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Abstract: The applicability of the effective models to the description of baryons and the behaviour
of ratios of strange baryons to pions is discussed. In the framework of the EPNJL model, the Bethe–
Salpeter equation is used to find masses of baryons, which are considered to be in a diquark-quark
state. Baryon melting is discussed at a finite chemical potential, and a flavor dependence of the
hadronic deconfinement temperature is pointed out. It is shown that the description of the diquark-
quark state at finite chemical potential is limited due to the occurrence of Bose condensate. This effect
is strongly manifested in the description of light diquarks and baryons. Both the Λ0/π+ and Ξ−/π+

ratios show a sharp behaviour as functions of the T/µB variable, where T and µB are calculated along
the melting lines.

Keywords: PNJL model; baryon structure; diquark-quark bounding state; hadronic deconfinement;
baryon-to-meson ratio

1. Introduction

In our previous works [1–4], the peak-like structure in a K+/π+ ratio was discussed in
the framework of the Polyakov loop extended Nambu–Jona–Lasinio model (PNJL) as well
as its modifications, including the vector interaction. The interest in this structure is due to
the search for signals of a phase transition from the hadron phase to the quark-gluon plasma
(QGP) formation during a heavy ion collision [5,6]. The quick rise in the K+/π+ ratio is
associated with the phase transition in the medium, while the jump from the maximum
value to the constant valley is explained as the QGP formation during the collision. This is
a consequence of the fact that after the deconfinement transition occurs in the system, the
strangeness yield becomes independent of the collision energy [7–10]. Recent investigations
showed that the K+/π+ peak strongly depends on the volume of the system and tends to
be less pronounced in small-sized systems [7,11].

The meson-to-meson ratios are widely considered both in theoretical and experimental
works, in contrast to the baryon-to-meson ratios, although they also have a peak-like
structure. In [12], in the framework of the thermal model, it was shown that unlike the
K+/π+-ratio, the peak for Λ0/π+ does not disappear with reducing the system size.

The choice of the (E)PNJL model for such investigations is conditioned by the possibil-
ity to describe within the model both the chiral phase transition and the deconfinement
transition, which can give a hint for understanding the nature of the peaks at least quan-
titatively. For the next step, it is interesting to consider the baryon-to-meson ratios in the
framework of the model. The controversy of the applicability and complexity of this task is
related to the problem of describing baryons in the frame of NJL-like models. The most
detailed and exact description of baryons requires solving the three-body Faddeev equation,
which leads to considering baryons as a bound state of a quark and diquark [13,14]. The so-
called “static approximation” of the Faddeev equation leads to the Bethe–Salpeter equation,
which is based on the polarisation loop in the diquark-quark scattering channel [15]. But
the diquark-quark structure of baryons leads to the non-obvious nature of the description
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of baryons in a dense medium, where the formation of a Bose condensate occurs and the
diquark states melt.

The results of our calculations and discussion about aspects of applicability of the
model are presented in Section 5.

2. SU(3) PNJL Lagrangian

The complete Lagrangian of the SU(3) PNJL model with the vector interaction and
UA(1) anomaly has the following form [15,16]:

L = q̄ ( i γµ Dµ − m̂− γ0µ) q
+ 1

2 gS ∑8
a=0 [ ( q̄ λa q )2 + ( q̄ i γ5 λa q )2 ]

− 1
2 gV ∑8

a=0 [(q̄γµλaq)2 + (q̄γµiγ5λaq)2]

− ∑α gα
diq ∑i,j

(
q̄aΓi

αqC
b
)(

q̄C
d Γj

αqe

)
εabcεde

c

+ Ldet −U (Φ, Φ̄; T),

(1)

where q = (u, d, s) is the quark field with three flavours, qC is the charge-conjugated quark
field, m̂ = diag(mu, md, ms) is the current quark mass matrix, and gS and gV, gdiq are
the coupling constants. The entanglement PNJL model (EPNJL) includes the constants
gS, gV introduced as functions of T to enhance the coupling between quarks and the gauge
field [2,17]. Γj

α is a product of the Dirac matrices γµ and Gell-Mann matrices λα, where the
index α describes the type of diquarks. The covariant derivative is Dµ = ∂µ − iAµ, where
Aµ is the gauge field with A0 = −iA4 and Aµ(x) = gS Aµ

a
λa
2 absorbs the strong interaction

coupling. The Kobayashi–Masakawa–t’Hooft (KMT) interaction is described by the term

Ldet = gD {det [q̄ ( 1 + γ5 ) q ] + det [q̄ ( 1 − γ5 ) q ] }

The last term is the effective potential U (Φ, Φ̄; T), expressed in terms of the traced
Polyakov loop Φ = N−1

c trc〈L(x̄)〉 [18], where

L(x̄) = Pexp
[∫ ∞

0
dτA4(x̄, τ)

]
. (2)

The effective potential describes the confinement properties (Z3 symmetry) and is
constructed on the basis of Lattice inputs in the pure gauge sector. In this work, we use
the standard polynomial form of the effective potential [4,15]. The effect of the vector
interaction on the position of the critical end point in the phase diagram and on the
behaviour of the peak in the K+/π+ ratio was discussed in previous works [1–4].

