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Abstract: We explore the chemical potential of a QCD-motivated van der Waals (VDW) phase change
model for the six-quark color-singlet, strangeness S = −2 particle known as the hexaquark with quark
content (uuddss). The hexaquark may have internal structure, indicated by short range correlations
that allow for non-color-singlet diquark and triquark configurations whose interactions will change
the magnitude of the chemical potential. In the multicomponent VDW Equation of State (EoS), the
quark-quark particle interaction terms are sensitive to the QCD color factor, causing the pairing of
these terms to give different interaction strengths for their respective contributions to the chemical
potential. This results in a critical temperature near 163 MeV for the color-singlet states and tens of
MeV below this for various mixed diquark and triquark states. The VDW chemical potential is also
sensitive to the number density, leading to chemical potential isotherms that exhibit spinodal extrema,
which also depend upon the internal hexaquark configurations. These extrema determine regions
of metastability for the mixed states near the critical point. We use this chemical potential with the
chemical potential-modified TOV equations to investigate the properties of hexaquark formation in
cold compact stellar cores in beta equilibrium. We find thresholds for hexaquark layers and changes
in maximum mass values that are consistent with observations from high mass compact stellar objects
such as PSR 09043 + 10 and GW 190814. In general, we find that the VDW-TOV model has an upper
stability mass and radius bound for a chemical potential of 1340 MeV with a compactness of C~0.2.

Keywords: chemical potential; van der Waals; quark star; TOV; hexaquark; sexaquark

1. Introduction

The thermodynamics of strongly interacting matter and the phase structure of QCD
have been studied extensively from both a lattice perspective and from QCD-motivated
phenomenological models. Many of these models have been bolstered by the rapidly grow-
ing accelerator measurements of the properties of quark gluon plasma and by astrophysical
observations of compact dense stellar cores. However, the complexities and nonlinear
dynamics of QCD have made it difficult to directly understand all of the properties of novel
quark matter-bound states, such as tetraquark [1], pentaquark [2,3], and hexaquark [4]
particles (note: authors also refer to the 6-quark particle as the hexaquark so the H symbol
will not be confused with the Higgs). In the appropriate limits, such states can be modeled
as loosely bound molecular quark states—diquarks with bound mesons, with color states
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1. Introduction 
The thermodynamics of strongly interacting matter and the phase structure of QCD 

