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Abstract: An analytical solution in closed form of the advection-dispersion equation in
one-dimensional contaminated soils is proposed in this paper. This is valid for non-conservative
solutes with first order reaction, linear equilibrium sorption, and a time-dependent Robin boundary
condition. The Robin boundary condition is expressed as a combined production-decay function
representing a realistic description of the source release phenomena in time. The proposed
model is particularly useful to describe sources as the contaminant release due to the failure in
underground tanks or pipelines, Non Aqueous Phase Liquid pools, or radioactive decay series.
The developed analytical model tends towards the known analytical solutions for particular values
of the rate constants.

Keywords: 1D analytical solution; soil contamination; groundwater modeling; source production-decay;
ADE equation

1. Introduction

The study of contaminant transport in porous media is of great importance for scientists
working in environmental engineering, hydrology, geology, soil physics, chemical, and petroleum
engineering. The concentration distribution in space and time, of a reactant pollutant in groundwater,
can be described by the advection-dispersion equation (ADE). This equation contains terms
taking into account the physical process governing the advective transport, molecular diffusion,
and hydrodynamic dispersion, chemical reaction in the liquid phase, contaminant decay or production,
and adsorption/desorption processes with the solid phase.

The literature contains many analytical solutions of the ADE both in open and closed form.
These analytical solutions are useful for providing pollution scenarios in risk analysis, to investigate
the effects of chemical-physical parameters on pollutant transport, and also to validate the numerical
models. The most adopted methods to find the analytical solutions are Fourier analysis, Laplace
transform, and expansion in Bessel or Hankel functions [1–6].

Exact analytical solutions of the advection-dispersion equation are seldom possible if the
considered problem to solve takes into consideration some complex chemical processes such as
non-linear sorption and multi-component reaction chains considered together. Some, solutions
taking into account non-linear adsorption/desorption, have been developed for one-dimensional
problems [7,8]. However, multi-dimensional exact analytical solutions in semi-finite and finite domain
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under first- or third-type boundary conditions are usually expressed in open form and include integrals
to be numerically evaluated, or contain an infinite series in their expressions [9–16].

Leij et al. and Wang et al. [17–19] provided a series of multi-dimensional analytical solutions by
using the Green Function Method (GFM) [20] for various plane and linear sources. With this method,
under some particular initial and boundary conditions, a more complex solution can be constructed by
combining the single directional solutions. Multi-dimensional closed form approximated analytical
solutions can also be constructed by applying GFM under some simplifying hypothesis [21–23].
For this reason, the study and the development of one-dimensional analytical solutions in closed form
is of high interest. Furthermore, a one-dimensional solution can be suitable to model contaminant
in laboratory columns, pollution in aquifers where the contamination source extends through the
saturated zone in either transverse y, and z directions or cases where dispersion in y and z directions
can be neglected. Moreover, a one-dimensional solution as it is can be applied in calculating vertical
flow of contaminants in saturated soil.

Many one-dimensional exact analytical solutions in closed form have been proposed,
and scientists’ attention has been dedicated to solutions having time-dependent sources [24]. A library
of one-dimensional analytical models that encloses some solutions with source decay was proposed
by Van Genuchten et al. [25]. Guerrero et al. [26] proposed a Duhamel theorem based approach in
order to compute one-dimensional solutions with time dependent boundary conditions and gave some
solutions in closed form for exponential source decay.

We propose here a closed form analytical solution of the one-dimensional ADE in semi-finite
domain for a reacting solute under first order decay and linear sorption described by a retardation
factor. The source of contamination is described by a Robin time-dependent boundary condition,
representing a combined production-decay release mechanism.

In [27–29] a technique for solving the ADE for Dirichlet, the Neumann and Cauchy problem is
proposed, and the technique is valid for multi coupled multi-species processes, considers exponential
dependence in time of the initial source, and utilizes Laplace transforms. Even if a scientific intersection
between this approach and the proposed one is present, in this work, by considering only one
component advection-dispersion-reaction process, we are able to consider more general initial data
condition, like the box case, and we are able to manage the problem in a simple way, by reducing the
whole problem to the calculation of an unique integral.

The solution so proposed is of simple use, is written in an analytical form that includes the Van
Genuchten solutions [25] for specific boundary conditions, and is easily adoptable for developing
multi-dimensional analytical solutions by using the Green Function Method.

