the realization that in the Minkowski metric,
p2 + M2(p2) has no real root if at any p2, M2 > −p2 = p2

4 − ~p2. This running away of the
mass in the chirally broken phase is exactly what happens in the MN model. However,
as we have demonstrated in the previous section, the iteration erases the distinction
between chirally broken and restored phases and suggests that instead there might be
a discontinuous gap solution, which is confinement-like affected by dynamical chiral
symmetry at small momenta, and at large momenta chirally unconfined-like and chirally
restored. The transition between these domains is characterized by chaotic and unstable
solutions (see Figure 3).

At finite chemical potential, the real poles of the propagator A2(~p2 − (p4 + iµ)2) + B2

are represented by ~p2 − p2
4 + µ2 + <(M2) = 0, with M = B/A. We note that the shift of

the pole due to the chemical potential should not be confused with the physical mass pole
of the particle. This becomes evident if one considers an ideal non-interacting gas, with M
being constant and real-valued. For the purpose of this study, we refer to the physical mass
pole, defined by ~p2 − p2

4 +<(M2) = 0. From the definition p̃2 = z2
R + iz2

I , we identify the
pole position in our contour plots as z2

R = µ2 and z2
I = −2p4µ for an ideal particle with

constant and real M. This represents a vertical line in our plots, which does not depend on
momentum and measures energy with increasing distance from the real axis. It shifts to
higher z2

R with an increasing chemical potential.
In Figure 6, we trace the physical mass pole in the Minkowski metric by plotting the

logarithm of the quantity
(

p2
3 + M2 − p2

4
)2, which gives zero and hence a large negative

logarithm at the physical mass pole. As the vertical axis does not depend on the mass
(z2

I = 2p4µ), a vertical pole line indicates constant dressed quark masses. We observe the
absence of such a well ordered pole structure within the chaotic domain. Since the vertical
axis is a measure of the particle energy at a fixed chemical potential, one can conclude
that the transition to the massive solution (Figure 3) suppresses quasi-particle behavior in
the infrared domain of the model. Again, we can trace the physical pole indicated by the
vertical line and find z2

R = µ2 −M2, since the pole is found at p2
4 = p2

3 + M2. Following
our elliptic fit of the outer boundary of the fractal domain, this allows one to determine the
critical chemical potential where the infrared energy gap entirely disappears

µC,IR =
√

m2 + R2
R − z2

R,0 . (19)

We find µC,IR ≈ 625 MeV for m = 100 MeV and µC,IR ≈ 540 MeV for m = 10 MeV. At these
chemical potentials and beyond, quarks can be considered as completely chirally restored.
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Figure 6. Natural logarithm of
(

p2
3 + M2 − p2

4
)2 for the iterative solution for µ = (100, 350, 600) MeV

(top down) at quark-bare mass m = 100 MeV. The vertical line shaped by minimal negative values
indicate a physical mass pole, viz. a quasi-particle. In the chaotic domain, this pole structure is
absent, viz. the vertical line (or any distinct pole) pattern is absent. This implies an infrared energy
gap, below which quarks show no quasi-particle properties. As the chemical potential increases, the
quasi-particle pole line moves to the right and simultaneously decreases the gap, viz., the gap region
without a pole traces the outer shape of the fractal. Once the chemical potential is sufficiently large,
the gap closes entirely. Note that the absence of a mass pole does not imply that there is no mass gap
solution, as illustrated in Figure 3.

In order to estimate when mass-pole states can be occupied, we determine at which
chemical potential the energy p4 and the Fermi energy or chemical potential µ turn equal,
that is, when z2

I = µ2 on the elliptic boundary of the fractal at the position of the physical
mass pole with M = m. We choose this scenario, as this is the critical potential starting
from where the particle energy is larger than the chemical potential and thus large enough
to populate quasi-particle states. This is the case when(

µ2 −m2 + z2
R,0

R2
R

)2

+

(
µ2

R2
I

)2

= 1 , (20)

and holds for the light quark with m = 10 MeV at µm ≈ 359 MeV, for the heavy quark with
m = 100 MeV at µm ≈ 432 MeV.