have been studied extensively from both a lattice perspective and from QCD-motivated 
phenomenological models. Many of these models have been bolstered by the rapidly 
growing accelerator measurements of the properties of quark gluon plasma and by astro-
physical observations of compact dense stellar cores. However, the complexities and non-
linear dynamics of QCD have made it difficult to directly understand all of the properties 
of novel quark matter-bound states, such as tetraquark [1], pentaquark [2,3], and hex-
aquark [4] particles (note: authors also refer to the 6-quark particle as the hexaquark so 
the H symbol will not be confused with the Higgs). In the appropriate limits, such states 
can be modeled as loosely bound molecular quark states—diquarks with bound mesons, 
with color states qi ͞ qj δij or baryons, with color states εijk qi qj qk, as SU(3)c color-singlet states 
or more strongly bound compact single-particle states, or as less common hybrid states of 
quarks and gluons or pure gluonic states [5]. For states with more than three quarks, there 
exist more pairings that give color-singlet states, for example [6], the 3 3 1c c c⊗ =  and 
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or baryons, with color states εijk qi qj qk, as SU(3)c color-singlet states or more strongly
bound compact single-particle states, or as less common hybrid states of quarks and gluons
or pure gluonic states [5]. For states with more than three quarks, there exist more pairings
that give color-singlet states, for example [6], the 3c ⊗ 3c = 1c and the 6c ⊗ 6c = 1c result in
a varied spectrum of states. The existence of such states indicates that a system such as a
cold compact stellar core can consist of a mixture of quark clusters such as diquarks and tri-
quarks [7] or as short length correlated groups in a particle such as a hexaquark, along with
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various color-singlet states. Various hexaquark flavor, isospin, spin, and angular momen-
tum states have been studied, beginning with Jaffe examining a JP = 0+ dihyperon [8] with a
focus on the d*(2380) I(JP) = 0(3+) [9–11] and interest in the (uuddss) flavor-singlet, charge-
neutral, even-parity, spin-zero boson with baryon number and strangeness B = 2, S = −2.
This last case is especially interesting because, as noted by Farrar [12,13], it may have a
long-life ground state, making it an interesting candidate for dark matter and impacting the
internal structure of compact stellar cores. As the pressure increases towards the central re-
gion of the core, the number of particles in each state will change and the central core region
at the highest pressure can undergo a phase transition from a bound to an unbound quark
gaseous state. Several authors have investigated this phase change for a cold neutron star
model that is charge neutral and in beta equilibrium utilizing a system of quark clusters [14],
quasiparticles [15], and quark drops [16] as partial intermediate states as the system ap-
proaches a free-quark gaseous state. One widely used model to investigate this behavior is
a simple analytical model based upon the multicomponent van der Waals (VDW) equation
of state (EoS), which incorporates particle species’ chemical potentials to accommodate
changing particle numbers and includes a first-order phase transition. Such a general-
ized VDW model focused on dense fluids [17] was further developed by Vera [18] and
extended the development of the Prigogine [19]-Flory [20]-Patterson [21] theory. For dense
matter, the general VDW partition function and statistical method of Eu [22] with the mul-
ticomponent partition function method of Keffer [23], as developed by Vovchenko [24–27],
has the advantages of including the excluded particle volume, incorporating attractive and
repulsive interactions, exhibiting a first-order phase transition, including multicomponent
mixtures, showing binodal and spinodal behavior, having a well-defined chemical potential,
and exhibiting a critical point. VDW-based models have become an important way to gain
insight into the hadronic deconfining phase transition [28–30] and as a model for a hadronic
gaseous state [31]. Here we will apply the VDW EoS to a system of hexaquarks where
the hexaquarks can have different internal structures consisting of diquark and triquark
states [32]. The different binding strengths given by the color factors are represented by
the VDW mixing parameters; the multicomponent VDW equations are used to analyze a
system with combinations of the various hexaquark states. For example, we can analyze the
properties of a hexaquark fluid consisting of hexaquarks that have a three-diquark internal
structure. Or we can have a two-component fluid consisting of one component made
from hexaquarks with a two-triquark substructure and the other component consisting of
hexaquarks with three diquarks. While the VDW equations allow us to find the chemical
potential and critical point for each fluid, the multicomponent VDW equations allow us to
find the chemical potential and critical point for the mixture.

