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Abstract: We argue in favor of the independence on any scale, ultraviolet or infrared, in kernels of
the effective action expressed in terms of dressed N = 1 superfields for the case of N = 4 super-
Yang–Mills theory. Under “scale independence” of the effective action of dressed mean superfields,
we mean its “finiteness in the off-shell limit of removing all the regularizations”. This off-shell limit is
scale independent because no scale remains inside these kernels after removing the regularizations.
We use two types of regularization: regularization by dimensional reduction and regularization by
higher derivatives in its supersymmetric form. Based on the Slavnov–Taylor identity, we show that
dressed fields of matter and of vector multiplets can be introduced to express the effective action in
terms of them. Kernels of the effective action expressed in terms of such dressed effective fields do
not depend on the ultraviolet scale. In the case of dimensional reduction, by using the developed
technique, we show how the problem of inconsistency of the dimensional reduction can be solved.
Using Piguet and Sibold formalism, we indicate that the dependence on the infrared scale disappears
off shell in both the regularizations.
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1. Introduction

The effective action is restricted by consequences of various symmetries of the classical
action that at the quantum level take the form of specific identities. One of them is
the Slavnov–Taylor (ST) identity [1–6]. This generalizes the Ward–Takahashi identity of
quantum electrodynamics to the non-Abelian case and can be derived starting from the
property of invariance of the tree-level action with respect to BRST symmetry [7,8]. The ST
identity can be formulated as equations involving variational derivatives of the effective
action. In the general N = 1 supersymmetric theory, it can be written as [9]
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Here, the standard definition of the measures in superspace is used:

d8z ≡ d4x d2θ d2θ̄, d6y ≡ d4y d2θ, d6ȳ ≡ d4ȳ d2θ̄.

The effective action Γ generates one-particle irreducible amplitudes of the quantum
fields and contains all the information about the quantum behavior of the theory. It is a
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functional of the effective fields V, b, b̄, c, c̄, Φ, Φ̄ and external sources K, L, L̄, k, k̄, coupled
at tree level to BRST-transformations of the corresponding classical fields [4]. We use two
types of UV regularization: regularization by higher derivatives [10,11] and regularization
by dimensional reduction [12,13].

We will show that the actual variables of the effective action are dressed effective
superfields, that is, they are effective superfields convoluted with some unspecified dress-
ing functions that are parts of propagators. Kernels accompanying the dressed effective
fields in the effective action are related to the scattering amplitudes of the particles. A
similar problem has been solved in component formalism [14,15]. As has been argued in
Refs. [14,15] in that formalism the dressed mean fields appear to be the actual variables
of the effective action, leaving the kernels of the action independent of any scale in the
limit of removing all the regularizations, ultraviolet or off-shell infrared, in case of N = 4
supersymmetric Yang–Mills theory. This statement has been confirmed by the explicit
calculation in Ref. [16]. In the present paper, this problem is considered by using N = 1
superfield formalism, which keeps one of the supersymmetries apparent and conserves all
the R-symmetries, to which we need to apply anomaly multiplet ideas [17]. The important
point of Refs. [14,15,18–23] is the possibility to absorb the two point proper functions in the
re-definition of the effective fields.

The on-shell IR divergences are constrained in QFT by the well-known Kinoshita
theorem, while they cancel in all observables [24]. However, N = 4 SYM is not a physical
theory, and it does not have any observables. How is the finiteness of the kernels of this
effective action in the limit of the removing regularization combined with this Kinoshita
theorem? Suppose we removed the regularizations in these proper correlators of dressed
mean superfields. These kernels become scale-independent after removing these regu-
larizations. The corresponding connected Green functions (connected correlators) of the
dressed mean fields contribute to the amplitudes on the mass shell. The amplitudes, which
are roughly on-shell values of these connected correlators, may have IR divergences after
putting them on-shell. In order to work with the connected correlators on shell, we need
a regularization again. This may be any regularization that makes these on-shell values
non-singular. These IR divergences may be regularized in a way that has nothing to do
with the previous two regularizations, ultraviolet and infrared, used initially for the UV
renormalization procedure and for the suppression of the off-shell IR infinities of theN = 1
SUSY gauge theory. The most convenient way from our point of view may be via MB
parametrization. We proposed it in Section 6. It is important that this auxiliary regulariza-
tion may be removed then at the end in the results for “physical quantities” in the “physical
processes”, which are N = 4 SUSY models of DIS structure functions [25–28].

These two words, “finiteness” and “scale-independence”, are frequently used concepts
in the framework for the AdS-CFT correspondence, where the correlators of the BPS gauge
invariant operators may be found or restricted by using the methods of the conformal field
theory. In this sense, N = 4 SYM is exactly solvable QFT. The insertions of composite
non-BPS operators as external states into the correlators of the components of N = 1
supermultiplets are treated as the only source of UV-divergences [29]. In contrary, in the
present paper we talk about the finiteness (and, then as a result of finiteness, about the scale
independence) of the connected correlators (they are built from the proper correlators),
which contribute to scattering amplitudes in this theory in the Landau gauge [14,15].
Renormalization by the parts of the propagators has been proposed in [18,20].