2. Materials and Methods

2.1. Governing Equation

The one-dimensional advection-dispersion equation governing contaminant transport subject to
first order decay and linear equilibrium sorption in a semi-finite or a finite domain of length L0 can be
written as:

R
∂C(x, t)

∂t
= D

∂2C(x, t)
∂x2 − v

∂C(x, t)
∂x

− λC(x, t) (1)

Subject to the following initial and boundary conditions:

C(x, 0) = 0 (2)

C(0, t) = h(t) (3a)

or

−D
∂C(0, t)

∂x
+ vC(0, t) = vg(t) (3b)
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Moreover, we can assume one of the following homogeneous Neumann conditions,
whose physical meaning is to exclude material flux at the exit (finite or infinite domain):

∂C(L0, t)
∂x

= 0 (4a)

or
∂C(∞, t)

∂x
= 0 (4b)

where C(x,t) is the contaminant concentration [ML−3], D is the dispersion coefficient [L2T−1], v is the
average space velocity [LT−1], λ is the first order decay constant [T−1], R is the retardation factor [-],
h(t) and g(t) are general time-dependent functions [ML−3]. Equations (1)–(4) are valid for a saturated
homogeneous porous medium, constant and uniform fluid flow, and dispersion coefficients where the
source of contamination is written as a Dirichlet or Robin boundary conditions.

2.2. The Proposed Analytical Solution

Here we consider R = 1 (thus, no adsorption phenomena are considered), even though the reader
can generalize the proposed solution to arbitrary values of R by substituting to the velocity ν the
retarded velocity νr = ν/R, to the longitudinal dispersion coefficient D the new coefficient Dr defined
as Dr = D/R, and finally to the decay coefficient λ the new one λr = λ/R [30].

The analytical solution is derived for a general inlet distribution subject to Robin boundary
conditions and semi-finite domain.

Let us consider Equation (1) subject to the following initial and boundary conditions:

C(x, 0) = 0 (5)

−D
∂C(0, t)

∂x
+ vC(0, t) = vg(t) (6)

And to the following constraint:
∂C(∞, t)

∂x
= 0 (7)

Let us introduce the new variable c(x,t):

C(x, t) = exp
(vx

D

)
exp(−λt)c(x, t) (8)

In this way, it is possible to shift the problem subject to Robin condition to a problem subject to
Neumann condition.

By deriving Equation (8) with respect to x, we obtain:

∂C(x, t)
∂x

=
v exp

( vx
D
)

exp(−λt)c(x, t)
D

+ exp
(vx

D

)
exp(−λt)

(
∂c(x, t)

∂x

)
(9)

By making the substitution of Equation (8) in the first term of the right-hand side of Equation (9)
this equation can be rewritten as:

∂C(x, t)
∂x

=
vC(x, t)

D
+ exp

(vx
D

)
exp(−λt)

(
∂c(x, t)

∂x

)
(10)

By evaluating Equation (10) in x = 0:

∂C(0, t)
∂x

− vC(0, t)
D

= exp(−λt)
(

∂c(0, t)
∂x

)
(11)
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Knowing that:

−D
∂C(0, t)

∂x
+ vC(0, t) = vg(t) (12)

Doing some passages, Equation (12) becomes:

∂C(0, t)
∂x

− vC(0, t)
D

= −vg(t)
D

(13)

By setting vg(t)
D = f (t) we obtain:

∂C(0, t)
∂x

− vC(0, t)
D

= − f (t) (14)

By comparing Equations (11) and (14) we obtain that:

− f (t) = exp(−λt)
(

∂c(0, t)
∂x

)
(15)

and finally: (
∂c(0, t)

∂x

)
= − f (t)

exp(−λt)
(16)

So, the initial general problem described by Equation (1) can be transformed into the new general
problem described by:

∂c(x, t)
∂t

= D
∂2c(x, t)

∂x2 − v
∂c(x, t)

∂x
(17)

with the new boundary conditions given by Equation (16), that is a one-dimensional problem subject
to second-type boundary conditions. Solving with Laplace transform in time, the general solution is
the following:

c(x, t) = −vn1(x, t)
2

+

√
D exp

(
− vx

2D
)

exp
(
−v2t
4D

)
n2(x, t)

√
π

(18)

where:

n1(x, t) =
t∫

0

f (q) exp(λq)er f c

(
v
√

t− q + x√
t−q

2
√

D

)
dq (19)

n2(x, t) =
t∫

0

f (q) exp(λq) exp
(

qv2

4D

)
exp

(
− x2

4D(t−q)

)
√

t− q
dq (20)

Equations (18) and (19) are related by the following equality:

∂n1(x, t)
∂x

= −
exp

(
− tv2

4D

)
exp

(
− vx

2D
)
n2(x, t)

√
πD

(21)

The integral general solution finally is:

c(x, t) = −v n1(x, t)
2

− D
∂n1(x, t)

∂x
(22)
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3. Results and Discussion

3.1. Linear Combination of Exponential Inlet Distribution as a Robin (Third-Type) Boundary Conditions in
Semi-Finite Domain

By setting:
g(t) = C0y(1− e−λpt) + C0e−λst (23)

where C0 is the initial concentration [ML−3] in the source and y = C0∞/C0 is the ratio between the
residual source concentration at the steady state and the initial concentration; λp is the production
constant [T−1] and λs is the decay constant [T−1].