A potential arena where the impact of hexaquark internal structure, critical points,
chemical potentials, and phase change phenomena could take place, and be constrained by
observation, is in the dense core of a neutron star or a possible quark star [33]. As the obser-
vational data have become more robust and refined, more detailed models have emerged
to help understand the varied mechanisms at play in dense QCD matter. Several models
are gaining support from the observations of quark–gluon plasma, QGP, demonstrating
the existence of a high-temperature, low-chemical-potential state of unconfined quarks,
as seen at the SPS [34], LHC [35], and RHIC [36] laboratories. These experiments give a
transition temperature near 155 MeV and an energy density near 0.8 GeV/fm3 [37]. Stellar
cores represent systems of high baryon chemical potential, with high density and pressure
which might be capable of exhibiting a deconfinement phase transition at high pressure as
noted by Baym, et al. [38]. Isolated nonaccreting neutron stars are cold, less than ~0.1 MeV,
and after a few hundred years can be nearly isothermal [39]. For larger masses and higher
pressures, a transition to a quark star can occur which may have spin or tidal deforma-
tion [40], strange quarks [41,42], magnetic field effects [43], or color superconductivity [44].
For the known transition temperature, there is a baryon chemical potential, or, equivalently,
a density or pressure, where the phase transition will occur which can be described by the
EoS [45] and, when considering the case of an isotropic density and pressure as source
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terms, can be described by the TOV equations. As outlined in Baym [46], the constraints of
charge neutrality and beta equilibrium can be used to estimate the chemical potential within
the context of the MIT bag model, while at high temperatures, T > 1 MeV, the matter is out
of beta equilibrium [47]. Charge neutrality for particle number density nj, mass density
ρf, and electric charge qj for particle type, j, or flavor, f, can be expressed as ∑ q f n f = qene
and ρB = ρu + ρd + ρs. The three-light quark flavors, changing weak interaction equilib-
rium conditions from the quark interactions, given by d↔ u + e− + νe′ , s↔ u + e− + νe′ ,
and s + u↔ d + u , constrain the chemical potentials. We consider the late-time case, in
which the neutrinos and antineutrinos have exited the collapsed core on a time scale that is
short compared to the long-term cooling time, effectively causing their chemical potentials
to vanish to establish beta equilibrium, resulting in µd = µu + µe− and µs = µd Then,
the pressure and energy density ε are given by P = −∂U/∂V = n2∂(ε/n)/∂n = nµ− ε,
where the chemical potential is µ = ∂ε/∂n and n is the number density where the nuclear
saturation density is nsat ~ 0.16 fm−3. For compact stars, these models allow for compari-
son to the MIT bag model [48] and the modified MIT bag model [49,50] for the pressure,
P, energy density, ε, and chemical potential, µ, with the bag constant, B, expressed as
3P = (ε− 4B) = ε− 4(3µ4/4π), relating the baryon chemical potential to the bag constant,
which is subject to the Franzon [51] constraint by stability requirements in neutron star mod-
els: 30 MeV/fm3 < B < 75.5 MeV/fm3. The chemical potential for multiquark particles is
given by µ = m + EF, where EF is the Fermi energy. For a system of noninteracting fermions,
the Fermi energy is given by EF = (32/3π4/32−1/3)h2(n/(2s + 1))2/3/m for the reduced
Planck constant, h, spin, s, number density, n, and mass, m [52,53]. For hexaquark states
consisting of quarks, diquarks, and triquarks, which can have spin states s = 0, 1/2, 1, 3/2,
the Fermi energy is in the range of 55–500 MeV and chemical potentials are in the range of
850–2100 MeV [54,55]. Knowledge of the baryon chemical potential and pressure in the core
provides an important method for identifying a deconfining phase transition. Within the
context of the Maxwell construction [56], this occurs when the hadronic and quark pressures
and chemical potentials of quarks and leptons [57] are equal: Ph = Pq and µh = µq, where
µq = 3( ∑

quarks
µqnq + ∑

leptons
µlnl)/ ∑

quarks
nq and µh = ( ∑

hadrons
µhnh + ∑

leptons
µlnl)/ ∑

hadrons
nh for

the hadron, h, and lepton, l, labels for the chemical potentials and number densities. We
only consider the case after the neutrinos have escaped; however, a more careful treatment
by Dexheimer considers the protostar case with trapped neutrinos [58].

Here we will develop this model to find the range of chemical potentials of the
hexaquark that can exist in a compact core within the Franzon stability range [59,60]. We
will first introduce the VDW model and match the parameters to the quark interactions
applicable to the determination of the chemical potential of the hexaquark. Using the
multicomponent VDW equation, we examine the differences in the chemical potential
that result from the molecular and independent constituent models of the hexaquark
substructure. Values from the SHM [61] at RHIC [62] and ALICE [63] are matched with
lattice values [64] to determine the functional form of the temperature dependent chemical
potentials. We then examine the variation in chemical potential exhibited in a dense stellar
core by solving the TOV system for the chemical potential. We use natural units where
the Boltzmann constant, the speed of light, and Newton’s gravitational constant are set
to unity.

2. Van der Waals Model Chemical Potential in a Hadronic Mixture

In this application of the VDW EoS, we consider a uniform state of bound quark
clusters that can undergo a phase transition to free quarks, as performed by Zakout for
the quark gluon plasma [65]. In the multicomponent VDW EoS, the system can consist
of several different components which correspond to different types of clusters; here we
are limiting the model to clusters that yield a hexaquark, i.e., each system consists of
hexaquarks but the underlying hexaquark structure is governed by different short-range
correlations giving different color factors which are modeled in the VDW mixing factors.
These can consist of diquark and triquark clusters, each of which form hexaquarks, that can
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be mixed with a hexaquark with no internal structure. This system can then be viewed as a
multicomponent fluid where each component is described by its own chemical potential.
Following the statistical development of VDW EoS, we consider the multicomponent, Nc,
van der Waals partition function given by