2. ST Identity in N = 1 SUSY Formalism for N = 4 SYM

We consider theN = 4 theory inN = 1 superfield formalism. This model has specific
field contents. The Lagrangian of the model in terms of N = 1 superfields is
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For the N = 1 supersymmetry, we use the notation of Ref. [30]. This Lagrangian for
N = 4 supersymmetry is taken from Ref. [31]. The flavor indices of the matter run in
i = 1, 2, 3 and the matter superfields are in the adjoint representation of the gauge group,
Φi = Φia Ta. (The vector superfield is in the same representation, V = VaTa).

Consider for the beginning the generalN = 1 super-Yang–Mills whose classical action
takes the form
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We do not specify the representation of the matter fields here. It is some general
reducible representation of the gauge group with a set of irreducible representations. The
Yukawa couplings Yijk and Mij appear at some general triple vertex and mass terms in four
dimensions. The path integral describing the quantum theory is defined as
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The derivation of the ST identity in general supersymmetric theory can be found for
example in Ref. [23]. The result is
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Regularization is necessary to analyze the identities. First, we consider the regular-
ization by dimensional reduction. Under this regularization, the algebra of the Lorentz
indices is conducted in four dimensions, but integration is conducted in 4− 2ε dimensions
in the momentum or in the position space. As has been shown in Refs. [14,15], such a
regularization is self-consistent at least in N = 4 supersymmetric Yang–Mills theory in
component formalism at all orders of the perturbation theory. In the next paragraphs, we
will show such a regularization procedure can be applied at all orders of the perturbation
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theory in superfield formalism too if this regularization is combined with Piguet and Sibold
formalism of Refs. [32,33]

3. From Double-Ghost Lcc Correlator to Other Correlators

Let us analyze this identity in the following way. One can start by considering the
monomial Lcc of the effective action. Due to supersymmetry, superficial divergences are
absent in chiral vertices [34,35]. This theorem is a direct consequence of the Grassmannian
integration and has been described, e.g., in Ref. [34]. However, there could be finite
contributions. They remain finite in the limit of removing the ultraviolet regularization.
For example, at one loop level, one can find among others the following kernel structure
for the correlator Lcc [14]:∫

d4θ d4x1d4x2d4x3
1

(x1 − x2)2(x1 − x3)2(x2 − x3)4 f bca ×

×
(

D2 La(x1, θ, θ̄)
)

cb(x2, θ, θ̄)cc(x3, θ, θ̄).

An efficient form to parameterize this contribution via MB transformation is given in
Section 6.

The Landau gauge is a specific case in gauge theories because we do not need to
renormalize the gauge fixing parameter. Absence of the gauge parameter is enough
condition to avoid this possible source of appearance of the scale dependence in kernels of
dressed mean superfields through the renormalization of the gauge parameter. From the
effective action Γ, we can extract the two point ghost proper correlator G(z− z′),

G† = G,

and a two point connected ghost correlator G−1(z− z′), which is related to the previous
one in the following way:∫

d8z′ G(z1 − z′) G−1(z2 − z′) = δ(8)(z2 − z1).

This definition is valid in each order of perturbation theory. One can absorb this two
point proper function into a non-local redefinition of the effective fields K and V in the
following manner [20]:

Ṽ ≡
∫

d8z′ V(z′) G−1(z− z′), (4)

K̃ ≡
∫

d8z′ K(z′) G(z− z′).

One can see that the part of the ST identity without the gauge fixing term is covariant
with respect to such a re-definition of the effective fields. We will call the construction (4)
dressed effective (or mean) superfields. Proceeding at one loop level in terms of the dressed
effective superfields, one can see from the ST identity that the divergence of the K̃cṼ vertex
must be canceled by the divergence of the Lcc vertex. However, the N = 1 Lcc vertex does
not diverge at one loop level in momentum space due to supersymmetry ( For simplicity,
we consider the Landau gauge).This means that the ST identity clearly shows that the K̃cṼ
is also finite [14,15], that is, it does not diverge in the limit of removing the regularization.
The rest of the UV divergence in the propagator of the dressed gauge fields ṼṼ can be
removed by redefining the gauge coupling constant. In theories with zero beta function, in
the case of this paper it is N = 4 supersymmetric Yang–Mills theory, this last divergence is
absent. The other graphs are finite since proper correlators that can be constructed from the
K̃cṼ (or Lcc), and ṼṼ correlators by means of the ST identity. This is a direct consequence
of the ST identity and R-operation [14,36]. We can repeat this argument in each order
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of perturbation theory, which is completely the same as in Refs. [14,15] in component
formalism.

