Supplementary material

Reconciling negative soil CO₂ fluxes: insights from a large-scale

experimental hillslope

Authors:

Alejandro Cueva^{1*}, Till H. M. Volkmann¹, Joost van Haren^{1,2}, Peter A. Troch^{1,3}, Laura K.

Meredith^{1,4}

Affiliations:

¹ University of Arizona, Biosphere 2, Tucson, AZ, USA

² University of Arizona, Honors College, Tucson, AZ, USA

³ University of Arizona, Department of Hydrology and Atmospheric Sciences, Tucson, AZ, USA

⁴ University of Arizona, School of Natural Resources and the Environment, Tucson, AZ, USA

*Corresponding author: Alejandro Cueva Email: <u>acueva@email.arizona.edu</u> Phone: +1 520-621-5318

Reference	Location	Ecosystem Type	Experiment type	Technique	Fs	MAP	MAT	pН
[1]	Lucky Hills, AZ, USA	Shrubland	Field	Bowen ratio		356	17	
[2]	McMurdo Dry Valleys, Antarctica	Cold desert	Field	Chamber	-0.1			9.14
[3]	Mojave Desert, USA	Desert	Field/FACE	Dome		150	20	
[3]	Baja California Peninsula, Mexico	Desert	Field	Eddy covariance		174	23.8	
[4]	Mojave Desert, USA	Desert	Field	Eddy covariance		149	15.4	
[5]	McMurdo Dry Valleys, Antarctica	Cold desert	Field/Lab	Chambers	-0.1	<100*		10.30
[6]	Gubantonggut Desert, China	Desert	Field	Chamber	-3.0	160	6.6	8.50
[7]	Junggar Basin, China	Desert	Field	Chamber	-0.24	105.3	8	8.40
[8]	Junngar basin, China	Shrubland	Field	Chamber	-0.1	105.3	8	8.52
[9]	Gurbantunggut Desert, China	Desert	Field	Chamber	-0.025	160	7	8.50
[10]	McMurdo Dry Valleys, Antarctica	Cold desert	Field	Chamber	-0.05	<50*		10
[11]	Gurbantunggut Desert, China	Desert	Lab		-0.5			6.00
[12]	Lucky Hills, AZ, USA	Shrubland	Field	Gradient method	-1.59	280		8.26
[13]	Gurbantunggut Desert, China	Desert	Field/Lab	Chamber	-0.42	160	7	8.2
[14]	McMurdo Dry Valleys, Antarctica	Cold desert	Field	Chamber	-0.08			
[15]	Railroad Valley, Nevada, USA	Desert	Field/Lab	Spectroscopy	-17.1	248	7.2	10.15
[16]	Ellesmere Island, Canada	Tundra	Field	Chamber	-0.03			8.2
[17]	Tarim, Manas, and Sangong river basins, China	Desert	Lab	Chamber	-1.9			
[18]	Gurbantunggut Desert, China	Desert	Field	Chamber	-1.2	144.7		10
[19]	Gurbantunggut Desert, China	Desert	Field/Lab	Chamber/Eddy Covariance		160	7	8.2

Supplementary Table 1. Studies reporting negative CO₂ fluxes and potential carbonate weathering

[20]	Makgadikgadi Basin, Botswana	Salt pan	Field	Chamber	-0.11	545		10.00
[23]	Mu Us Desert, China	Desert	Field	Chamber	-0.21	287	7.6	8.95
[24]	Mu Us Desert, China	Desert	Field	Chamber	-0.09	287	7	8.80
[25]	Qinghai-Tibet Plateau, China	Alpine meadow	Field	Chamber	-0.05	270	-5.3	
[26]	Mu Us Desert, China	Desert	Lab	Isotopes, chamber	-0.20	275	7.6	8.60
[27]	Mu Us Desert, China	Desert	Field	Chamber	-0.20	275	7.6	8.95
[28]	Keller Peninsula, Antarctica	Marine terrace	Field	Chamber	-0.21	400	-1	6.17
[29]	Gubantonggut Desert, China	Desert	Field	Chamber	-3.0	160	6.6	
[30]	Songnen Plain, China	Meadow steppe	Field	Chamber	-1.55	413.7	4	10.60
[31]	Gurbantunggut Desert, China	Desert	Lab	Chamber	-0.67	167	7	8.60
[32]	Mu Us Desert, China	Desert	Field	Chamber	-0.31	275	7.6	8.90
[33]	Gansu, China	Grassland	Field	Chamber	-0.04	382	6.7	8.60
[34]	Baja California Peninsula, Mexico	Desert	Field	Chamber	-0.06	156.6	23	7.45

 $Fs = maximum soil CO_2 efflux (\mu mol CO_2 m_2 s_{-1})$ found in the study; MAP = mean annual precipitation (mm); MAT = mean annual temperature (°C); FACE Free Air Concentration Enrichment experiment; *Reported as mm water equivalent.