Equations (19) and (20) become:

n1(x, t) =
t∫

0

v
D

C0y(1− e−λpq) + C0e−λsq exp(λq)er f c

(
v
√

t− q + x√
t−q

2
√

D

)
dq (24)

n2(x, t) =
t∫

0

v
D C0y(1− e−λpq) + C0e−λsq exp(λq) exp

(
qv2

4D

)
exp

(
− x2

4D(t−q)

)
√

t− q
dq (25)

by solving Equations (22)–(25) with Equation (8) substitution, we get the final solution:

C(x, t) = C0y(A(x, t) + B(x, t)) + C0E(x, t) (26)

A(x, t) = v
v+u exp

(
(v−u)x

2Dx

)
er f c

(
x−tu

2
√

Dxt

)
+ v

v−u exp
(
(v+u)x

2Dx

)
er f c

(
x+tu

2
√

Dxt

)
+

+ v2

2λDx
exp

(
vx
Dx

)
exp(−λt)er f c

(
x+tv

2
√

Dxt

) (27)

B(x, t) = − exp
(
−λpt

)( v
v+w exp

(
(v−w)x

2Dx

)
er f c

(
x−tw

2
√

Dxt

)
+ v

v−w exp
(
(v+w)x

2Dx

)
er f c

(
x+tw

2
√

Dxt

))
+

− v2

2(λ−λp)Dx
exp

(
vx
Dx

)
exp(−λt)er f c

(
x+tv

2
√

Dxt

) (28)

E(x, t) = exp(−λst)
(

v
v+W exp

(
(v−W)x

2Dx

)
er f c

(
x−tW
2
√

Dxt

)
+ v

v−W exp
(
(v+W)x

2Dx

)
er f c

(
x+tW
2
√

Dxt

))
+

+ v2

2(λ−λs)Dx
exp

(
vx
Dx

)
exp(−λt)er f c

(
x+tv

2
√

Dxt

) (29)

u =
√

4Dxλ + v2, w =
√

4Dx(λ− λp) + v2, W =
√

4Dx(λ− λs) + v2

That is the one-dimensional analytical solution here proposed in semi-finite domain. This solution
can be derived, by doing numerous passages, from the general equation given by Srinivasan and
Clement [28,29]. By setting zero initial condition and three species transport problem, the general
equation given by Srinivasan and Clement [29] becomes:

ci(x, t) =
i

∑
i1=1

[(
i

∏
i2=i1+1

yi2ki2−1

)
i

∑
i2=i1

i1

∑
i3=1

{
G1

2

}]
i = 1, 2, 3

with boundary conditions in line with [29].
It is possible to see that the proposed analytical solution reduces to known solutions for particular

values of the production/decay constants.
Case 1: For λp = 0 and λs = 0 we have:

g(t) = C0 (30)

W = w = u (31)



Soil Syst. 2018, 2, 40 6 of 16

E(x, t) = −F(x, t) (32)

The solution, for this particular case, is:

C(x, t) = C0 A(x, t) (33)

where:

A(x, t) = v
v+u exp

(
(v−u)x

2Dx

)
er f c

(
x−tu

2
√

Dxt

)
+ v

v−u exp
(
(v+u)x

2Dx

)
er f c

(
x+tu

2
√

Dxt

)
+

+ v2

2λDx
exp

(
vx
Dx

)
exp(−λt)er f c

(
x+tv

2
√

Dxt

) (34)

That is identical to case C6 described in [25], by setting Ci = 0 and γ = 0.
Case 2: For λp → ∞ we have:

g(t) = C0y + C0e−λst (35)

and the solution can be obtained by computing limλp→∞C(x, t).
We can easily observe that:

lim
λp→∞

B(x, t) = lim
λp→∞

(
− exp

(
−λpt

)( v
v+w exp

(
(v−w)x

2Dx

)
er f c

(
x−tw

2
√

Dxt

)
+ v

v−w exp
(
(v+w)x

2Dx

)
er f c

(
x+tw

2
√

Dxt

)))
+

+ lim
λp→∞

(
− v2

2(λ−λp)Dx
exp

(
vx
Dx

)
exp(−λt)er f c

(
x+tv

2
√

Dxt

)) (36)

is equal to zero, hence the solution becomes:

C(x, t) = C0yA(x, t) + C0E(x, t) (37)

where:

A(x, t) = v
v+u exp

(
(v−u)x

2Dx

)
er f c

(
x−tu

2
√

Dxt

)
+ v

v−u exp
(
(v+u)x

2Dx

)
er f c

(
x+tu

2
√

Dxt

)
+

+ v2

2λDx
exp

(
vx
Dx

)
exp(−λt)er f c

(
x+tv

2
√

Dxt

) (38)

E(x, t) = exp(−λst)
(

v
v+W exp

(
(v−W)x

2Dx

)
er f c

(
x−tW
2
√

Dxt

)
+ v

v−W exp
(
(v+W)x

2Dx

)
er f c

(
x+tW
2
√

Dxt

))
+

+ v2

2(λ−λs)Dx
exp

(
vx
Dx

)
exp(−λt)er f c

(
x+tv

2
√

Dxt

) (39)

That is identical to case C14 described in [25], by setting Ci = 0 and γ = 0.

3.2. Linear Combination of Exponential Inlet Distribution as a First-Type Boundary Conditions in
Semi-Finite Domain

Model presented in Section 3.1 is subject to Robin boundary conditions. It is important to remark
that, even if these boundary conditions well describe mass conservation, a large number of software
are implemented by using model based on first-type or Dirichlet boundary conditions in which the
concentration at the source is specified. However, solutions derived on the basis of first-type boundary
conditions do not conserve mass if concentrations are taken as volume-average i.e., the amount of
solute per unit of volume.

One dimensional systems subject to Dirichlet boundary conditions can be mass conservative
if concentrations are interpreted as flux-average i.e., the quantity of solute per fluid unit volume
that passes the cross-section area in a unit of time [31]. Several papers highlight and describe the
importance to do a distinction between the resident or volume-average concentration Cr and the
flowing or flux-averaged concentration Cf in one-dimensional solute transport [32–34].

The above mentioned studies gave the following correlation between Cr and Cf:

C f = Cr −
Dx

v
∂Cr

∂x
(40)
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Equation above gives the relationship between flux-averaged concentration Cf and
volume-average concentration Cr.

It was proved that this formulation leaves one-dimensional transport equation invariant, it follows
that transport equation can be written both in term of Cr and Cf [35,36]. By considering Equation (1)
with following boundary and initial conditions:

C(x, 0) = 0 (41)

C(0, t) = h(t) (42)

∂C(∞, t)
∂x

= 0 (43)

h(t) = C0y(1− e−λpt) + C0e−λst (44)

it is possible to obtain a solution following passages in Appendix A.
The solution is:

C f (x, t) = C0y(a(x, t) + b(x, t)) + C0e(x, t) (45)

where:

a(x, t) =

 1
2 er f c

(
− 1

2
tu−x√

Dxt

)
+

√
Dx exp

(
− 1

4
(tu−x)2

Dxt

)
√

πt(u+v)

 exp
(

1
2

x(v−u)
Dx

)

+

 1
2 er f c

(
1
2

tu+x√
Dxt

)
+

√
Dx exp

(
− 1

4
(tu+x)2

Dxt

)
√

πt(v−u)

 exp
(

1
2

x(u+v)
Dx

)

+ 1
2

exp( vx
Dx ) exp(−tλ) exp

(
− 1

4
(tv+x)2

Dxt

)
v

λ
√

πt
√

Dx

(46)

b(x, t) =

− 1
2 er f c

(
− 1

2
tw−x√

Dxt

)
−
√

Dx exp
(
− 1

4
(tw−x)2

Dxt

)
√

πt(v+w)

 exp
(

1
2

x(v−w)
Dx

)
exp

(
−tλp

)
+

− 1
2 er f c

(
1
2

tw+x√
Dxt

)
−
√

Dx exp
(
− 1

4
(tw+x)2

Dxt

)
√

πt(v−w)

 exp
(

1
2

x(v+w)
Dx

)
exp

(
−tλp

)
− 1

2

exp( vx
Dx ) exp(−tλ) exp

(
− 1

4
(tv+x)2

Dxt

)
v

(λ−λp)
√

πt
√

Dx

(47)

e(x, t) = −

− 1
2 er f c

(
− 1

2
tW−x√

Dxt

)
−
√

Dx exp
(
− 1

4
(tW−x)2

Dxt

)
√

πt(v+w)

 exp
(

1
2

x(v−W)
Dx

)
exp(−tλs)

−

− 1
2 er f c

(
1
2

tW+x√
Dxt

)
−
√

Dx exp
(
− 1

4
(tW+x)2

Dxt

)
√

πt(v−W)

 exp
(

1
2

x(v+W)
Dx

)
exp(−tλs)

+ 1
2

exp( vx
Dx ) exp(−tλ) exp

(
− 1

4
(tv+x)2

Dxt

)
v

(λ−λs)
√

πt
√

Dx

(48)

It is possible to see that the proposed analytical solution for the first type boundary conditions
reduces to known solutions for particular values of the production/decay constants.