Why may we copy this proof from the component formalism of Refs. [14,15]? This
proof described in the previous paragraph is based on the structure of the gauge part
and on the BRST symmetry of the classical action extended by additional BRST-invariant
monomials [4]. The BRST symmetry is the origin of the ST identity [4,18,20]. This is
why the proof in the previous paragraph may be copied from the nonsupersymmetric
case. The only difference is that in the Wess–Zumino gauge the components of the same
multiplet are treated separately in this proof. Their renormalization constants do not
coincide (this may be seen for example in Chern-Simons theory Ref. [37]); however, it does
not present any obstacle. The superficial divergence of the Lcc vertex is absent in both the
formalisms (superfield and component) but by the different reasons. In the component
formalism it happens due to the transversality of the Landau gauge, which does not allow
this double-ghost vertex to diverge superficially [14,15].

Thus, the whole gauge part of the effective action can be considered as the functional
of the effective fields Ṽ, K̃, L, c, c̄, b̃ and ˜̄b. Due to the antighost equation [20], the antighost
field b is always dressed in the same manner as the auxiliary field K is dressed. Kernels of
this effective action are functions of the gauge coupling, mutual distances and in general
of the ultraviolet scale, because the divergences in subgraphs must be removed by the
renormalization of the gauge coupling. But if the beta function is zero the kernels have
no UV scale dependence. In the position space in component formalism the infrared
divergences can be analysed in the same way like ultraviolet divergences were analysed in
Ref. [36] in momentum space by means of R-operation [16]. However, it is difficult to repeat
this argument in the position space in superfield formalism since the propagator of the
vector superfield is dangerous in the infrared region. In view of this difficulty, we use the
formalism developed in Refs. [32,33], where the problem of off-shell infrared divergences
of superfield formalism has been solved.

4. Off-Shell IR Divergence in Superfield Formalism

The infrared regulator has been introduced by means of the following trick of renor-
malization of the vector gauge field V :

V → V + µθ2θ̄2V,

where µ is the infrared regulator mass. Propagators of the lowest components of the
gauge superfield obtain a shift by the infrared regulator mass, which is enough to make
the Feynman graphs safe in the infrared region of momentum space. It appears one
can construct the classical action that satisfies a generalized ST identity which involves
BRST counterparts of the gauge parameters. Then, a general solution to the generalized
ST identity has been found at the classical level. As a consequence of that solution, the
path integral that corresponds to this solution possesses the property of independence of
v.e.v.s of gauge invariant quantities on the gauge parameters [33]. The independence of
the physical quantities on the infrared scale was obtained in the same way. In addition,
the new external superfield u can be introduced so that a shift of its highest component
is proportional to the infrared scale µ. That field also participates in the generalized ST
identity.

One can analyze the generalized ST identity of Ref. [33], which is obtained after the
modification of the standard one (3) by including additional external fields and gauge
parameters. The appearance of the additional insertions of the external field u or spurions
µθ2θ̄2 into supergraphs does not change the nonrenormalization theorems. This property
has been used in Refs. [38–40] to derive the relation between softly broken and rigid renor-
malization constants inN = 1 supersymmetric theory. Thus, it cannot bring any changes to
our conclusions about the Lcc vertex from the point of our analysis since all divergent sub-
graphs remain divergent and all convergence properties of subgraphs remain unchanged.
In that sense, subgraphs are finite after renormalization by the dressing functions, but
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all the vertex as a whole is also finite superficially due to the property of Grassmannian
integration, which is not broken by the insertions of the external superfields [38–40].

There is also another way to explain the independence of the physical quantities on the
infrared scale µ. The point is that the the factors (1 + µθ2θ̄2) coming from vertices will be
canceled with factors (1 + µθ2θ̄2)−1 coming from propagators. However, the propagators
are IR-finite with the µ addition and thus the theory is regularized in the infrared. The
same trick can be applied to demonstrate the independence of the correlators of dressed
mean superfields in the Landau gauge of the infrared scale µ.

As we have written at the end of the previous section, in the position space in compo-
nent formalism the infrared divergences can be analyzed in the same way ultraviolet di-
vergences were analyzed in Ref. [36] in momentum space by means of R-operation [16,41].
The off-shell IR divergence, which has its origin in the propagator of a vector superfield,
is a typical problem for the superfield formalism [32,33]. In the component formalism,
this problem does not exist, and this statement may be checked by calculating the index
of divergence at infinity in position space in complete analogy with R-operation of the
overlapping divergences in momentum space [16,41].

5. Regularization of UV Divergence

In this paper, we have significantly used the vanishing of the gauge beta function
in N = 4 super-Yang–Mills theory. The vanishing of the beta function in first three
orders of the perturbation theory has been established in Refs. [42–44]. Originally, in the
background field technique, it has been shown in Ref. [45] that in N = 2 supersymmetric
Yang–Mills theory the beta function vanishes beyond one loop. The same result has been
derived in Ref. [46] by using the background field technique with unconstrained N = 2
superfields. The arguments of [45,46] are based on the fact that N = 2 supersymmetry
prohibits any counterterms to the gauge coupling except for one loop contribution. In
Ref. [35], the fact thatN = 2 supersymmetric YM theory does not have contributions to the
beta function beyond one loop has been argued based on currents of R-symmetry, which
are in the same supermultiplet with the energy-momentum tensor. The proportionality
of the trace anomaly of the energy momentum tensor to the beta function in general
nonsupersymmetric Yang–Mills theories has been proved in Ref. [47]. Since R-symmetry
does not have an anomaly in N = 4 theory, the same is true for the anomaly of the
conformal symmetry, which is proportional to the beta function. At one loop level, the
beta function is zero with this field contents [42,43]. Moreover, explicit calculation has been
conducted at two loops in terms of N = 1 superfields [48], and it has been shown that the
beta function of N = 2 theory is zero at two loops.

