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Abstract: The matter of neutron stars is characterised by the density of the order of typical nuclear
densities; hence, it can be described with methods of nuclear physics. However, at high densities,
some effects that are absent in nuclear and hypernuclear physics can appear, and this makes neutron
stars a good place for studying the properties of baryonic interactions. In the present work, we
consider neutron stars consisting of nucleons, leptons and Λ hyperons with Skyrme baryonic forces.
We study the character of the ΛN interactions taking place in neutron stars at high densities. In
particular, we show the difference between three-body ΛNN and density-dependent ΛN forces.
We also demonstrate that the Skyrme ΛN forces proportional to nuclear density are better suited
for the modelling of neutron stars than the forces proportional to fractional powers of density.
Finally, we emphasize the importance of the point of appearance of hyperons in a further search for
parameterizations which are suitable for describing neutron stars.
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1. Introduction

Neutron stars are stars in hydrostatic equilibrium that consist mostly of neutrons and
have the density of the order of typical nuclear densities. Currently, neutron stars are
observed in all parts of the electromagnetic spectrum. The vast majority of measurements
of neutron star masses were conducted using radio observations of rotating pulsars in
binary systems. At present, more than 2500 pulsars are known in the galaxy, but about
90% of them are isolated, and their masses cannot be measured using current methods.
Among the neutron stars with masses measured reliably, the majority fall into the range of
1.3 to 1.5 M� [1,2]. However, there are neutron stars with masses about 2 M�. The most
massive of these are currently the pulsars PSR J1614-2230 [3,4], PSR J0348+0432 [5] and
PSR J0740+6620 [6,7] with masses of (1.908 ± 0.016) M�, (2.01 ± 0.04) M� and (2.08 ± 0.07)
M�, respectively, at 68.3% credibility. Additionally, PSR J0952-0607 [8] with a mass of
(2.35 ± 0.17) M� was observed recently, and it is currently the fastest known spinning
neutron star in the galaxy. Thus, the latest observational data indicate that the maximum
mass of 2 M� should be reached in theoretical models. The construction of such models
appears to be a difficult task due to the reduction in the maximum mass in models with
hyperons. This problem will be discussed below in more detail.

Another measured characteristic of neutron stars is their radii. The majority of methods
for their measurement are based on the analysis of thermal radiation from the surface of the
star. Such measurements require detailed theoretical modelling of this radiation and careful
selection of its sources, considering that the surface radiation of a star can be distorted
due to the accretion of matter from the companion star or from a strong magnetic field.
Therefore, it is difficult to measure the radii of neutron stars in binary systems, and it is
rarely possible to simultaneously measure both the mass and the radius of a neutron star.
However, relatively accurate radius values were obtained, for instance, for pulsar PSR
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J0740+6620 (which was mentioned above) by two independent groups: 12.39+1.30
−0.98 km (68 %

credible interval) in [9] and 13.7+2.6
−1.5 in [10]. Later, these results were revised in [11], where

the value of 12.97+1.56
−1.39 km was reported (68% credible interval).

A wide range of extreme states of matter that cannot be studied in terrestrial conditions
are realized in neutron stars, making them a source of information on the properties of
baryonic interactions and nuclear matter. Additional sensitivity to certain properties of
baryonic interactions can arise in these states; thus, the study of neutron stars is of great
importance for nuclear physics. Alternatively, the development of the theory of many-body
nuclear systems is required for a better understanding of neutron star physics. In the
present work, we do not pretend to conduct a comprehensive description of the observed
data; rather, we study the influence of certain properties of hyperonic interactions on the
characteristics of neutron stars.

At densities that are close to the normal nuclear density, the matter of neutron stars
presumably consists of neutrons, protons, electrons and muons. At densities that are
several times higher, hyperons may also appear. As the density increases, Λ-hyperons are
expected to appear first; thus, in the present work, we consider neutron stars to consist
of nucleons, leptons and Λ-hyperons. Although the appearance of hyperons in neutron
star matter seems to be the most likely option today, it also is the cause of the problem
known as the “hyperon puzzle”. In particular, the models incorporating hyperons predict
maximum masses smaller than the masses in models without hyperons, and also smaller
than the masses obtained from observations. This phenomenon arises due to the fact that
the presence of hyperons considerably softens the equations of state of neutron star matter.
To stand up to this challenge, a deeper study of the hyperon–nucleon and hyperon–hyperon
interactions, as well as a search for more stiff equations of state, are required [12,13].