Zvdw(Ni, V, T) =
Nc

∏
i=1

1
Ni!


V −

Nc
∑

j=1
Njbj

Λ3
i


Ni

exp

(
Ni

VkT

Nc

∑
j=1

Njaij

)
(1)

where bj is the van der Waals effective volume of the jth particle of number Nj, the thermal
de Broglie wavelength is

Λi =

√
1

2πmiT
(2)

and the van der Waals interaction parameter is aij. We adopt the notation of aii = ai, noting
that the aij is symmetric (aij = aji) and that there is a mixing rule, aij =

√aiaj(1 − kij),
where kij is a mixing parameter that is used to account for the color factor interaction
differences between the strength of the diquark color interaction for non-singlet states and
for color-singlet states. Using Sterling’s approximation, the pressure is

p = T
(

∂ ln Z
∂V

)
N,T

= T
Nc

∑
i=1

 Ni

V −
Nc
∑

j=1
Njbj

− Ni
V2T

Nc

∑
j=1

Njaij

 (3)

The pressure expression is the equation of state, EoS, for our system. In terms of the
single component number density, n = N/V, Equation (3) can be used to find the VDW
speed of sound as

c2
s =

(
1
m

∂P
∂n

)
=

T

m(bn− 1)2 −
2an
m

(4)

which in the limit of vanishing VDW constants gives the ideal gas law value of T/m. The
critical point of the phase diagram can be found by solving the system of equations,

P = P(V, T, N), ∂P
∂V = 0, ∂2P

∂V2 = 0

Pc =

(
Nc
∑

i=1
Ni

Nc
∑

j=1
Njaij

)

27

(
Nc
∑

j=1
bj Nj

)2 , Tc =
8

(
Nc
∑

i=1
Ni

Nc
∑

j=1
Njaij

)

27k

(
Nc
∑

i=1
Ni

)(
Nc
∑

j=1
bj Nj

) , Vc = 3
Nc
∑

j=1
bjNj

(5)

for the critical values Pc, Vc, and Tc, while the resulting chemical potential for the ith
species is

µi = −T
(

∂ ln Z
∂Ni

)
T,V,Nj 6=i

= T ln Ni − T

ln


V −

Nc
∑

j=1
Njbj

Λ3
i

− bi

V −
Nc
∑

j=1
Njbj

Nc

∑
j=1

Nj +
2

VT

Nc

∑
j=1

Njaij

 (6)

When the van der Waals volume correction is small compared to the total volume, the
logarithm term can be expanded as a power series and regrouped to express the chemical
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potential as the sum of a term that is independent of the van der Waals constants and a
term with the explicit dependence on the van der Waals constants

µi = µio + µiab = µio − T

 ∞
∑

k=1

1
k

(
Nc
∑

j=1

Njbj
V

)k

− bi

V−
Nc
∑

j=1
Njbj

Nc
∑

j=1
Nj +

2
VT

Nc
∑

j=1
Njaij


µio = T ln

(
NiΛ

3
i

V

)
= T ln

(
niΛ3

i

)
,

(7)

where, for a single component small particle volume, bj/V << 1, with i = j = k = 1, the
chemical potential in terms of the number density, nj = Nj/V, simplifies to

µ1

T
= ln

(
n1Λ3

1

)
−
[

2n1a11

T
−

n2
1b2

1
1− n1b1

]
(8)

This result can now be used with the measured values of the quark chemical potentials
to determine the van der Waals constants and the chemical potential in dense matter, such
as the central core of a compact star. For Nc particles in a system with equal number
densities for each particle, n = n1 = n2, and symmetric interaction mixing for color factors,
kii = kji, at equilibrium, the total chemical potential is

µ =
Nc
∑

i=1
µi

µi = µio − T

n
Nc
∑

j=1
bj − 2nbi

1−n
Nc
∑

j=1
bj

− 2
Nc
∑

j=1
nj
(
aiaj
)1/2(1− kij

) (9)

In the VDW model, the chemical potential is singular at the phase transition where
the effective volume of the constituents approaches the volume of the object when the
number density is sufficiently large; such a density can arise in a compact stellar core during
collapse. We use the chemical potentials for baryon number, isospin, and strangeness from
SHM and lattice models to find the VDW constants consistent with Equation (8) for the
three lightest quarks and the mass values from the PDG review of particle properties [66].
These values are then used to determine the chemical potentials and VDW constants for
the systems of combined quarks forming particles with net-color or color-singlet states, the
diquark, and triquark states. These form the building blocks for the hexaquark color-singlet
states containing six quarks in the VDW model.