The dimensional reduction was known to be inconsistent [49]. We proposed a solution
to this problem in component formalism in Ref. [15] for N = 4 super-Yang–Mills theory.
We can repeat similar arguments in the case of superfield formalism. The only new feature
here is the appearance of the infrared scale µ in subgraphs, as it has been explained above.
The point is that the vertex Lcc is always convergent superficially in superfield formalism.
In N = 4 super-Yang-Mills theory ultraviolet divergences in the subgraphs of the Lcc
vertex should cancel each other at the end. The insertion of the operator of the conformal
anomaly into vacuum expectation values of operators of gluonic fields at different points
in spacetime is proportional to the beta function of the gauge coupling [47]. Due to the
algebra of the four-dimensional supersymmetry, the beta function should be zero [17].
Algebra of the supersymmetry operators in the Hilbert space created by dressed fields
can be considered as four-dimensional in Lorentz indices as well as in spinor indices
since the limit ε→ 0 is non-singular at one-loop order, two-loop order and higher orders
as we have seen in the previous paragraphs. Thus, we can consider each correlator as
purely four-dimensional, solving order-by-order the problem of dimensional discrepancy
of convolutions in Lorentz and spinor indices. The dependence on the infrared scale µ
is canceled by itself from the contributions of vertices and propagators, as it has been
shown above.
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Another regularization scheme for N = 1 supersymmetric Yang–Mills theory exists,
which is the higher derivatives regularization scheme [10,11]. According to Ref. [11],
N = 2 supersymmetry can be maintained by the regulator piece of the Lagrangian in
HDR. The scheme is discussed in detail in Ref. [4] for the nonsupersymmetric case. A
direct supersymmetric generalization of the regularization by higher derivatives has been
constructed in Ref. [10]. This generalization has also been considered in detail in the
paper [11], in particular in the background field technique. As has been explicitly shown in
Refs. [10,11], at one loop level HDR regularizes all the supergraphs in a gauge invariant
manner and this repeats the corresponding construction in the nonsupersymmetric version
of HDR [4]. However, when applied to explicit examples, this approach is known to yield
incorrect results in the Landau gauge [50]. A number of proposals have been put forward
to treat this problem [51,52]. As was shown in Ref. [52], the contradiction, noticed in [50],
is related to the singular character of the Landau gauge. In all other covariant gauges, the
method works and to also include the Landau gauge one has to add one more Pauli–Villars
field to obtain the correct result [51,52]. Having used this regularization, a new scheme
has been proposed in Refs. [53–55]. Calculations in the higher derivative regularization in
terms of superfields can be found in Refs.[53–58]. To perform the calculation, it is proposed
to break the gauge symmetry by using some HDR scheme with the usual derivatives
instead of covariant derivatives and then to restore the ST identity for the effective action
by using some non-invariant counterterms. This problem has been solved in Refs. [53–55].
All the arguments, given above for the regularization by the dimensional reduction in favor
of finiteness of the kernels of dressed mean superfields are valid also for the regularization
by higher derivatives. The only difference is that to remove the regularization by higher
derivatives we take the limit Λ→ ∞ instead of ε→ 0 as it was for the case of dimensional
reduction, where Λ is the regularization scale of HDR.

As we have already mentioned, the regularization by higher derivatives exists for
N = 2 superfield formalism, N = 1 superfield formalism, or for the components of the
supermultiplets in the Wess–Zumino gauge. In all these cases, HDR may keep N = 4
supersymmetry. This happens because theN = 2 SUSY regulators of [11] may be rewritten
in terms ofN = 1 superfields and further in components in the Wess–Zumino gauge. Ward
identities related withN = 4 supersymmetry (in particular with the multiplet of anomalies
considered in the first paragraph of this section) are valid in each of these formalisms under
the higher derivative regularization. The vanishing of the gauge beta function may be
proved in each of these cases based on this connection between the trace anomaly and
R-symmetry for N = 4 SYM. Although the renormalization constants do not coincide
for the different members of the same multiplet in the Wess–Zumino gauge [44], all the
Ward identities are valid in both the regularizations (DRED and HDR). After removing
the regularizations, the proper correlators of the dressed mean superfields become exactly
four-dimensional in terms of the dressed components or in terms of the dressed N = 1
superfields.