Although this is not a rigorous statement, one can roughly relate the critical chemical
potential for the transition from a chirally broken mass into the restored phase to the
in-vacuum dressed-quark mass. In our case, the situation is a bit different. We estimate
a hypothetical chirally broken quark vacuum mass based on the previous estimate of
the critical potential for the complete disappearance of the infrared gap by setting them
approximately equal. Relating µm as the onset of a deconfined chirally restored quark
phase with an estimate of the constituent quark mass seems to provide rather reasonable
results in comparison to other model calculations. This is interesting, considering that in
the MN model, the vacuum mass at zero 4-momentum is defined by the coupling strength
η, which is of the order of 1 GeV.

It is noteworthy that our simple approach reproduces quantities related to the effective
constituent masses at reasonable values. We state explicitly that in this model, constituent
masses are nowhere realized for a physical particle, viz. an entity with a mass pole of that
magnitude. We can compare the light quark critical chemical potential µm ≈ 359 MeV with
the deconfinement critical potential obtained within the MN model in a Euclidean metric
with a value of 300 MeV [16] or with subsequent work based on a widened version of the
effective gluon propagator [17], which predicts deconfinement at a chemical potential of
380 MeV. There is a satisfying agreement of these values with ours. We point out though,
that both of these models are defined within a different metric, as slightly different bare
quark masses and, most importantly, are based on entirely different assumptions. While
the two previous papers employed distinct gap solutions and compare the pressure of
the corresponding mass-less Wigner and massive Nambu phase, our approach results in
only one gap solution which exhibits a transition from the Nambu to the Wigner phase
through a chaotic domain, as depicted in Figure 3. Our quarks are either bare-mass quarks
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with poles or entities with a chaotic mass function, or a dressed quark mass different from
the bare mass with no associated pole. In the latter case, there is a chaotic transition from
dressed quark masses to bare quark masses with increasing energy.

6. Finite Interaction Width

We begin the final section of this paper with a plot of the particle pole in an energy
momentum space which we obtain by transforming (z2

R, z2
I ) to (p3 = |~p|, p4) coordinates

under explicit choices of the chemical potential, as noted in Figure 7. Although this switch
in representation does not provide additional information, we find it instructive to provide
an actual dispersion relation obtained from the iterative approach. In this example, at a
chemical potential of 700 MeV, no chaotic behavior is visible and the dispersion is exactly
that of a free quark at bare-mass 100 MeV. With the decreasing chemical potential chaos,
there emerges, at energies higher than that of the expected (now absent), the free particle
dispersion. The actual dispersion branch is cut clean at some critical value (as we discussed
in the previous section), thus illustrating our interpretation of the fractal boundary as the
cause for a dynamical infrared cutoff, below which quarks are mass-pole-free.

Figure 7. Plotted is the logarithm of the mass-pole condition log(|~p2 − p2
4 + µ2 + <(M2)|), which

shows a dispersion relation with distinct, chaos-induced infrared cut-off. With increasing chemical
potential (m = 0.1η; µ = (0.2, 0.4, 0.7)η from left to right), the infrared cut-off decreases and
eventually disappears. With increasing widening (σ = (0.00, 0.01, 0.02)η from top to bottom), chaotic
domains blur but the observed IR cut-off remains.

Presently, we address a last question which relates to the fact that the MN model is
based on the very particular choice of the effective gluon propagator as a δ-function in
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the four-momentum space. This is the reason that we could easily perform the presented
study based on this Ansatz and the subsequent decoupling of momenta, which allows one
to iterate point-wise for any given four-momentum without coupling to other momenta.
This might raise the suspicion that momentum coupling could destroy the fractal structure
we observed. In order to keep the simplicity of the gap equations but still obtain an idea
about the stability of the emergent fractal, we averaged each point in our plane after each
iteration step and thus mimicked some kind of momentum coupling. The averaging is
based on Gaussian weights around a given point according to

g2Dµν(k) = 3π4η2δµν exp(k2/w2)∫
exp(k2/w2)d4k

, (21)

where w is the width of the Gaussian. To further simplify, we assumed that the widen-
ing only happens in the direction of momentum and energy, i.e., there is no widening
perpendicular to the momentum.