Case 1: For λp = 0 and λs = 0 we have:

h(t) = C0 (49)

W = w = u (50)

C(x, t) = C0a(x, t) (51)
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where:

a(x, t) =
1
2

(
er f c

(
−1

2
tu− x√

Dxt

)
exp

(
1
2

x(v− u)
Dx

)
+ er f c

(
1
2

tu + x√
Dxt

)
exp

(
1
2

x(u + v)
Dx

))
(52)

That can be written in the following form that is equal to case C5 described in [25], with Ci = 0
and γ = 0.

C(x, t) =
C0

2
exp

(
vx

2Dx

){
exp

(
− ux

2Dx

)
er f c

[
x− ut
2
√

Dxt

]
+ exp

(
ux
Dx

)
er f c

[
x + ut
2
√

Dxt

]}
(53)

Case 2: For λp → ∞ we have:
h(t) = C0y + C0e−λst (54)

and the solution can be obtained by computing limλp→∞C(x, t) that is:

limλp→∞b(x, t) = limλp→∞

− 1
2 er f c

(
− 1

2
tw−x√

Dxt

)
−
√

Dx exp
(
− 1

4
(tw−x)2

Dxt

)
√

πt(v+w)

 exp
(

1
2

x(v−w)
Dx

)
exp

(
−tλp

)
+

− 1
2 er f c

(
1
2

tw+x√
Dxt

)
−
√

Dx exp
(
− 1

4
(tw+x)2

Dxt

)
√

πt(v−w)

 exp
(

1
2

x(v+w)
Dx

)
exp

(
−tλp

)
− 1

2

exp( vx
Dx ) exp(−tλ) exp

(
− 1

4
(tv+x)2

Dxt

)
v

(λ−λp)
√

πt
√

Dx

(55)

is equal to zero, hence the solution becomes:

C(x, t) = C0ya(x, t) + C0e(x, t) (56)

where:

a(x, t) =
1
2

(
er f c

(
−1

2
tu− x√

Dxt

)
exp

(
1
2

x(v− u)
Dx

)
+ er f c

(
1
2

tu + x√
Dxt

)
exp

(
1
2

x(u + v)
Dx

))
(57)

e(x, t) = 1
2 er f c

(
− 1

2
tW−x√

Dxt

)
exp

(
1
2

x(v−W)
Dx

)
exp(−tλs) +

1
2 er f c

(
1
2

tW+x√
Dxt

)
exp

(
1
2

x(v+W)
Dx

)
exp(−tλs) (58)

That is identical to case C13 described in [25] by setting Ci = 0 and γ = 0.

3.3. Consecutive Reactions at the Source as a Robin (Third-Type) Boundary Conditions in Semi-Finite Domain

By considering consecutive reactions at the source written as:

A→ B→ C

It is possible to simulate the release of contaminant B that produces at the source from the decay
of a pool of contaminant A decaying during time into product C. This solution can be particularly
useful for waste radioactive decay at the source or PCE (tetrachloroethylene) to TCE (trichloroethylene)
degradation in soils.

g(t) = C0K
(
−e−λpt + e−λst

)
(59)

where C0 is the initial concentration [ML−3] and K = k1
k2−k1

is the global chemical kinetic rate.

C(x, t) = C0K(A(x, t) + B(x, t)) (60)

A(x, t) = − exp
(
−λpt

)( v
v+w exp

(
(v−w)x

2Dx

)
er f c

(
x−tw

2
√

Dxt

)
+ v

v−w exp
(
(v+w)x

2Dx

)
er f c

(
x+tw

2
√

Dxt

))
+

− v2

2(λ−B)Dx
exp

(
vx
Dx

)
exp(−λt)er f c

(
x+tv

2
√

Dxt

) (61)
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B(x, t) = exp(−λst)
(

v
v+W exp

(
(v−W)x

2Dx

)
er f c

(
x−tW
2
√

Dxt

)
+ v

v−W exp
(
(v+W)x

2Dx

)
er f c

(
x+tW
2
√

Dxt

))
+

+ v2

2(λ−S)Dx
exp

(
vx
Dx

)
exp(−λt)er f c

(
x+tv

2
√

Dxt

) (62)

w =
√

4Dx(λ− B) + v2, W =
√

4Dx(λ− S) + v2

3.4. Consecutive Reactions at the Source as First-Type Boundary Conditions in Semi-Finite Domain

By following passages in Appendix A it is possible to derive, also in this case, the solution for
consecutive reactions in semi-finite domain subject to first-type boundary conditions.