6. Three-Point Green Function of Dressed Mean Fields

Conformal symmetry imposes strong restrictions on the Green functions [59]. It is true
for any conformal field theory in any dimensions. Fradkin and co-authors have constructed
conformal invariant QED [59,60]. It was expected that QED in the infrared limit possesses
the conformal invariance because the coupling becomes fixed in the IR limit due to the
renormalization group equations. The renormalization procedure in the conformal QED
has been analyzed in [59,60]. Conformal invariance would be expected in QCD in the UV
limit too due to the renormalization group equations and asymptotic freedom. Thus, the
conformal invariance has a sense in QCD in the UV limit and in QED in the IR limit. The
three-point vector Green functions may be fixed in both the cases up to coefficients, the
four-point Green functions are restricted too, but not so strongly. There is a lot of freedom
remaining in the Green functions of higher ranges. In Ref. [60], in the framework of the
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conformal QED, the connected Green functions of the gauge vector field and spinor fields
are constrained in position space by the conformal symmetry.

We may apply these arguments of the Ref. [60] to the three-point connected Green
function of the dressed mean vector superfields in order to find its form in position space
up to coefficients. Because the effective action of the dressed mean fields does not depend
on any scale, conformal transformations of the fields of the classical action at the level
of the effective action are converted to the corresponding conformal transformations of
the dressed mean fields. The generators of the conformal group will act on the dressed
mean fields of the effective action. The trick is very similar to that of how the ST identity
imposed on the effective action has been obtained from the BRST symmetry of the classical
action by means of the Legendre transformations [4,18], or an even simpler example may
be given, the invariance with respect to Lorentz symmetry may be obtained for the effective
action via the Legendre transformation of the connected diagram generator. However,
the conformal symmetry of the classical action restricts the proper vertices in an implicit
way, but the constraints imposed by this symmetry on the connected Green functions are
explicit.

In order to use the constraints from the conformal field theory, the fields or superfields
should be dynamical, otherwise we cannot transform the conformal symmetry of the
classical action to the constraints on the vacuum expectation values of the fields (on the
connected Green functions). By the same trick, the Green functions of the softly broken and
rigid supersymmetric theories were related in [61]. This is the case of the dressed mean
superfields from the Lagrangian of N = 4 SYM, they are dynamical. We may apply this
trick to the connected correlators, but not to a proper vertex. This is why we cannot fix the
Lcc vertex based on the conformal group transformations, the L field is not dynamical, it is
an external auxiliary source coupled to the composite double-ghost operator and not to the
dynamical field from the integration measure of the path integral.

Thus, the conformal invariance imposes constraints on the connected Green function of
the dressed mean fields for all the orders in the gauge coupling. Nothing except for transfor-
mation laws of fields or operators with respect to the conformal group is necessary [59,60]
to establish these restrictions. The three-point connected Green function is fixed up to
coefficients. The coefficient is a series in terms of the gauge coupling. Can it be checked
explicitly by the direct calculations in position space? To calculate the connected Green
function in position space at the tree level, it is necessary to integrate three propagators
over coordinates of the common vertex. As we have mentioned in [62], for QED it has
been conducted in Refs. [63–65] in which three classical propagators were integrated in
the common vertex. The result is a structure predicted by the conformal group [63–65]. In
QCD, the calculation at the tree level of the connected three propagators over the common
vertex has been conducted in Ref. [41]. The result also satisfies the form dictated by the
conformal group. It is known that the structure of the integral of three propagators over
the common vertex should contain the Davydychev integral J(1, 1, 1) in position space [16].
The conformal symmetry of the theory is the only reason that prohibits its appearance in
the result for this integral of three gluon propagators in the Landau gauge in position space
after summing all the contributions [41].

In the previous paragraph of this section, we wrote about the calculations in the
component formalism at the tree level in QED and in N = 4 SYM for the connected Green
function of three dressed gluons. The results are consistent with the constraints imposed
by the conformal group. This conformal structure of the connected Green function should
survive at the higher loops, however nobody has checked this by explicit calculations.
In the literature there is no result (to our knowledge) about the calculation of the three
point off-shell gluon function at two loops in QCD or N = 4 SYM for a proper vertex or
a connected Green correlator. In Refs. [16,62], we wrote that the three-point connected
Green functions of dressed gluons may be found explicitly at all the loops due to conformal
symmetry in the Landau gauge in N = 4 SYM. We also made a conjecture in [15] that all
the gauge dependence in other gauges should be in the dressing functions of the dressed



Particles 2023, 6 1001

mean fields in this theory. Calculation for the Lcc vertex has been conducted explicitly at
the two loop level in the component formalism [16,41,66].