Various attempts to resolve the hyperon puzzle have been reported in the literature (for
a recent brief review, see [14]). In [15], the so-called universal three-baryon interaction was
shown to potentially resolve the puzzle. An important role of the three-baryon interactions
was discussed later in [13,16–18]. More exotic explanations like deconfined quark matter
in the central region or in the whole star (see [13,14]), as well as dark matter particles in
neutron stars [19], have also been proposed.

Since the pioneering paper of [20], the relativistic mean field theory in its various
versions has become one of the most frequently used approaches in this field. After [20], our
knowledge of hypernuclear properties was enhanced substantially; thus, the parameters
of the corresponding relativistic energy density functional are constrained more strictly.
However, it is yet possible to come up with many sets of parameters that are compatible
with hypernuclear data. Additional theoretical refinements were suggested in the last
few decades, e.g., nonlinearities in the scalar and vector fields, the addition of the hidden-
strangeness scalar and vector fields, the density dependence of the coupling constants,
etc. The current progress in this approach has been reviewed recently [21]. Within the
relativistic mean field theory, various attempts to solve the hyperon puzzle are known, e.g.,
refs. [22–32]. Essentially, a sufficient repulsion at short baryon–baryon distances due to
usual and/or hidden strangeness vector fields is introduced to resolve the puzzle.

However, there is no commonly accepted solution thus far. The main reason for this is
that the properties of the baryonic interactions occurring at high densities that play a crucial
role in this problem have been studied insufficiently; thus, it is difficult to independently
check any of the explanations of the hyperon puzzle.

To describe the baryonic matter of neutron stars, we used an approach based on the
Skyrme interaction, which is a self-consistent non-relativistic mean field model that was
developed for nuclear systems. Skyrme potential parameterizations include a large set
of parameters that are obtained from the empirical data of atomic nuclei and hypernu-
clei, which allow for the description of nucleon–nucleon, nucleon–hyperon and hyperon–
hyperon interactions in a single approach. There is a wide variety of Skyrme potential
parametrizations that describe the matter equally well at nuclear densities, but these same
parametrizations can lead to completely different results at higher densities.
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The Skyrme model was widely used in various works in order to study the properties
of nuclei and nuclear matter [18]. It was applied to the description of neutron stars [33,34],
including those with Λ-hyperons, where the authors attempted to solve the hyperon
puzzle [35] and explore different properties of baryonic interactions [36]. In this work,
we focus on examining the properties of the ΛN interactions which have been studied
relatively well for hypernuclei. By construction, the Skyrme interaction contains three-body
forces or density-dependent, repulsive two-body forces.

It is worth noting that the Skyrme model is non-relativistic, which leads to limitations
in the high-density region, but its flexibility and a large number of different parameteriza-
tions make it a good choice for realizing the goals of this work.

Renewed interest in neutron stars physics was induced by one of the most important
discoveries in this area. On 17 August 2017, gravitational waves from a neutron star merger
were registered for the first time by the detector system LIGO-Virgo (GW170817) [37].
Information about electromagnetic and gravitational waves can be used, in particular, to
obtain restrictions on the equation of state of dense nuclear matter. Nowadays, neutron
star mergers are considered to be an important factor in the nucleosynthesis of heavy
elements in the universe. In 2019, the first astrophysical confirmation of such process was
obtained when the spectrum of strontium was identified in the data from GW170817 [38].
Moreover, it became the first experimental evidence that the matter of neutron stars is
indeed neutron-rich. Among other things, the registration of GW170817 provided us
with the first experimental estimates of such a characteristic, the tidal deformability of a
neutron star.

Later, the GW190425 event [39] was observed, but its assignment as the neutron star
merger remains ambiguous.

Tidal deformability shows how the shape of a star changes under the influence of
external gravitational forces. In the present work, following the majority of works on tidal
deformability, we consider only quadrupole deformations. Tidal deformability coefficient
λ is defined as the ratio of the quadrupole moment of the star Qij to the external tidal field
εij [40,41]:

Qij = −λεij. (1)

We use a dimensionless tidal deformability coefficient:

Λ =
λ

M5 , (2)

where M is the mass of the neutron star. The tidal deformability coefficient provides
us with an additional instrument for the selection of equations of state and parameters
of interactions.