The composite particle states are constructed using the quark values from Table 1
with color factors to match the resulting state and find the chemical potential. These
values represent the scalar S ground states which are nearly 220 MeV below their axial
counterparts and are given in Table 2 [67,68].

These values can then be used with Equations (6) and (7) to express the chemical
potentials as functions of temperature; plots for special cases are given in Figure 1 below.

Table 1. Quark VDW constants from baryon, isospin, and strangeness chemical potentials.

Particle m [MeV] a [GeV−2] b [GeV−3]

Up 2.2 0.0011 0.00201
Down 4.7 0.0012 0.00217

Strange 93 0.0037 0.00683
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Table 2. Van der Waals constants for the diquark and triquark, as well as different representations of
the internal structure of the hexaquark.

Particle m [MeV] a [GeV−2] b [GeV−3]

Diquark (ud) 509 0.0098 0.0182
Diquark (ds) 698 0.0137 0.0251
Triquark (uds) 2077 0.0419 0.0748
Hexaquark (uuddss) 2110 0.0472 0.0839
3-diquarks
(ud)(su)(ds) 1883 0.0518 0.0914

2-triquarks (uds)(uds) 2324 0.0566 0.0987
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are: m1 = 2.3 GeV, m2 = 1.4 GeV, and m3 = 509 MeV and (b) chemical potential isotherms near the
critical point exhibt the spinodal and metastable regions characteristic of a VDW EoS for two different
mass values. The spinodal points are the local extrema of each curve.

In our analysis, the chemical potential, which depends upon b2, needs to be real-
valued, and this provides an additional constraint on Equation (6) giving a relationship
between a, n, T, and the chemical potential

−4T + µ1T − T2 ln
(

n1Λ3
1

)
2n1

≥ a ≥
µ1T − T2 ln

(
n1Λ3

1

)
2n1

. (10)

These results can be applied to an environment where the Fermi energy is on the order
of the chemical potential to explore shifts in the chemical potential, such as in a dense
stellar core, which can be modeled using the TOV equations. Near the critical point, the
expressions for the pressure and chemical potential can be simplified by expanding about
the critical point, where µc and nc denote the chemical potential and density evaluated
at the critical point, and using the dimensionless density ratio, z, resulting in the cubic
expressions

z = n−nc
nc

µ = µc +
9Tcnc

4 z
[

T
Tc
− 1 + 1

4 z2
](

p−pc
pc

)
(2− z) = 8

(
T
Tc
− 1
)
(1 + z) + 3z3

(11)

Using Equation (11), the pressure near the critical point can be expressed as a function
of the chemical potential

p =
pcn
(
32µcn2

c − 32n2
c µ− 9

(
n3 − 6ncn2 + 11n2

c n− 6n3
c
)
Tc
)

9(n− 3nc)(n− nc)n2
c Tc

(12)

which is monotonically increasing up to the neighborhood of the critical point in a fashion
similar to the MIT bag model. The extremum behavior of the chemical potential allows
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us to identify regions of metastability for the system in the neighborhood of the critical
temperature. The chemical potential local minimum and maximum correspond to the
spinodal limits of metastability while the phase transition is taking place. For the isotherms
with T < Tc, the Maxwell construction replaces the equal area regions above and below the
Maxwell constant pressure line during the mixed-phase transition in the phase diagram.
It is in this region where condensing nanoclusters will form and coexist with the vapor
phase; this does not shift the critical points used here where the isotherm of interest is along
T = Tc [69]. These points are located at

∂µ
∂n = 0

n = nc

(
1± 2√

3

√
(1− T/Tc)

) (13)

For equal particle numbers of each component, the two-component critical tempera-
ture can be expressed as

TC−2 =
8(a1(1− k11) + 2

√
a1a2(1− k12) + a2(1− k22))

27(b1 + b2)
(14)

which can be used to evaluate the critical chemical potential. The VDW constants can be
used to determine the VDW critical temperature and chemical potential using Equations
(4) and (10), where we consider the mixed states of the diquark and dibaryon hexaquark
substructures and examples of mixed diquark-triquark-hexaquark combinations as shown
in Table 3.