Now, the question is why does the structure of the Lcc vertex look so random [16,41,66]
while the structure of the connected three-gluon Green function of the dressed mean gluons
is so simple and conformal? The Lcc vertex is related by the ST identity to the proper
(one particle irreducible) three-gluon vertex diagram which has highly nontrivial structure
and contains non-conformal J(1, 1, 1) contributions [67] already at the one-loop level in
momentum space for QCD. By construction of the dressed mean field correlators, this
contribution should be summed with the one-loop self energy contribution to the propa-
gators to obtain the complete three-point connected Green function of the dressed gluons
in the component formalism. As the result, these non-conformal J(1, 1, 1) contributions
should vanish in this total one-loop result for this Green function in momentum space for
N = 4 SYM. This cancellation may be possible because J(1, 1, 1) is a highly non-trivial
combination of the Appell functions and its derivatives that resulted in a combination of
Euler polylogarithms [68]. In momentum space, this conformal Green function consists
of a product of powers of the momenta of the propagator legs only. Thus, the conformal
structure is the only structure that survives in the connected three-point Green function
of the dressed gluons at the one loop level in position space and in momentum space.
This structure does not contain non-conformal J(1, 1, 1) contributions. Again, the only
reason for cancellation of these non-conformal J(1, 1, 1) contributions at the one-loop level
is the constraints imposed by the conformal symmetry in position space on this connected
correlator. It is consistent with the results of Refs.[62,69–71] where it has been proven that
three-point Green functions in the massless theories are invariant with respect to Fourier
transformation.

In the review [59], it is described how to use conformal invariance in order to find
restrictions on the correlation functions of gauge invariant operators in a conformal field
theory for all the loops. It appears to be a useful tool for work with operator product
expansion in a conformal field theory. Later, this tool has been applied to AdS-CFT
correspondence [72,73]. However, in this paper we consider the connected Green function
of the dressed mean superfields in the Landau gauge. The one-loop structure for this Lcc
vertex in the component formalism is simple and coincides for any YM theory. It can be
found in Refs. [14–16] .

The representation in terms of component fields is

∫
d4x1d4x2d4x3

ig2N
28π6 f abcLa(x1)cb(x2)cc(x3) V(1)(x1, x2, x3),

where

V(1)(x1, x2, x3) =

−1
[12]2[23]2

+
2

[12]2[31]2
+

−1
[23]2[31]2

+
−1

[12][23][31]2
+

2
[12][23]2[31]

+
−1

[12]2[23][31]
. (5)

We assume the concise notation of Ref. [16], where [Ny] = (xN − y)2 and analogously
for [Nz], and [yz] = (y− z)2, that is, N = 1, 2, 3 stands for xN = x1, x2, x3, respectively,
which are the external points of the triangle diagram in Figure 1 in position space. As we
have mentioned in Ref. [16], this representation (5) does not match the representation for
the connected scalar three-point function imposed by the conformal symmetry.

Moreover, the one-loop expression (5) in position space is not written in a form
convenient to solve the ST identity. We need a different representation to apply it in the
ST identity. For this purpose, we first consider a scalar triangle diagram of Ref. [74] and
note that any term in the one-loop contribution in Lcc vertex (5) may be considered as
such a scalar triangle diagram depicted in Figure 2 in position space with arbitrary indices
α1, α2, α3 on the propagators.
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L

c c

Figure 1. The only one-loop contribution to the Lcc vertex.

Let us first analyze the diagram in Figure 2 in momentum space. The d-dimensional
momenta p1, p2, p3 enter this diagram in Figure 3 and are related by momentum conservation

p1 + p2 + p3 = 0.

In momentum space, the diagram in Figure 3 corresponds to the integral

J(ν1, ν2, ν3) =
∫

Dk
1

[(k + q1)2]
ν1 [(k + q2)2]

ν2 [(k + q3)2]
ν3

. (6)

The running momentum k in the triangle diagram in Figure 3 is the integration variable
in the integral (6). The notation is chosen in such a way that the index of propagator ν1
stands on the line opposite to the vertex of triangle into which the momentum p1 enters.
The notation q1, q2 and q3 are taken from Ref. [75]. As it may be seen from the diagram in
Figure 3,

p1 = q3 − q2, p2 = q1 − q3, p3 = q2 − q1.

The integral measure in momentum space is defined as in [16] by

Dk ≡ π−
d
2 ddk.

x1x2

x3

3

21

Figure 2. One-loop massless scalar triangle in position space. Integration in position space should be
carried out over internal points only (See Ref. [76]); however, this diagram does not have internal
points at all. The points x1, x2, x3 are external points.
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3

1 2

p3

p2
p1

k 
+ 

q 1 k + q
2

k + q3

Figure 3. One-loop massless scalar triangle in momentum space.

Such a definition of the integration measure in momentum space helps to avoid powers
of π in formulas for the momentum integrals. The Mellin–Barnes representation of the
integral J(ν1, ν2, ν3) may be obtained via Feynman parameters [75] and has the form

J(ν1, ν2, ν3) =
1

ΠiΓ(νi)Γ(d− Σiνi)

1

(p2
3)

Σνi−d/2

∮
C

dz2 dz3

(
p2

1
p2

3

)z2
(

p2
2

p2
3

)z3

{Γ(−z2)Γ(−z3)

Γ(−z2 − ν2 − ν3 + d/2)Γ(−z3 − ν1 − ν3 + d/2)Γ(z2 + z3 + ν3)Γ(Σνi − d/2 + z3 + z2)}

≡ 1

(p2
3)

Σνi−d/2

∮
C

dz2 dz3xz2 yz3 D(z2,z3)[ν1, ν2, ν3].