The grand potential density Ω(T, µi) in the mean-field approximation with gV = 0
can be obtained from the Lagrangian density (Equation (1)) and leads to a set of self-
consistent equations:

∂Ω
∂〈q̄iqi〉

= 0,
∂Ω
∂Φ

= 0,
∂Ω
∂Φ̄

= 0, (3)

where Φ, Φ̄ are the Polyakov fields. The gap equations for the quark masses are

mi = m0i − 2gS〈q̄iqi〉 − 2gD〈q̄jqj〉〈q̄kqk〉, (4)

where i, j, k = u, d, s are chosen in cyclic order, mi represents the constituent quark masses,
and the quark condensates are

〈q̄iqi〉 = −2Nc

∫ d3 p
(2π)3

mi
Ei

(1− f+Φ (Ei)− f−Φ (Ei)) (5)
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with modified Fermi functions f±Φ (Ei):

f+Φ (E f ) =
(Φ̄ + 2ΦY)Y + Y3

1 + 3(Φ̄ + ΦY)Y + Y3 , (6)

f−Φ (E f ) =
(Φ + 2Φ̄Ȳ)Ȳ + Ȳ3

1 + 3(Φ + Φ̄Ȳ)Ȳ + Ȳ3 , (7)

where Y = e−(Ei−µ f )/T and Ȳ = e−(Ei+µ̃i)/T .

3. Mass Equations for Standard Particles

To describe mesons and diquarks as quark-antiquark and quark-quark bound states,
the random-phase approximation is usually used in the framework of the (E)PNJL model.
The masses of bound states are defined by the polarisation function Πij.

Mesons as a quark-antiquark system have the polarisation loop shown in Figure 1.
The polarisation function for mesons is defined as

Πij =
∫ dp

(2π)4 tr{Si(q̂i, mi)ΓjSj(q̂j, mj)Γi}, (8)

where Γi,j represents the vertex matrices (Figure 2) and Si(q̂i, mi) = (q̂i + γ0(µi − iA4)−mi)
−1

is the i− flavour quark propagator. The meson mass is obtained from the Bethe–Salpeter
equation in the meson rest frame (P̄ = 0):

1− PijΠij(P0 = M, P̄ = 0) = 0 , (9)

where the function Pij depends on the type of meson (see the details in [19]), such as for the
pion, which is a pseudoscalar meson Pud = gS + gD〈q̄sqs〉.

mj , µj

mi, µi

Πmes
ij ≡ Γi Γj

Figure 1. Polarisation loop for mesons.

Diquarks are considered as two-quark systems, and to describe the polarisation loop
in the same way, the “antiquark” is replaced by its charge conjugate propagator. Then,
two diagrams should be taken into account, but it can be shown that they give the same
result. Polarisation loops for diquarks are shown in Figure 2, where C = iγ0γ2 is the charge
conjugation operator and Γi,j represents the vertex functions.

mj , µj

mi, µi

Πdiq
ij ≡ Γi Γj

mj , µj

Γi Γj

mi, µi

+
C

C

Figure 2. Polarisation loops for diquarks, where “C” is the charge conjugation operator.
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According to group theory, diquarks can be represented by symmetric and antisym-
metric wave functions both in colour and flavour spaces. Since diquarks are used to
construct baryons which are “white objects”, only diquarks with a colour-antisymmetric
wave function are considered. According to the interaction type, diquarks can be of scalar,
pseudo-scalar, axial, and vectorial types, following the rule that the diquark wave function
is totally antisymmetric (see Table 1).

Table 1. List of mesons and diquarks.