Table 3. The critical values for the temperature from Equation (4) and chemical potential at the critical
temperature for different hexaquark internal structures.

Hexaquark Structure Tc [MeV] Pc [MeV/fm3] nc [fm−3] µc [MeV]

Hexaquark 166.7 429.1 2.29 2703.9

3-diquarks 167.9 396.8 2.11 2720.5

2-triquarks 169.9 371.8 1.95 2667.8

Mixed: Diquark-hexaquark: k12 = 0, mixing 1:1 151.9 602.0 3.54 1125.8

k12 = 0, mixing 2:1 150.0 725.0 4.32 1881.2

k12 = 0.5 = k21, mixing 1:1 117.3 465.0 3.54 924.0

k12 = 0.5 = k21, mixing 2:1 112.6 544.0 4.31 1465.8

Mixed Triquark-hexaquark: k12 = 0, mixing 1:1 166.2 452.4 2.43 811.7

k12 = 0 = k21, mixing 2:1 166.1 460.9 2.47 858.7

k12 = 0.5 = k21, mixing 1:1 124.7 339.4 2.43 669.8

k12 = 0.5 = k21, mixing 2:1 128.5 356.5 2.48 714.3

The critical values obey the VDW compressibility factor rule that the term Pc/(ncTc) is
a constant at the critical point. It is useful to compare these results to the free quark MIT
bag model. If we denote the bag constant by B, then the pressure, p, the baryon density, ρB,
and the speed of sound, cs, are given by:

p =
1
3

(
3
2

)7/3
π2/3ρ4/3

B − B, ρB =
1
3
(ρu + ρd + ρs), cs =

√
1
3

(15)

In the MIT bag model the speed of sound is a constant but in the VDW model the
speed of sound depends upon the temperature, particle mass, and density of the system.
There is a causality limit to the temperature dependent speed of sound at the speed of light
indicated in Figure 2. To compare these values and contrast the VDW case with the ideal
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gas law case, we plot the ratio of the speed of sound to the MIT bag model in Figure 2
below.
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Figure 2. (a) The variation in the speed of sound squared with temperature for the 3-diquark,
hexaquark, and 2-triquark cases for the VDW and the ideal gas law EoS compared to the MIT bag
model. (b) The variation in the speed of sound with density for the hexaquark, diquark and triquark
cases for the VDW and ideal gas law EoS compared to the MIT bag model.

These values can now be used as indicators of potential quark states inside a compact
stellar core of sufficient density where quark clustering, quasi-parton formation, mixed
states, and phase changes can play a role in the possible final state configurations.

3. Stellar TOV Equations and the Chemical Potential

To investigate the conditions where a chemical potential phase transition can occur,
we consider a static spherically symmetric mass as a dense stellar core with an ideal fluid
source using the metric ansatz

ds2 = gµνdxµdxν = e−2Φ(r)dt2 +

(
1− 2m(r)

r

)
dr2 + r2dθ2 + r2 sin2 θdφ2 (16)

with the Einstein and stress energy tensors given as

Gµν = Rµν − 1
2 gµνR = 8πTµν

Tµν = (ε + P)uµuν − gµνP
(17)

The resulting TOV equations for the pressure and mass are

dp
dr =

(ρ(r)+p(r))[m(r)+4πr3 p(r)]
r[r−2m(r)]

dm(r)
dr = 4πr2ρ(r)

(18)

which, when combined with the EoS, provide a system of equations describing the stellar
core. Here we follow Hajizadeh [70] and change variables from pressure and energy density,
ε, to the chemical potential, µ, and express the pressure equation in terms of the total baryon
chemical potential as

dµ

dr
=

µ(r)
[
m(r) + 4πr3 p(r)