C(x, 0) = 0 (63)

C(0, t) = h(t) (64)

∂C(∞, t)
∂x

= 0 (65)

h(t) = C0K
(
−e−λpt + e−λst

)
(66)

C f (x, t) = C0K(a(x, t) + b(x, t)) (67)

a(x, t) =

− 1
2 er f c

(
− 1

2
tw−x√

Dxt

)
−
√

Dx exp
(
− 1

4
(tw−x)2

Dxt

)
√

πt(w+v)

 exp
(

1
2

x(v−w)
Dx

)
exp(−tλp)

+

− 1
2 er f c

(
1
2

tw+x√
Dxt

)
+

√
Dx exp

(
− 1

4
(tw+x)2

Dxt

)
√

πt(v−w)

 exp
(

1
2

x(w+v)
Dx

)
exp(−tλp)

− 1
2

exp( vx
Dx ) exp(−tλ) exp

(
− 1

4
(tv+x)2

Dxt

)
v

(λ−λp)
√

πt
√

Dx

(68)

b(x, t) = −

− 1
2 er f c

(
− 1

2
tW−x√

Dxt

)
−
√

Dx exp
(
− 1

4
(tW−x)2

Dxt

)
√

πt(v+w)

 exp
(

1
2

x(v−W)
Dx

)
exp(−tλs)

−

− 1
2 er f c

(
1
2

tW+x√
Dxt

)
−
√

Dx exp
(
− 1

4
(tW+x)2

Dxt

)
√

πt(v−W)

 exp
(

1
2

x(v+W)
Dx

)
exp(−tλs)

+ 1
2

exp( vx
Dx ) exp(−tλ) exp

(
− 1

4
(tv+x)2

Dxt

)
v

(λ−λs)
√

πt
√

Dx

(69)

3.5. Finite Release at the Source as a Robin (Third-Type) Boundary Conditions in Semi-Finite Domain

By setting:
g(t) = C∞e−λtH(∆− t) (70)

where H(∆− t) is the Heaviside function, and C∞ is the residual source concentration, λ is the first
order reaction constant.

The solution is:

C(x, t) = e
vx
Dx e−λt(A(x, t)H(∆− t) + B(x, t)H(t− ∆)) (71)

A(x, t) =
(
−DxC∞

v+u er f c
(

tu−x
2
√

Dxt

)
+ 2 DxC∞

v+u

)
exp

(
tλ− (v+u)x

2Dx

)
−C∞(u+v)

4λ exp
(

tλ + (u−v)x
2Dx

)
er f c

(
tu+x

2
√

Dxt

)
+ vC∞

2λ er f c
(

tu+x
2
√

Dxt

) (72)
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B(x, t) =
(

vC∞
2λ er f c

(
− (t−∆)v+x

2
√

Dx(t−∆)

)
− vC∞

λ

)
exp(∆λ) + DxC∞

v+u exp
(

tλ− (v+u)x
2Dx

)
(
−er f c

(
x+(∆−t)u

2
√

Dx(t−∆)

)
− er f c

(
− x−tu

2
√

Dxt

)
+ 2
)
+ DxC∞

u−v exp
(

tλ + (u−v)x
2Dx

)
(
−er f c

(
− x+(t−∆)u

2
√

Dx(t−∆)

)
− er f c

(
x+tu

2
√

Dxt

)
+ 2
)
+ vC∞

2λ er f c
(

x+tv
2
√

Dxt

) (73)

3.6. Example of Application

The sequential decay of multi-species contaminants as nitrogen, chlorinated solvent,
and radionuclide is of large importance in soil contamination. A lot of researchers have developed
a large number of models involving sets of advective-dispersive transport equations coupled by
first-order decay [37,38] but analytical solutions in closed form that considers both production
and decay at the source are scarcely available [22,23]. In order to illustrate the model and the
effect of the boundary conditions, the following example of application has been considered:
one-dimensional transport of an intermediate radionuclide, subject to decay chain during its movement
into groundwater, where it is possible to consider its production-decay also at the source.

238Pu→ 234U → 230Th

Input parameters, here used, are kept from [38,39] except for input concentration value and are
summarized in Table 1.

Table 1. Radionuclide decay parameters.