Γ Meson Type Possible Mesons Diquark Type Possible Diquarks

iγ5 pseudoscalar π, K scalar
1 scalar σ, K∗0 pseudoscalar (ud), (us), (ds)

γµiγ5 axial-vector a∗1 , K∗1 vector

iγµ vector ρ, K∗ axial-vector [ud], [us], [ds], [uu],
[dd], [ss]

The Bethe–Salpeter equation for diquarks in the rest frame is

1− ZdiqΠij(P0 = Mdiq, P̄ = 0) = 0, (10)

with polarisation operators corresponding to Figure 2:

Π(1)
ij =

∫ dp
(2π)4 tr{Si(q̂i, mi)ΓjSjC(q̂j, mj)Γi}, (11)

Π(2)
ij =

∫ dp
(2π)4 tr{SiC(q̂i, mi)ΓjSj(q̂j, mj)Γi}, (12)

which give the same result, where SiC(q̂i) = (q̂i − γ0(µi + iA4)−mi)
−1 is the propagator

of the charge conjugated quark and Zdiq is the coupling constant for diquarks, yield-
ing Zdiq = gs

diq for scalar and pseudoscalar diquarks and Zdiq = gs
diq/4 for vector and

axial-vector diquarks. According to the Lagrangian equation (Equation (1)) and the Fierz
transformation, the coupling constant gs

diq is referred to gS as gs
diq = 3gS/4 and is usually

chosen such that gs
diq ∼ (0.705− 0.75)gS [15,16].

The description of baryons is a more complicated task, since they are complex struc-
tures of three quarks coupled through the exchange of gluons. Thus, the modelling of
a three-body system is required, and the Faddeev equation has to be considered. How-
ever, some simplifications of the Faddeev equation allow one to consider the baryon as a
diquark-quark bound state [13–16]. Considering the static approximation for the four-point
interaction leads to the loop structure of the transition matrix and a matrix Bethe–Salpeter-
like equation for the baryon mass:

1−Πi(D)(k0,~k) · Zij = 0, (13)

where the constant Zij is defined as

Zij =
gikgjk

mk
, (14)

where gij is the diquark-quark coupling Dij → qiqj and gud includes the factor (−2) [15].
The baryon loop function is shown in the Figure3, where double line corresponds to the
diquark and simple line is quark line.
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Πbar ≡ +

C

C
1
2

1
2

Figure 3. The baryon loop function.

Just as for diquarks, two quark-diquark loops should be taken into account, and it can
easily be shown that they give the same results [15]:

Π(1)
i(D)

=
∫ dp

(2π)4 tr{Si(q̂i, mi)ΓjS
jC
D (q̂j, mj)Γi}, (15)

Π(2)
i(D)

=
∫ dp

(2π)4 tr{SiC(q̂i, mi)ΓjS
j
D(q̂j, mj)Γi}. (16)

It should be noted here that the axial-diquark contribution to the members of the
baryon octet is neglected [15,20].

4. Numerical Results

In previous works [1–3], a detailed study of K/π ratios was carried out in the frame-
work of PNJL-like models. As the collision energy

√
sNN never appears in effective models,

a trick with fitting
√

sNN with the pair (T, µB) from the statistical model was used. In
the statistical model, the temperature and the baryon chemical potential of freeze-out are
assigned to each collision energy (e.g., as suggested by Cleymans et al. [12]). Supposing
that the chiral phase transition line in the EPNJL model corresponds to the freeze-out, the
K/π ratio can be considered as a function of a new variable T/µB instead of

√
sNN , where

(T, µB) are taken along the phase transition line.
The phase diagram has a classic structure with smooth crossover at low chemical

potentials and the first-order chiral phase transition at a high chemical potential. The PNJL
model has a crossover temperature (Tc = 0.27 GeV) higher than the Lattice prediction
(Tc ∼ 0.17 GeV). An extended version of the PNJL model (EPNJL) with fV(T), gS(T)
was introduced to reduce the critical temperature of the crossover to a lower value of
TEPNJL

c = 0.18 GeV due to enhanced interaction between the quarks and gauge sector [4].
For more detailed study, the meson masses were calculated with both the Bethe–Salpeter
and Beth–Uhlenbeck approaches. The latter is preferable for considering mesons in hot and
dense matter, since it takes into account their spectral functions and correlations.

For the effective models, the ratio of the particle number can be calculated in terms of
the ratio of the number densities:

n = d
∫ ∞

0
p2dp

1

eβ(
√

p2+m2∓µ) ± 1
, (17)

where d is the corresponding degeneracy factor, the upper sign in the denominator refers
to fermions, the lower sign refers to bosons, and β = T−1. The pion chemical potential is
a phenomenological parameter, and it was chosen to be constant. The baryon chemical
potential is calculated as the sum of the chemical potentials of constituent quarks. The
degeneracy factors are calculated as (2s + 1)(2I + 1) since Λ0 is two, and for Ξ−, it is four.