2. Methods
2.1. Skyrme Potential

We use the nucleon–nucleon [42]

VNN(r1, r2) = t0(1 + x0Pσ)δ(r1 − r2) (3)

+
1
2

t1(1 + x1Pσ)[P
′2δ(r1 − r2) + δ(r1 − r2)P2]

+ t2(1 + x2Pσ)P
′
δ(r1 − r2)P

+ iW0σσσ[P
′ × δ(r1 − r2)P]
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and the hyperon–nucleon [43]

VΛN(rΛ, rN) = u0(1 + ξ0Pσ)δ(rΛ − rN) (4)

+
1
2

u1[P
′2δ(rΛ − rN) + δ(rΛ − rN)P2]

+ u2P
′
δ(rΛ − rN)P

+ iWΛ
0 P

′
δ(rΛ − rN)[σσσ× P]

Skyrme potentials in the standard form. In (3) and (4), P = (2i)−1(∇1−∇2) is the operator
of the relative momentum acting on the ket while P′ acts on the bra, Pσ = 1

2 (1 + σσσ1σσσ2) is
the spin exchange operator and σiσiσi are the Pauli spin matrices. For the ΛN interaction, the 1
and 2 indices should be replaced by Λ and N.

The two-body interaction VNN depends on the parameters ti, xi(i = 0, 1, 2) and W0.
Parameters t0 and t1 correspond to the terms acting on relative even states (in fact, only
s-states), and t2 governs the term acting in relative odd states (p-states). Using the xi
parameters allows one to influence the proton–neutron asymmetry properties. Parameter
W0 determines the one-body spin–orbit strength. Numerous parametrizations of nucleon–
nucleon forces have been obtained by fitting certain characteristics of atomic nuclei and
nuclear matter. Parameters ui, (i = 0, 1, 2), ξ0 and WΛ

0 of the two-body hyperon–nucleon
interaction VΛN are introduced in a similar way; their values are also obtained mainly by
fitting the experimental spectra of the hypernuclei. The spin–orbit terms in (3) and (4)
vanish in uniform non-polarized nuclear matter and will not be considered further.

Reliable (and scarce) information on the ΛΛ interaction has been obtained from the
data on ΛΛ hypernuclei [44]. Since the ΛΛ hypernuclei were so far observed only in the
ground states with both hyperons in the 1s state, there is no information on the p-wave ΛΛ
interaction. Thus, we use the simplified ΛΛ Skyrme potential from [45].

VΛΛ(r1, r2) = λ0δ(r1 − r2) (5)

+
1
2

λ1[P
′2δ(r1 − r2) + δ(r1 − r2)P2].

Many-body effects other than (3) and (4) should also be included. For nucleonic
interaction, they may be represented as the three-body NNN force:

V123(r1, r2, r3) = t3δ(r1 − r2)δ(r2 − r3) (6)

or the density-dependent NN force:

V12(r1, r2, n) =
1
6

t3(1 + x3Pσ)δ(r1 − r2)nα(
r1 + r2

2
), (7)

where n is the nucleon density. Forces (6) and (7) lead to equivalent results in matter at
x3 = 1 and α = 1 [42].

Similarly, for hyperonic interactions the three-body ΛNN force

VΛNN(rΛ, rN1, rN2) = u3δ(rΛ − rN1)δ(rΛ − rN2) (8)

or density-dependent ΛN force

VΛN(rΛ, rN, n) =
3
8

u3(1 + ξ3Pσ)δ(rΛ − rN)nγ(
rΛ + rN

2
) (9)

are introduced [43,46].
At γ = 1 and ξ3 = 0, (8) and (9) are almost equivalent for Λ hypernuclei and exactly

equivalent for symmetric (with equal numbers of protons and neutrons) nuclear matter.
The issue of equivalence is discussed in more detail in [47]. However, neutron stars are
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neutron-rich nuclear systems, and said equivalence is violated. Moreover, the force (9) at
γ 6= 1 apparently is not equivalent to (8). We study how different hyperonic many-body
forces manifest in neutron stars.

2.2. Neutron Star Matter and Tidal Deformability

We consider the chemically equilibrated matter consisting of nucleons, leptons and Λ-
hyperons. Usual conditions of the chemical equilibrium in terms of chemical potentials are
used (see, e.g., ref. [20]). Using Skyrme potentials (3)–(9), we calculate in the standard way
the energy density, pressure and chemical potentials, and determine the particle fractions
Yi(i = p, n, Λ, µ, e) from the equilibrium conditions. Repeating these calculations at various
densities, we obtain the equation of state of the neutron star matter.

With the equation of state, we are in position to solve the Tolman–Oppenheimer–
Volkov equation [48,49] at various central densities, which gives the M(R) dependence
and, particularly, the maximum mass of the neutron star. We follow the methodology used
in [34,36] in the equation of state and M(R) calculations. We also employ the equation of
state of the neutron star crust using approximations obtained in [50].