]
r[r− 2m(r)]

(19)

to examine the radial dependence in the interior of the stellar core. These equations
represent a system of equations that can be solved numerically; however, to compare to
the MIT Bag model, there is a stability requirement on the bag constant when strange
matter is present. We will utilize the Franzon stability requirement to constrain values of
the bag constant, 30 MeV/fm3 < B < 75.5 MeV/fm3, to compare the MIT bag model to the
VDW model. There is also a constraint on the maximum mass for a given radius, requiring
the core to not form a Schwarzschild black hole (R < 2 M or, in terms of compactness,
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C = M/R < 0.3). To incorporate the bag constant constraint, we solve the TOV equations
with the MIT bag model EoS at the two limits and then identify a chemical potential value
that gives the same mass radius curve. These curves are identified in Figure 3.
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Figure 3. Chemical Potential vs radius inside a TOV star. In (a) the chemical potential as a function of
radius is given for a 2 M star with the hexaquark threshold lines with the hexaquark, diquark, and
mixed states shown. In (b) we numerically solve the chemical potential-modified TOV equations,
Equations (18) and (19), showing the maximum mass for the hexaquark, diquark, and triquark
systems and indicating their respective chemical potentials.

Solving the TOV equations numerically for a sample stellar core results in a class of
curves similar to the one shown in Figure 3. Likewise, plotting the mass-radius parametriza-
tion gives limiting curves, as seen in Figure 3, where three curves exhibiting the maximum
mass and radius are given the MIT bag model constraints. The hexaquark chemical poten-
tial values for the mixed states indicate a more complex phase-change structure, especially
for the non-color-singlet states.

4. Conclusions

We have investigated the chemical potential of the hexaquark using a phase changing
multicomponent van der Waals equation of state within the context of high-density nuclear
matter in the core of a cold beta equilibrium system. In particular, we have examined
different internal quark clustering models of the hexaquark that involve diquark and
triquark states that may not be in a color-singlet combination and simple mixtures of these
states. This leads to different color factors to describe the different color force interaction
strengths. Such differences can be approximately modeled in the multicomponent VDW
EoS by using the mixing parameter for pairwise interactions that obey the VDW mixing
rule. As a result, different hexaquark internal structure arrangements will give different
values for the magnitude of the chemical potential of the hexaquark as shown in Table 4.

Our results are similar to Eduardo [71] and Kang [72], where they examined QCD
EoS in compact stellar cores and analyzed chiral chemical potential limits associated with
maxima in stellar mass values. Our values are closer to the chemical potential of Lopes in
the Maxwell construction, assuming charge neutrality to establish lepton number densities
for the stable values of the bag constant [73]. Here we find that, in comparison, the VDW
model overestimates the magnitude of the chemical potential but does give a maximum
limit for the hexaquark case, indicating they could form in a specific type of compact stellar
core. In the TOV representation with a VDW EoS of a compact core, stability bounds,
causality limits, and black hole formation all constrain the range of the chemical potential
or induce phase changes for hexaquarks that would result in a layering of the core. Our
key result for the VDW EoS in the TOV framework with a cold beta equilibrium system
is that, for chemical potentials 700 MeV > µ > 1340 MeV with 1.73 > M/MSolar > 2.37 and
10.3 km > R > 11.9 km, there is no single state pure hexaquark core that remains stable
without a phase transition. However, the mixed states of correlated diquarks and triquarks
can cluster to form layers of increasing chemical potential towards the center of the star.
This analysis did not include any boson- or color-superconducting formation properties
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which would soften the EoS in a fashion similar to a phase transition, but which allow for
much higher chemical potentials (µ > 1400 MeV [74]) and include features we are now
exploring. As higher resolution multispectral observations improve, it will soon be possible
to begin to determine the nature of the interior of high-density neutron stars and or quark
star candidates such as GW 170817 [75].

Table 4. The maximum mass and radius values that give the maximum compactness for different
quark combinations corresponding to hexaquark internal structure with chemical potentials from
Equation (9), where a Schwarzschild black hole has a compactness of 0.5.

Quark Configuration Mass
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