Figure 4 shows contour graphs for the K+/π+ and K−/π− ratios obtained with the
Beth–Uhlenbeck approach of the EPNJL model with gV = 0.6gS [3]. The black lines show
the phase transition (crossover) lines. It can be seen that when shifting along the phase
transition line from low to high temperatures, the trajectory shows a quick enhancement
and then a fall for K+/π+ and a smooth increase for K−/π−.



Particles 2023, 6 881

Figure 4. K+/π+ (left) and K−/π− (right) on the T− µB plane for the EPNJL model with gV = 0.6gS

(no CEP) and µπ = 0.147 GeV. The black dot indicates the maximum of K+/π+ ratio on the line of
pseudo-critical temperatures for the chiral transition (our proxy for chemical freeze-out).

The results in Figure 4 are presented for the case with a fixed pion chemical potential of
µπ = 0.147.6 GeV. In order to reproduce the experimental data, the dependence of the pion
and the strange quark chemical potentials on the variable x = T/µB should be introduced.
The expressions should describe the increase in the pion chemical potential with x and the
decrease in the strange quark chemical potential. For their x dependence, the functions of
the Woods–Saxon form are suggested [2]:

µπ(x) = µmin
π +

µmax
π − µmin

π

1 + exp(−(x− xth
π )/∆xπ))

, (18)

µs(x) =
µmax

s

1 + exp(−(x− xth
s )/∆xs))

. (19)

The parameters in Equations (18) and (19) were obtained from fitting the experimental data
(see for details [2,3]). The best parameter values for the EPNJL model are µmax

π = 107± 10 MeV,
µmin

π = 92 MeV, xth
π = 0.409, and ∆xπ = 0.00685. And for µs, the parameter values are

µmax
s /µcrit

u = 0.205, xth
s = 0.223, and ∆xs = 0.06.

In the left panel of Figure 5, K+/π+ (black lines) and K−/π− (red lines) are shown
as functions of T/µB obtained in the Beth–Uhlenbeck approach for the EPNJL model
with gV = 0 and µs and µπ calculated according to Equations (18) and (19). Thin lines
correspond to the case where µs = 0 and a fixed µπ . The shaded region corresponds to
the error band due to normalisation to high x RHIC and LHC data. The behaviour of the
potentials is shown in the right panel of Figure 5.
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Figure 5. (left) The K+/π+ (black lines) and K−/π− (red lines) ratios are shown as a function of
T/µB. Thin lines correspond to the case where µs = 0 and fixed µπ = 0.147 GeV. (right) Chemical
potentials and pion mass as functions of T/µB.
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Figures 4 and 5 demonstrate that the “horn” structure in the K+/π+ ratio is less
sensitive to the structure of the phase diagram and more sensitive to the properties of the
medium. At gV = 0.6gS, the phase diagram has a smooth crossover transition at a high
density instead of the first-order transition when gV = 0. Nevertheless, the ratio keeps a
“horn” structure. Changing the matter properties by modelling the chemical potentials for
the pions and s-quark leads to the possibility of reproducing the experimental data.

The present work is devoted to the description of baryons and Ξ−/π, Λ0/π ratios
within this kind of model. According to Equation (13), the Bethe–Salpeter equation for
barions has a matrix form det(1− ZΠ) = 0 where for Λ, we have

ΠΛ =

Π(ds)u 0 0
0 Π(us)d 0
0 0 Π(ud)s

, ZΛ =

 0 Zud Zus
Zdu 0 Zds
Zsu Zsd 0


and for Ξ, we have

ΠΞ = Π(us)s, ZΞ = Zds, (20)

where functions Π and Z are presented in Equations (14)–(16).
The calculations were performed with the parameter set mu0 = md0 = 4.75 MeV,

ms0 = 0.147 GeV, Λ = 0.708 GeV, gSΛ2 = 1.922, gDΛ5 = 10.0, gV = 0, and gdiq = 0.725gS.
The choice of the parameter set was driven by the requirement to have the proton and Λ
masses below the threshold MD + mq.

The dissociation temperature for baryons is postulated from their diquark-quark
structure. The Mott temperature (Tbar

Mott) is a temperature for which the mass of baryons
is equal to the sum of the quark and diquark masses [15,20,21]. To avoid the situation
where the diquark melts at a lower temperature and the baryon still exists, the baryon
deconfinement temperature is chosen to be

Tbar
dec = min{Tbar

Mott, Tdiq
Mott}.