Tidal deformability is represented [51] in terms of the Love tidal number k2 and
compactness parameter C ≡ M/R

Λ =
2
3

k2C−5, (10)

while k2 is derived from the following expression [52–54]:

k2 =
8
5

C5(1− 2C)2[2− yR + 2C(yR − 1)]

× {2C[6− 3yR + 3C(5yR − 8)]

+ 4C3[13− 11yR + C(3yR − 2) + 2C2(1 + yR)]

+ 3(1− 2C2)2[2− yR + 2C(yR − 1)] ln (1− 2C)}−1,

(11)

where yR ≡ y(R) is the value of the function y(r) at the edge of the star. This function
satisfies the equation

r
dy(r)

dr
+ y(r)2 + y(r)F(r) + r2Q(r) = 0, (12)

where

F(r) =
r− 4πr3[ε(r)− p(r)]

r− 2m(r)
,

Q(r) =
4πr[5ε(r) + 9p(r) + ε(r)+p(r)

∂p(r)/∂ε(r) −
6

4πr2 ]

r− 2m(r)
.

(13)

In (12) and (13), r is the radial variable measured from the centre of the star, ε(r) and p(r)
are energy per baryon and pressure at r, and m(r) is the mass inside the sphere of radius
r. We use here the geometric unit system with c = G = 1. Starting at the centre of the
star, for a given EOS, equation (12) is integrated self-consistently together with the Tolman–
Oppenheimer–Volkoff equation, at various central densities with the boundary condition
at the centre y(0) = 2, to obtain the k2(R) dependence. This together with expression (10)
and the mass–radius dependence give us the dependences of tidal deformability Λ on mass
M and radius R.

From the GW170817 event, the LIGO-Virgo collaboration has extracted [37,55,56]:
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Mchirp = 1.186+0.001
−0.001M� (14)

Λ = 300+420
−230 , (15)

where Mchirp [57] and Λ [41,58] are averaged quantities determined by the individual
m1, m2, Λ1, Λ2 of the two stars merged:

Mchirp =
(m1m2)

3/5

(m1 + m2)1/5 (16)

Λ =
16
13

(m1 + 12m2)m4
1Λ1 + (m2 + 12m1)m4

2Λ2

(m1 + m2)5 (17)

If one of the stars has the ”standard” mass 1.4M�, its deformability and radius satisfy the
following constraints [37,55,56]:

Λ = 70− 580 (18)

R = 10.5− 13.3 km. (19)

We use these constraints as well as the condition Mmax > 2M� in the selection of the
equation of state.

3. Results and Discussion

As a first step, we consider nucleon matter without hyperons and employ six parame-
trizations of the NN interaction: SLy230a [34], SLy4 [59], SkI3 [60], SkO [61], SkM* [62] and
SkX [63].

The choice of Skyrme NN-forces relevant for studying neutron star matter has been
considered earlier. It was shown in [33] that in the case of interactions SkM* and SkX, the
proton fraction disappears at densities above 3n0 and the state of pure neutron matter
becomes more energetically favourable. In [36], the density at the point of transition to the
ferromagnetic state is used as a selection criterion, and the SkO parameter set is excluded
by this criterion, although the equation of state in this case is in good agreement with other
models [33]. Earlier in [64], we considered the correlations between the characteristics
of nuclear matter equation of state and the neutron star properties on the example of
42 parametrizations of the Skyrme NN-force. The maximum mass of neutron star Mmax and
its corresponding radius Rmax are most strongly related to the first and second derivatives
of the symmetry energy with respect to density, which characterize the behaviour of the
symmetry energy at high densities. Parameterization SkI3 leads to one of the highest values
of Mmax among the sets considered in [64].

Figure 1 shows the calculations of equation of state and dependencies of neutron
star mass on the radius for the six listed parameters sets, including the results for the
previously excluded SkX, SkM* and SkO. Parameterizations SkX and SkM* lead to overly
soft equations of state and, as a result, the corresponding values of Mmax do not reach 2 M�
even without hyperons. For other parametrizations, the differences in the equations of
state are not so significant and the M(R) dependence turns out to be more sensitive to the
properties of the interaction.

Figure 2 shows the dependencies of the tidal deformability Λ on the star radius and
mass. Although the first experimental estimates of Λ make it possible to impose new
restrictions on the model predictions (18) and (19), at this stage, these limits are quite wide
and most of the interactions satisfy them or lay on the boundary.

For further considerations, we adopt the SkI3 and SLy230a parameter sets, which give
the greatest maximum masses. Several predictions of bulk properties of nuclear matter
made with parametrizations under consideration are summarized in Table 1.
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Figure 1. Neutron stars without hyperons with different parameterizations of NN interaction:
(a) equation of state, (b) dependence of mass on radius.
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Figure 2. Dependence of tidal deformability for neutron star matter without hyperons for different
parameterizations of NN interaction (a) on neutron star radius; (b) on neutron star mass. Dots in
figure (a) correspond to neutron stars with M = 1.4M�. The rectangle in (a) and interval in (b)
represent restrictions (18) and (19).