Parameters 234U

Velocity, v [m year−1] 100
Dispersion coefficient [m2 year−1] 4000

First order decay constant λ [year−1] 0.0000028
Production constant λp [year−1] 0.079

Source decay constant λs [year−1] 0.0010028
Initial concentration of 238Pu [mg m3] 5 × 104

It is important to notice that in the proposed model the values of parameters λ and λs can be
completely independent.

A time of 100 years was taken into consideration [38–40].
Results of simulation involving Equations (60)–(62) are reported in Figures 1–3. Results of

simulation regarding Equations (67)–(69) are shown in Figures 4 and 5.
Figures 2 and 4 represent concentration profiles of U234 at x = 0 for Robin and Dirichlet boundary

conditions respectively. As it is possible to see, main difference is in the initial value at t = 0. It is
important to notice that the limit for t tending to zero of Equation (67) when x = 0, does not satisfy
boundary conditions: it is expected that concentration of U234 at x = 0 for t equal to zero equals g(0) for
Dirichlet boundary conditions, so the solution in Equation (67) is valid for all x > 0.

Figures 3 and 5 represent concentration of U234 at t = 100 years along x for the two models,
according to radionuclide decay. The profile computed under Robin boundary conditions reaches
a maximum in concentration at a certain x (Robin conditions well describe mass conservation)
while at the same t the solution computed under Dirichlet boundary conditions shows lower values
of concentration.
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Figure 1. Boundary condition.

Figure 2. Concentration profile at x = 0.

Figure 3. Concentration profile at t = 5110 [d].
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Figure 4. Concentration profile at x = 0.

Figure 5. Concentration profile at t = 5110 [d].

4. Conclusions

The contaminant transport in porous media has an important role in environmental engineering
science, hydrology, geology, and petroleum engineering. Despite the fact that the Advection-Dispersion
Equations describe the physical problem, it is difficult to derive analytical solutions if chemical
processes also take place. Analytical solutions are helpful for testing numerical models and for
screening level environmental risk assessment.

The 1D–model proposed in this paper and its analytical solution can be suitable to define tank or
pipeline failure, or pollution by DNAPLs (Dense NonAqueous Phase Liquids) or by radioactive
contaminants, because the source is described as a time dependent function with a combined
contaminant production-consumption, and moreover, it is given as a Robin boundary condition.
The comparison of the proposed solution with the closed form analytical solution obtained for a time
dependent production-decay source expressed as a Dirichlet boundary condition shows that the use of
the Dirichlet boundary condition can underestimate concentration profiles.

The analytical solution is consistent with previous ones, since it tends towards known solutions
for certain values of the parameters (limit cases) and it can be derived from a more general one for
some particular conditions at the source.
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Appendix A

Equation above gives the relationship between flux-averaged concentration Cf and
volume-average concentration Cr [32–34].

C f = Cr −
Dx

v
∂Cr

∂x
(A1)

In fact, by considering Equation (1) rewritten as:

R
∂Cr

∂t
= D

∂2Cr

∂x2 − v
∂Cr

∂x
− λCr +

D
v

∂

∂x

[
R

∂Cr

∂t
− D

∂2Cr

∂x2 + v
∂Cr

∂x
+ λCr

]
(A2)

Please note that the term in square brackets is zero.
By doing some passages we get:

R
∂Cr

∂t
= D

∂2Cr

∂x2 − v
∂Cr

∂x
− λCr +

D
v

∂

∂x

(
R

∂Cr

∂t

)
− D2

v
∂3Cr

∂x3 + D
∂2Cr

∂x2 +
Dλ

v
∂Cr

∂x
(A3)

R
∂

∂t

(
Cr −

D
v

∂Cr

∂x

)
= D

∂2Cr

∂x2 −
D2

v
∂3Cr

∂x3 − v
∂Cr

∂x
+ D

∂2Cr

∂x2 +
Dλ

v
∂Cr

∂x
− λCr (A4)

R
∂

∂t

(
Cr −

D
v

∂Cr

∂x

)
= D

∂2

∂x2

(
Cr −

D
v

∂Cr

∂x

)
− v

∂

∂x

(
Cr +

D
v

∂Cr

∂x

)
− λ

(
Cr −

D
v

∂Cr

∂x

)
(A5)

By substituting Equation (A1) in Equation (A5) we get the following expression that is identical
to Equation (1):

R
∂C f

∂t
= D

∂2C f

∂x2 − v
∂C f

∂x
− λC f (A6)

The substitution of Equation (A1) in third-type boundary conditions let passing to first-type
boundary conditions as follows:

By considering Equation (21):

−D
∂Cr(0, t)

∂x
+ vCr(0, t) = vg(t)

It follows from Equation (A1) that:

Cr = C f +
Dx

v
∂Cr

∂x
(A7)