Nevertheless, even if the diquark already becomes unbound due to the Mott effect, the
baryon can still be bound as a three-particle state (the so-called “borromean state”) [21,22].
In this case, the “dissociation” temperature for baryons should be considered as the temperature
when the baryon melts into three quarks (Tdiss).

The dissociation boundaries of baryons corresponding to {Tbar
dec , Tdiss} are shown in

Figure 6 (right panel), with the light blue shaded area for Λ and the light green one for Ξ.
The red line corresponds to the phase diagram of the EPNJL model with gV = 0. The
dashed line corresponds to the crossover, and the solid line corresponds to the first-order
transition. As can be seen in Figure 6, the Ξ− baryon is described until µq ∼ 0.37 GeV,
which is higher than µq ∼ 0.27 GeV for Λ. It appears that Ξ− is considered a combination
of the scalar (ds) diquark and s-quark, unlike Λ, which is a superposition of (ud) + s and
(ds) + u ((us) + d) states. The diquark with a heavy quark survives at higher values of
the chemical potential than light diquarks. The left panel of Figure 6 shows the masses
of diquarks (dashed), baryons (solid), and their thresholds MD + mq (short-dashed) as
functions of the chemical potential µq. Light diquarks melt at lower densities (or chemical
potentials) due to the origin of the Bose–Einstein condensate.

The results for the baryon-to-meson ratios are presented in Figure 7. Data for Ξ−/π+

and Λ0/π+ were calculated along the lower green and blue curves of the phase diagram
(right panel in Figure 6), which correspond to Tbar

dec until 0.373 GeV for Ξ− and 0.27 GeV
for Λ, and then along the dash-dotted vertical lines, which are now considered “freezeout
lines” at high chemical potentials. Both ratios demonstrate the peak-like behaviour.
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Figure 6. (left) Masses of diquarks, baryons, and their threshold MD + mq as functions of µq.
(right) Phase diagram of the EPNJL model (red line). The shaded areas show the borders {Tbar

dec , Tdiss}
for baryons, with light blue for Λ and light green for Ξ.

Figure 7. Λ0/π+ (red line) and Ξ−/π+ (black line) ratios as functions of T/µB.

5. Conclusions

This article summarises our calculations of the ratios of mesons and baryons with
strangeness to non-strange mesons within the framework of the PNJL-like models. The
interest in these ratios is due to them having the “horn” structure in their energy depen-
dencies, which is supposed to be a signal of deconfinement and may be sensitive to the
structure of the phase diagram, including the position of CEP and TCP [23]. Our works
show that the K+/π+ ratio is more sensitive to the matter properties than to the phase
diagram structure. This work demonstrates that the EPNJL model reproduces the peak-like
structure for the Λ0/π+ and Ξ−/π+ ratios, but the validity of this estimation is limited
by some features of the description of baryons in the model. Therefore, most of our analy-
sis must primarily be taken as qualitative hints (e.g., about the role of the strange quark
chemical potential and pion chemical potential or the effect of the vector interaction).

This work addresses several aspects related to the description of baryons as diquark-
quark bounded states. The first one is associated with the selection of correct model
parameters, which would make it possible to obtain proton and other baryon masses
below the threshold value MD + mq. For example, our parameters and choice of the model
variation affected the deconfinement temperatures of the baryons. The statistical model
and the experiment predicted a lower chemical freeze-out temperature for protons in
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comparison with that for Ξ. This difference was about 30 MeV [20,24]. The PNJL model
with our parameters showed 20 MeV, while the EPNJL model showed 10 MeV.

The second aspect is related to the description of the baryon as a diquark-quark state
in the framework of the (E)PNJL model. As noted above, this model usually takes into
account only the scalar part in the mass equations (Equations (13)–(16)), skipping the axial-
vector part. Nevertheless, in [25,26], it was shown that the accounting for the axial-vector
part in mass equations plays an important role in the correct description of the baryon
properties [26].

The third aspect concerns the description of baryons as a quark-diquark state at a high
chemical potential. At a low density, the two-quark pair forms tightly bound localised
diquark states, which can pick up another quark with the right colour to form a colour-
singlet baryon. The rise in the chemical potential (or density) leads to a weakening of
the interaction strength between quarks and forms weakly bounded Cooper pairs in an
attractive colour anti-triplet channel, leading to the phenomenon of colour superconductiv-
ity. However, in dense matter, the diquark does not have to be stable in order to form a
stable baryon, since it can be a bounded state of three quarks, or the so-called Borromean
state [15,21].

In this situation, further improvements on the more fundamental side, allowing
one to include the axial-vector part and describe the baryon above critical densities, are
highly desirable.
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