Table 1. Symmetric nuclear matter saturation properties obtained with different NN-force Skyrme
parametrizations (energy per particle at saturation E0(MeV), incompressibility K∞(MeV), the sym-
metry energy as(MeV) and its first and second derivatives at saturation L (MeV) and Ksym(MeV),
effective mass m∗ = M∗/M (data are taken from [18]), and characteristics of neutron stars: maximum
mass Mmax(M�) and corresponding radius Rmax(km).

Model E0 K∞ as L Ksym m∗ Mmax Rmax

SkI3 −15.98 258.19 34.83 100.53 73.04 0.58 2.19 10.93

SLy230a −15.99 229.89 31.99 44.32 −98.22 0.70 2.08 10.18
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Let us now include Λ hyperons. The parameters of ΛN interactions we use are
presented in Table 2. Parameterizations YMR [65], LYI [66] and SLL4’ [67] provide the
best description of the hypernuclear experimental data and can be considered realistic.
Earlier parametrizations from [68] also describe the experiment satisfactorily. We use
parameterizations YBZ2 with the largest three-body force and YBZ6 with especially strong
non-locality.

Table 2. Parameters of employed ΛN interactions (u0 is given in MeV f m3, u1 and u2 in MeV f m5, u3

in MeV f m3+3γ; other parameters are dimensionless).

Model u0 ξ0 u1 u2 u3 ξ3 γ

YBZ2 −391.8 −0.085 56.95 48.05 3000 0 1
YBZ6 −372.2 −0.107 100.4 79.6 2000 0 1

SLL4′ * −326 0 62 20 1880 0 1
YMR −1056.2 0 96.248 8.743 2811.2 0 1/8
LYI −476 −0.0452 42 23 1514.1 −0.280 1/3

* In [67], parameters u0 and ξ0 of the SLL4′ interaction are provided in the form of a single parameter
a0 = u0(1 + ξ0/2).

The YBZ2 and YBZ6 sets were constructed with the three-body force (8), while the
other sets involve the density-dependent force (9). For hypernuclei, the difference is
insignificant. Below, we employ form (9), unless explicitly stated otherwise.

To describe the ΛΛ interaction, we use three sets of parameters, namely SΛΛ1′, SΛΛ2
and SΛΛ3′. The parameters of ΛΛ interactions we use are shown in Table 3.

Table 3. Parameters of employed ΛΛ interactions (λ0 is given in MeV f m3, λ1 in MeV f m5).

Model λ0 λ1

SΛΛ1′ −37.9 14.1
SΛΛ2 −437.7 240.7
SΛΛ3′ −156.4 347.2

The SΛΛ1, SΛΛ2 and SΛΛ3 sets were obtained [45] using the fit to the data accepted
at that time. These three sets effectively conform to a small, moderate and large interaction
range, correspondingly. All the sets reproduce a strong ΛΛ attraction, as believed before
the famous Nagara event [69].

When the ΛΛ attraction became much weaker, the SΛΛ1 and SΛΛ3 sets were modified
accordingly and the SΛΛ1′ and SΛΛ3′ sets were obtained [70]. Note that SΛΛ2 set was
not modified and the attraction remains strong in this case.

The equations of state with interaction SkI3 for nucleonic interaction and interactions
SLL4′ and LYI for hyperon–nucleon interaction are depicted in Figure 3.

Figure 3 illustrates the “hyperon puzzle”. It is seen that the equation of state becomes
substantially softer when the hyperons are added. However, the softening with the LYI
interaction is much larger than that obtained with the SLL4′ parameter set. The reason
is that γ = 1/3 in the first case and γ = 1 in the second (for γ definition, see (9)). These
two interactions give equally good descriptions of hypernuclear spectra [66,67], but the
repulsion at high densities grows faster for γ = 1. Therefore, we can suggest that the
neutron star studies require the ΛN interaction with γ = 1 or three-body ΛNN interactions.
This point will be further discussed below.
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SkI3, no hyperons
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Figure 3. Equation of state without hyperons (black) and with hyperons for γ = 1 (SLL4′, blue) and
γ = 1/3 (LYI, green). The nucleon interaction is SkI3 and the ΛΛ interaction is SΛΛ3′.

In Figure 4, fractions of nucleons, hyperons and leptons are presented as functions of
the density. It is seen that the Λ fraction grows rapidly with density.

SkI3 + SLL4' + SΛΛ3'
e
Λ
μ
n
p

Y i

0

0.2

0.4

0.6

0.8

1

n/n0

0 1 2 3 4 5

Figure 4. Dependence of fractions Yi (i = e, Λ, µ, n, p) of different particles on density for a certain
combination of parameterizations of NN, ΛN and ΛΛ forces.