By substituting Equation (A7) in Equation (6) we obtain:

C f (0, t) = g(t) (A8)

That is a first-type boundary condition in terms of flux-average concentration.
Finally, on the bases of the correlation between Cf and Cr that let to pass from third-type boundary

conditions to first-type boundary conditions, it is possible to derive directly the first-type solution
from the third-type solution and it will be consistent with mass conservation.
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By considering Equation (26), the equivalent solution for first boundary conditions is:

C f (x, t) = C0y(A(x, t) + B(x, t)) + C0E(x, t) +
Dx

v
(
C0y

(
A′(x, t) + B′(x, t)

)
+ C0E′(x, t)

)
(A9)

where:

A′(x, t) = 1
2 v2 exp(−tλ) exp( vx

Dx )
λDx3/2

 ver f c
(

1
2

tv+x√
Dxt

)
√

Dx
−

exp
(
− 1

4
(tv+x)2

Dxt

)
√

πt

+
v exp

(
1
2

x(u+v)
Dx

)
√

Dx(v−u)

 1
2
(u+v)er f c

(
1
2

tu+x√
Dxt

)
√

Dx
−

exp
(
− 1

4
(tu+x)2

Dxt

)
√

πt

+

+
v exp

(
1
2

x(v−u)
Dx

)
√

Dx(v+u)

 1
2
(v−u)er f c

(
− 1

2
tu−x√

Dxt

)
√

Dx
−

exp
(
− 1

4
(tu−x)2

Dxt

)
√

πt


A′(x, t) = 1

2 v2 exp(−tλ) exp( vx
Dx )

λDx3/2

 ver f c
(

1
2

tv+x√
Dxt

)
√

Dx
−

exp
(
− 1

4
(tv+x)2

Dxt

)
√

πt


+

v exp
(

1
2

x(u+v)
Dx

)
√

Dx(v−u)

 1
2
(u+v)er f c

(
1
2

tu+x√
Dxt

)
√

Dx
−

exp
(
− 1

4
(tu+x)2

Dxt

)
√

πt

+

+
v exp

(
1
2

x(v−u)
Dx

)
√

Dx(v+u)

 1
2
(v−u)er f c

(
− 1

2
tu−x√

Dxt

)
√

Dx
−

exp
(
− 1

4
(tu−x)2

Dxt

)
√

πt



(A10)

B′(x, t) = 1
2 v2 exp(−tλ) exp( vx

Dx )
Dx3/2(λ−λp)

 ver f c
(

1
2

tv+x√
Dxt

)
√

Dx
−

exp
(
− 1

4
(tv+x)2

Dxt

)
√

πt


+

v exp
(

1
2

x(v+w)
Dx

)
exp(−tλp)

√
Dx(v−w)

− 1
2
(v+w)er f c

(
1
2

tw+x√
Dxt

)
√

Dx
−

exp
(
− 1

4
(tw+x)2

Dxt

)
√

πt

+

+
v exp

(
1
2

x(v−w)
Dx

)
exp(−tλp)

√
Dx(v+w)

 1
2
(v−w)er f c

(
− 1

2
tw−x√

Dxt

)
√

Dx
−

exp
(
− 1

4
(tw−x)2

Dxt

)
√

πt


(A11)

E′(x, t) = 1
2 v2 exp(−tλ) exp( vx

Dx )
Dx3/2(λ−λs)

 ver f c
(

1
2

tv+x√
Dxt

)
√

Dx
−

exp
(
− 1

4
(tv+x)2

Dxt

)
√

πt

4

+
v exp

(
1
2

x(v+W)
Dx

)
exp(−tλs)

√
Dx(v−W)

− 1
2
(v+W)er f c

(
1
2

tW+x√
Dxt

)
√

Dx
−

exp
(
− 1

4
(tW+x)2

Dxt

)
√

πt

+

+
v exp

(
1
2

x(v−W)
Dx

)
exp(−tλs)

√
Dx(v+W)

 1
2
(v−W)er f c

(
− 1

2
tW−x√

Dxt

)
√

Dx
−

exp
(
− 1

4
(tW−x)2

Dxt

)
√

πt


(A12)

By doing some passages we obtain:

C f (x, t) = C0y
(

A(x, t) +
Dx

v
A′(x, t) + B(x, t) +

Dx

v
B′(x, t)

)
+ C0

(
E(x, t) +

Dx

v
E′(x, t)

)
(A13)

a(x, t) = A(x, t)− Dx

v
A′(x, t) (A14)

b(x, t) = B(x, t)− Dx

v
B′(x, t) (A15)

e(x, t) = E(x, t)− Dx

v
E′(x, t) (A16)
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