We have used here the definition of the Mellin–Barnes transform D(z2,z3)[ν1, ν2, ν3]
from our Ref. [76],

D(z2,z3)[ν1, ν2, ν3] =
Γ(−z2)Γ(−z3)Γ(−z2 − ν2 − ν3 + d/2)Γ(−z3 − ν1 − ν3 + d/2)

ΠiΓ(νi)

×Γ(z2 + z3 + ν3)Γ(Σνi − d/2 + z3 + z2)

Γ(d− Σiνi)
.

With all these definitions made, we consider the triangle scalar diagram in Figure 2 in
position space, repeating in part the integral transformations used in Ref. [74].

1
[12]α3 [23]α1 [31]α2

=
π−3d/24−Σiαi Γ(d/2− α1)Γ(d/2− α2)Γ(d/2− α3)

Γ(α1)Γ(α2)Γ(α3)
×

∫
dq1dq2dq3

eiq3(x1−x2)eiq1(x2−x3)eiq2(x3−x1)

(q2
3)

d/2−α3(q2
1)

d/2−α1(q2
2)

d/2−α2

=
π−3d/24−Σiαi Γ(d/2− α1)Γ(d/2− α2)Γ(d/2− α3)

Γ(α1)Γ(α2)Γ(α3)

∫
dq1dq2dq3

eix1(q3−q2)eix2(q1−q3)eix3(q2−q1)

(q2
3)

d/2−α3(q2
1)

d/2−α1(q2
2)

d/2−α2

=
π−3d/24−Σiαi Γ(d/2− α1)Γ(d/2− α2)Γ(d/2− α3)

Γ(α1)Γ(α2)Γ(α3)
×
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∫
dp1dp2dp3dq3δ(p1 + p2 + p3)

eix1 p1 eix2 p2 eix3 p3

[q2
3]

d/2−α3 [(p2 + q3)2]d/2−α1 [(p1 − q3)2]d/2−α2

=
π−3d/24−Σiαi Γ(d/2− α1)Γ(d/2− α2)Γ(d/2− α3)

(2π)dΓ(α1)Γ(α2)Γ(α3)
×

∫
dp1dp2dp3dq3dx5

ei(x1−x5)p1 ei(x2−x5)p2 ei(x3−x5)p3

[q2
3]

d/2−α3 [(p2 + q3)2]d/2−α1 [(p1 − q3)2]d/2−α2

=
π−d4−Σiαi Γ(d/2− α1)Γ(d/2− α2)Γ(d/2− α3)

(2π)dΓ(α1)Γ(α2)Γ(α3)
×∫

dp1dp2dp3dx5ei(x1−x5)p1 ei(x2−x5)p2 ei(x3−x5)p3 J(d/2− α1, d/2− α2, d/2− α3)

=
π−d4−Σiαi Γ(d/2− α1)Γ(d/2− α2)Γ(d/2− α3)

(2π)dΓ(α1)Γ(α2)Γ(α3)
×

∫
dp1dp2dp3dx5

∮
C

dz2dz3
ei(x1−x5)p1 ei(x2−x5)p2 ei(x3−x5)p3

(p2
3)

d−Σiαi+z2+z3(p2
1)
−z2(p2

2)
−z3

D(z2,z3)[d/2− α1, d/2− α2, d/2− α3]

=
πd/24d/2Γ(d/2− α1)Γ(d/2− α2)Γ(d/2− α3)

(2π)dΓ(α1)Γ(α2)Γ(α3)
×

∫
dx5

∮
C

dz2dz3
D(z2,z3)[d/2− α1, d/2− α2, d/2− α3]

[35]Σiαi−z2−z3−d/2[15]d/2+z2 [25]d/2+z3
×

Γ(Σiαi − z2 − z3 − d/2)Γ(d/2 + z2)Γ(d/2 + z3)

Γ(d− Σiαi + z2 + z3)Γ(−z2)Γ(−z3)
.

Any term in (5) may be represented in this form, and for the all one-loop Lcc vertex in
the component formalism, we may write

∫
d4x1d4x2d4x3

ig2N
28π6 f abcLa(x1)cb(x2)cc(x3) V(1)(x1, x2, x3)

=
∫

d4x1d4x2d4x3
ig2N
28π6 f abcLa(x1)cb(x2)cc(x3)

∫
dx5

∮
C

dz2dz3
M(z2, z3)

[15]∆−z2−z3 [25]z2 [35]z3
. (7)

Here, ∆ is the dimension of this Lcc vertex. In the case that we consider (N = 4 SYM
in d = 4) ∆ = 6. The Equation (7) is the parametrization for the Lcc vertex we need to
solve the ST identity by the method developed in Refs. [18,19]. This parametrization is
valid for any number of loops. This auxiliary vertex is related to the three-gluon proper
vertex via ST identity in the way we described in Section 3. Thus, in the component
formalism the conformal structure of the connected Green function of three dressed gluons
transforms implicitly to the structure of the Lcc vertex because the integral relation between
the connected Green function of dressed gluons and the corresponding proper function of
dressed gluons is highly nontrivial in all the loops. In turn, the Bethe–Salpeter equation
puts strong restrictions on the Mellin–Barnes image M(z2, z3) of the Lcc vertex in the
parametrization (7) in an explicit way [62,76].