One may naively suppose that YΛ never exceeds Yp and Yn since mΛ > mN . However,
YΛ > Yn at high densities is a typical result, which is also encountered in other studies
performed within other (not Skyrme) approaches. The reason is that repulsive forces
become dominant at high densities. Repulsive forces are parameterized here via (8) and (9)
(for comparison, ΛΛω coupling is used to describe repulsive forces in the relativistic mean
field theory). All the ΛN forces compatible with hypernuclear spectra contain the many-
body force (8) or (9), which is much weaker than (6) and (7) in nucleon interaction. Due to
the stronger repulsive forces (6) and (7), the neutron chemical potential grows with density
more rapidly than the hyperon chemical potential, and so the neutron fraction is depleted.
Therefore, the system prefers more and more hyperons, which repel relatively weakly.

We stress that the softening of the equation of state, the “hyperon puzzle” and the
hyperon excess at high densities have the same origin. The weaker the hyperonic repulsion
(many-body effect in our approach) is, the more abundant hyperons are and the softer the
equation of state is.
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Figure 5 displays the M(R) dependence. We compare three cases here: the non-
interacting hyperons, hyperons interacting with nucleons, but not with each other, and the
full set of interactions.

SkI3, no hyperons
SkI3, no Λ N and ΛΛ
SkI3 + SLL4', no ΛΛ
SkI3 + SLL4' + SΛΛ3'

M
 [

]

1

1.25

1.5

1.75

2

2.25

2.5

R [km]
10 11 12 13 14

Figure 5. Dependence of neutron star mass on radius for different cases: without hyperons (black),
with non-interacting hyperons (green), hyperons interacting with nucleons, but not with each other
(solid blue), and with a full set of interactions (dotted blue).

It is interesting that non-interacting hyperons result in the smallest maximum mass
and, therefore, the softest equation of state. At nuclear densities, the hyperon–nucleon
interaction is presumably attractive, as known from hypernuclear studies. Switching off
the ΛN interaction, we cancel not only this attraction, but also the short-range repulsion. It
appears that the second point is more important for neutron stars, and the omission of ΛN
interaction leads to a softer equation of state.

In Figure 6, we compare the density-dependent interactions with γ = 1 and the
three-body ΛNN forces.

SkI3, no hyperons
SkI3 + YBZ6 + SΛΛ1'
SkI3 + YBZ6 + SΛΛ2
SkI3 + YBZ6 + SΛΛ3'
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Figure 6. Dependence of neutron star mass on radius obtained with different parameterizations of ΛΛ
interaction. Dashed lines correspond to calculations with three-body forces; solid lines correspond to
calculations with density-dependent forces.
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We recall that (8) and (9) are equivalent in the symmetric matter at γ = 1 and ξ3 = 0.
The maximum mass for the density-dependent force is always larger than that for the
three-body force. Skyrme three-body interactions (8) in the Λnn (and Λpp) system acts
only on a singlet nn pair, while the density-dependent force does not discriminate between
various spin states. Therefore, the repulsion in the first case weakens. However, the effect
is not large, as seen from Figure 6.

In the same figure, we demonstrate the differences between the M(R) dependencies
for different ΛΛ forces. It should be noted that the ΛΛ interaction is known rather poorly
and the SΛΛ1′, SΛΛ2 and SΛΛ3′ sets are rather simplified since they contain neither the
p-wave contribution nor any many-body effects. However, it may still be instructive to
verify some interesting features even with these simplified potentials.

The short-range SΛΛ1′ interaction does not affect the maximum mass strongly, but
increases the corresponding (minimal) radius considerably. Since the ΛΛ interaction
becomes rather strong at high densities in this case, further contraction leads to instability.
At the same time, the strong ΛΛ attraction of the moderate range (the SΛΛ2 set) leads
to smaller minimal radii, but does not significantly change the maximum mass. The
long-range SΛΛ3′ set results in larger maximum masses. However, we recall that the ΛΛ
interaction employed here is incomplete and the results should be interpreted with caution.

In Figure 7, the M(R) dependence for all the hyperonic interactions used is shown.