As observed in Figure 7, the separation into the chaotic pole-free and non-chaotic
mass-pole domains remains, even when we change the momentum dependence of the
gluon from a delta function to a Gaussian with a half width as much as 0.02 times the
gluon mass. We find numerical evidence that this feature remains even with a width
as much as 2% of the gluon mass, ≈ 20 MeV. This corresponds to a spatial width of
about 10 fm, which is roughly one order of magnitude larger than the size of a proton.
Based on this—certainly simplified—treatment of momentum coupling, we conclude that
the statements we make in this paper may indeed survive a more complete treatment
involving self-interactions with globally coupled momenta—which has been our main
concern, prompting this final analysis.

7. Conclusions

As we have demonstrated, a strictly iterative solution of the MN gap equations results
in fractal gap structures which can be characterized by the existence of three qualitatively
very different, yet co-existing domains of a single and unique gap solution: a bare-mass
quark quasi-particle domain with physical mass poles extending infinitely into the ul-
traviolet, a dressed-mass quark domain without mass poles and hence no quasi-particle
interpretation in the infrared, and a chaotic domain of transition between the first two
phases. Remarkably, the two non-chaotic domains correspond to distinct analytic solutions
which would usually represent individual phases with either dynamically broken or re-
stored chiral symmetry. The fractal approach offers an alternative to this separation which
is rooted in the iterative nature of the gap equation.

Further, it is noteworthy that the iterative mass gap solution is always positive in the
smooth, viz. non-chaotic domain of the fractal. The appearance of a chaotic boundary
between two qualitatively different domains results in interesting properties:

(I) The iterative approach provides an ultraviolet cut-off for the massive and mass-pole-
free Nambu solution, as this solution appears only within the elliptic region of the
(z2

R, z2
I )) plane. Thus, the approach avoids the appearance of an infinitely increasing

dressed-quark mass with increasing momentum and energy. In the MN model, this
running mass results in the absence of mass poles for the massive gap solution and
thus relates to confinement.

(II) It provides an infrared cut-off for the bare-quark mass Nambu solution and thus
ensures that quasi-particle states are not populated at a small chemical potential,
although the quark can virtually exist as a quasi-particle with well defined dispersion.

(III) Both cutoffs more or less coincide (as observed in Figure 5), although there is a transi-
tion region which is chaotic in nature. The resulting effective Nambu-UV/Wigner-IR
cutoff depends dynamically on energy, momentum, bare mass, and chemical potential.
As a side note, we add that plotting gap solutions in the (z2

R, z2
I ) plane removes much

of the dynamical arbitrariness and leaves the ratio of the bare mass m and coupling
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constant η as the only ’true’ degree of freedom; viz., a change of the chemical poten-
tial µ would rescale the plot but cause no qualitative change, whereas plots such as
Figure 1 indeed demonstrate ’the’ gap solution at an arbitrary chemical potential.

(IV) Sufficiently large chemical potential bare-quark mass-pole states will form at energies
which can be populated; thus, physical quarks can exist as quasi-particle excitations.

A mechanism with these properties can be interpreted as a deconfinement mechanism.
The appearance of one, and only one, iterative solution of the MN gap equations bears a
certain elegance. First, it is by the very fact that there is only one gap solution with expected
properties, being the existence of only a positive mass gap, asymptotically restored chiral
symmetry, and the absence or appearance of physical mass poles. Next, it builds on
distinct solutions which one would obtain in the non-iterative approach but provides a new
meaning by slicing them into a single new solution with the aforementioned properties.

A simple treatment of a widened, δ-like gluon interaction indicates that momentum
coupling blurs chaotic domains but does not necessarily change the qualitative results
we describe if the widening is moderate. As this study is an exploration and qualitative
in nature, we look forward to further analyses of this perspective on understanding the
confinement and the deconfinement transition as highly non-linear and, to a certain extent,
with possibly chaotic phenomena.
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