The Lcc is finite in the limit of removing the regularizations as we have shown in
Refs. [14,15] and checked explicitly in Refs. [16,41,66] in the component formalism. We
have written in the Introduction that scale independence is a consequence of finiteness.
Now, we do not have any scale because the amplitudes are on-shell values of the connected
Green functions of dressed fields and therefore IR divergences after putting the moments
on-shell that may appear. In order to work with these connected correlators on shell, we
need a regularization again. This may be completely new regularization, for example,
we may shift the complex variables of integration in the Mellin planes by some value ε
and obtain
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∫
d4x1d4x2d4x3

ig2N
28π6 f abcLa(x1)cb(x2)cc(x3)

∫
dx5

∮
C

dz2dz3
M(z2 + ε, z3 + ε)

[15]∆−z2−z3−2ε[25]z2+ε[35]z3+ε

instead of (7). Such a regularization will regularize the IR divergences on-shell. We do not
need any regularization of such a kind at the tree level. In terms of this vertex, all other
vertices may be fixed [18,19,62,76,77].

7. Chiral Superfields

So far the pure gauge sector has been considered. Let us look now at the matter two
point functions. Schematically, one can write the two point vertex as∫

d8zd8z′Φ̄(z)GΦ(z− z′)Φ(z′).

The function GΦ(z− z′) can be divided into two equal parts G̃Φ,∫
d8z′G̃Φ(z1 − z′)G̃Φ(z′ − z2) = GΦ(z1 − z2).

This is a product in momentum space. Now we define the new fields Φ̃,∫
d8z′G̃Φ(z− z′)Φ(z′) ≡ Φ̃(z),

and represent the effective action in terms of these fields. In particular, the divergent part of
the function G̃Φ can be absorbed into the redefinition of the Yukawa couplings and masses.
However, in N = 4 supersymmetric theory, masses are absent and the Yukawa coupling
(which coincides with the gauge coupling) is not renormalized due to the structure of the
Yukawa terms in the classical action. Thus, in terms of the dressed effective superfields
Φ̃ and Ṽ, the effective action does not have any dependence on the UV and IR scales for
N = 4 supersymmetric theory.

Because the superficial divergence in the Yukawa coupling for N = 1 supersymmetry
is absent due to Grassmannian integration in the superspace [35], all the renormalization
from the self-energy of the chiral superfields should be absorbed by the renormalization
of the Yukawa coupling. But in this special case of N = 4, SYM the gauge coupling and
Yukawa coupling is the same and gauge coupling does not receive any renormalization in
this theory due to the vanishing of the gauge beta function, which means that the chiral
superfields in this model should not be renormalized in order to absorb infinities, that is, the
self-energy of the chiral superfields may be finite only. On the contrary, in the component
formalism self-energies of components of the chiral multiplet are divergent [29].

Absence of the renormalization of the self-energy for the chiral superfields is not the
only example when the bubble diagram does not contribute. Another example would
be the massless bubble diagrams with external on-shell momenta of Ref. [78], which are
divergent both in UV and IR, but they vanish due to cancellation between UV and IR poles
in d = 4− 2ε. It implies the IR and UV divergences are related to each other and can be
determined from one another [78].

8. Conclusions

In conclusion, all the correlator Lcc with all the possible contributions included turn
out to be totally finite in N = 4 super-Yang–Mills theory in the Landau gauge, and this
property can be used to find it exactly in all the orders of the perturbation theory. The vertex
Lcc in spite of being scale independent cannot be found by conformal symmetry since the
external auxiliary superfield L does not propagate (it is not in the measure of the path
integral). Three point connected Green functions of supermultiplets containing physical
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fields (like vector supermultiplet or matter supermultiplet) could be fixed by conformal
symmetry up to some coefficient depending on the gauge coupling and number of colors.

In QCD, the matter fields are not in adjoint representation, the level of the symmetry is
much lower and the beta function does not vanish. The rest of the singularity in the vector
propagator can be absorbed into the gauge coupling to organize the bare coupling. The bare
coupling together with the logarithm of ratio of the distance to the scale, leads to the running
(effective) coupling. It means that in d dimensions, the massless nonsupersymmetric gauge
theory is a conformal gauge theory in terms of the running effective coupling (formed from
the bare coupling) and dressed mean fields [66]. Another way to break supersymmetry and
obtain the results for QCD from supersymmetric theories is via diffeomorphisms in the
superspace [61].
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