(a) SkI3

no hyperons
LYI
SLL4' 

YBZ6
YMR 
YBZ2 

M
 [M

]
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9 10 11 12 13

(b) SLy230a

R [km]
9 9.5 10 10.5 11 11.5 12

Figure 7. Dependence of neutron star mass on radius with different parameterizations of the ΛN
and ΛΛ forces and the SkI3 parameterization (a), the SLy230a (b) parameterization of the NN force.
Different line types correspond to the different parameterizations of ΛΛ interaction: SΛΛ1′ (solid),
SΛΛ2 (dashed), SΛΛ3′ (dotted). In Figure (b), the dot shows the maximum mass of a neutron star
obtained with the combinations of parameter sets SLy230a + YBZ6 + SΛΛ1′. In the SLy230a+YBZ2
case, hyperons do not appear so the curves for the YBZ2 set in panel (b) coincide with the curve for
the pure nucleonic matter.

The interactions with γ = 1 evidently result in larger maximum masses, in accordance
with the discussion above. We see once again that hyperons in the case of SΛΛ1′ interaction
extend to neutron stars, i.e., the radius corresponding to the maximum mass (the minimal
radius) becomes larger.
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No combination of interactions yields the maximum mass of 2M�. For the SkI3
interaction, the addition of hyperons lowers the maximum mass substantially. The YBZ2
set with a high-density-dependent term produces relatively better results.

On the other hand, lowering the maximum mass via hyperons is weaker for the
SLy230a interaction. In this case, the hyperons appear at higher densities than in the SkI3
case, and in combination with YBZ2, hyperons do not appear at all. As a result, the equation
of state is softened to a smaller degree.

To describe this situation in more detail, we introduce the binding energy of Λ-hyperon
in the pure nucleonic matter:

DΛ = −µΛ. (20)

From hypernuclear studies, DΛ is known to be about 30 MeV at the normal nuclear density.
At higher densities, DΛ decreases and becomes negative due to the three-body or density-
dependent forces.

We also introduce the critical energy of Λ-hyperons in the nucleonic matter:

Dcr
Λ = mΛ −mn − µn. (21)

Hyperons appear when the following condition is fulfilled: [71]

DΛ = Dcr
Λ . (22)

Note that DΛ does not depend on the choice of the NN interaction if the density-
dependent force (9) is employed (for the three-body force (8), the dependence is weak), and
Dcr

Λ does not depend on the hyperonic interaction otherwise.
Figure 8 depicts the density dependence of DΛ for different parameterizations of

the ΛN interaction and Dcr
Λ for two parameterizations of the NN interaction (SkI3 and

SLy230a) in nucleonic matter. The intersection point of DΛ and Dcr
Λ corresponds to the

point of appearance of hyperons.
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Figure 8. The density dependence of DΛ for different parameterizations of the ΛN interaction and
Dcr

Λ for two parameterizations of the NN interaction in nucleonic matter.

We see from Figure 8 that in the case of YBZ2 and SLy230a, DΛ does not cross Dcr
Λ and

hyperons do not appear. Note also that for each parameterization of the NN interaction,
there is a clear correlation between the density of the appearance of hyperons and the
maximum mass of a neutron star: a higher density corresponds to a higher maximum mass.
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Seemingly, the simplest way to resolve the hyperon puzzle is to prove that hyperons
cannot appear in neutron stars. It can be shown that large three-body or density-dependent
forces can support such a conjecture, which was already noted in [13,15,17]. However, the
majority of realistic hyperon–nucleon interactions employed here include the three-body or
density-dependent forces not strong enough to prevent hyperon appearance, as seen from
Figure 8. The single exception is the YBZ2 set when used together with SLy230a. Parameter
set YBZ2, with the largest three-body force, should be considered “borderline realistic”. The
description of hypernuclear spectra with this set is acceptable, but somewhat worse [66]
than with the other employed sets. Therefore, it seems unlikely, but not fully improbable,
that the ΛN interactions compatible with hypernuclear data can exclude hyperons from
neutron star matter. This straightforward solution is probably inappropriate.

As seen from Figure 7, the SLy230a + YBZ6 + SΛΛ3
′

combination results in a maxi-
mum mass rather close to 2M�. We cannot state that this combination should be treated as
a ”genuine” one, but we pinpoint the directions in which to search for suitable parameteri-
zations.

In Figure 9, the tidal deformability as a function of radius is displayed.
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no hyperons
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Figure 9. Tidal deformability dependence on neutron star radius with different parameterizations
of the ΛN and ΛΛ forces with the SkI3 parameterization (a), SLy230a parameterization (b) of the
NN force. Different line types correspond to different parameterizations of the ΛΛ interaction:
SΛΛ1′ (solid), SΛΛ2 (dashed), SΛΛ3′ (dotted). The rectangles are the same as in Figure 2a. The dots
correspond to M = 1.4M�.

It is interesting that the combinations of interactions providing good results for the
tidal deformability produce rather low maximum masses in the SkI3 case. At the same
time, the combinations offering large maximum masses also provide acceptable tidal
deformabilities in the SLy230a case.

Characteristics of neutron stars for all used interactions are also presented in Table 4.
Note that for certain combinations of NN and ΛN interactions, namely SkI3+YBZ2 and
SLy230a+YBZ6, hyperons appear at densities higher than those corresponding to M = 1.4M�,
which was already illustrated in Figure 7. For these combinations, Table 4 includes values
of R1.4 and Λ1.4 corresponding to nucleonic matter. Moreover, for SLy230a+YBZ2, all values
correspond to nucleonic matter, since hyperons do not appear in this case.
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Table 4. Characteristics of neutron stars with different parameterizations of ΛN and ΛΛ forces and
SkI3 and SLy230a NN interactions. Table contains the following characteristics: radius of neutron
star with M = 1.4M� (R1.4, km) and corresponding tidal deformability Λ1.4, maximum mass of the
star Mmax, (M�), and corresponding radius Rmax, km.

ΛN ΛΛ
SkI3 SLy230a

R1.4 Λ1.4 Mmax Rmax R1.4 Λ1.4 Mmax Rmax

LYI
SΛΛ1′ - - 1.31 12.6 - - 1.34 10.9
SΛΛ2 - - 1.36 9.7 9.5 46 1.40 9.5
SΛΛ3′ 12.4 346 1.58 9.8 11.2 201 1.58 9.6

SLL4′
SΛΛ1′ 13.1 597 1.45 12.6 11.7 300 1.55 11.4
SΛΛ2 12.8 468 1.50 10.0 11.7 302 1.58 10.2
SΛΛ3′ 13.1 624 1.74 10.2 11.7 301 1.80 10.0

YBZ6
SΛΛ1′ 13.3 648 1.64 12.6 11.7 297 1.84 11.3
SΛΛ2 13.3 654 1.66 10.7 11.7 297 1.82 11.1
SΛΛ3′ 13.3 649 1.87 10.7 11.7 297 1.96 10.5

YBZ2 *
SΛΛ1′ 13.3 708 1.66 13.0 11.7 297 2.08 10.2
SΛΛ2 13.3 708 1.57 10.5 11.7 297 2.08 10.2
SΛΛ3′ 13.3 708 1.83 10.7 11.7 297 2.08 10.2

YMR
SΛΛ1′ - - 1.39 12.3 11.4 242 1.44 10.8
SΛΛ2 11.2 147 1.44 9.9 11.1 187 1.51 9.2
SΛΛ3′ 12.9 503 1.62 10.0 11.5 262 1.66 9.3

* In the SLy230a+YBZ2 case, Λ-hyperons do not appear, so the results for pure nucleonic matter are shown.

4. Conclusions

A very popular instrument in nuclear physics, the approach based on Skyrme inter-
actions is not used as widely in neutron star studies, probably due to its non-relativistic
nature. Naturally, relativistic mean field theory and similar approaches have advantages.
However, the rich experience gathered in nuclear and hypernuclear theory with Skyrme
interactions can also be rather helpful in the field of neutron stars. We note that super-
luminosity certainly does not manifest in full in our calculations. Here, we study the
implications of various features of Skyrme interactions, mainly the ΛN one.

Density-dependent and three-body forces are a necessary part of Skyrme interactions.
ΛNN or ΛN forces proportional to various powers of nuclear densities γ are usually treated
as equally possible in hypernuclear physics. However, different γ′s lead to substantially
different equations of state in neutron stars. Moreover, density-dependent forces even at
γ = 1 become no longer equivalent to the ΛNN forces.

Properties of neutron star matter at high densities play a crucial role for maximum neu-
tron star mass and resolution in the hyperon puzzle. Therefore, while various parameters of
the Skyrme interaction are equally important at normal nuclear densities (in hypernuclei),
the density-dependent or three-body forces dominate in neutron stars. They determine
the point of hyperon appearance, hyperon abundance and the stiffness of the equation of
state. We show that the best interactions from hypernuclear studies do not prevent hyperon
appearance, so the hyperon puzzle still stands.

We used an oversimplified ΛΛ interaction since the empirical information in this field
is rather scarce. At large Λ abundances, this interaction may be too crude. Note that three-
body zero-range ΛΛΛ force results in exactly zero due to the Pauli principle, but ΛΛN
forces are possible. The ΛΛ force, depending on the nucleon density, has been derived
in [66] and already has been used in [72] for the equation of state of neutron star matter.

We restricted ourselves here with Λ hyperons since Λ hypernuclei are studied much
better than the other ones. However, the Skyrme ΞN interaction has also been derived
previously[73–75], so our consideration can be extended to a more realistic composition of
neutron star matter.
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