Supplementary Figure 1. Schematic representation of Equation 9. J_L represents the gas transport between soil layers *L* and *L*+1, and J_{L-1} is the gas transport between soil layers *L*-1 and *L*, l_Z represents the thickness of the layer, $F_{S,L}$ is the individual soil layer gas flux, *Z* is (sensor) depth. This is a simple schematic representation and does not represent the actual installation of the sensors at the Landscape Evolution Observatory.

Bibliography

- 1. Emmerich, W.E. Carbon dioxide fluxes in a semiarid environment with high carbonate soils. *Agric. For. Meteorol.* **2003**, *116*, 91–102.
- Parsons, A.N.; Barrett, J.E.; Wall, D.H.; Virginia, R.A. Soil Carbon Dioxide Flux in Antarctic Dry Valley Ecosystems. *Ecosystems* 2004, 7, doi:10.1007/s10021-003-0132-1.
- Jasoni, R.L.; Smith, S.D.; Arnone, J.A. Net ecosystem CO2 exchange in Mojave Desert shrublands during the eighth year of exposure to elevated CO2. *Glob. Chang. Biol.* 2005, *11*, 749–756.
- 4. Wohlfahrt, G.; Fenstermaker, L.F.; Arnone, J.A., lii Large annual net ecosystem CO2uptake of a Mojave Desert ecosystem. *Glob. Chang. Biol.* **2008**, *14*, 1475–1487.
- 5. Ball, B.A.; Virginia, R.A.; Barrett, J.E.; Parsons, A.N.; Wall, D.H. Interactions between physical and biotic factors influence CO2 flux in Antarctic dry valley soils. *Soil Biol. Biochem.* **2009**, *41*, 1510–1517.
- 6. Xie, J.; Li, Y.; Zhai, C.; Li, C.; Lan, Z. CO2 absorption by alkaline soils and its implication to the global carbon cycle. *Environ. Geol.* **2008**, *56*, 953–961.
- 7. Zhang, L.; Chen, Y.; Li, W.; Zhao, R. Abiotic regulators of soil respiration in desert ecosystems. *Environ. Geol.* **2008**, *57*, 1855–1864.
- 8. Zhang, L.H.; Chen, Y.N.; Zhao, R.F.; Li, W.H. Significance of temperature and soil water content on soil respiration in three desert ecosystems in Northwest China. *J. Arid Environ.* **2010**, *74*, 1200–1211.
- 9. Ma, J.; Zheng, X.-J.; Li, Y. The response of CO2flux to rain pulses at a saline desert. *Hydrol. Process.* **2012**, *26*, 4029–4037.
- 10. Shanhun, F.L.; Almond, P.C.; Clough, T.J.; Smith, C.M.S. Abiotic processes dominate CO2 fluxes in Antarctic soils. *Soil Biol. Biochem.* **2012**, *53*, 99–111.
- 11. Chen, X.; Wang, W.-F.; Luo, G.-P.; Li, L.-H.; Li, Y. Time lag between carbon dioxide influx to and efflux from bare saline-alkali soil detected by the explicit partitioning and reconciling of soil CO2 flux. *Stoch. Environ. Res. Risk Assess.* **2012**, *27*, 737–745.
- 12. Hamerlynck, E.P.; Scott, R.L.; Sánchez-Cañete, E.P.; Barron-Gafford, G.A. Nocturnal soil CO2uptake and its relationship to subsurface soil and ecosystem carbon fluxes in a Chihuahuan Desert shrubland. *Journal of Geophysical Research: Biogeosciences* **2013**, *118*, 1593–1603.
- 13. Ma, J.; Wang, Z.-Y.; Stevenson, B.A.; Zheng, X.-J.; Li, Y. An inorganic CO2 diffusion and dissolution process explains negative CO2 fluxes in saline/alkaline soils. *Sci. Rep.* **2013**, *3*, 2025.
- 14. Risk, D.; Lee, C.K.; MacIntyre, C.; Craig Cary, S. First year-round record of Antarctic Dry Valley soil CO2 flux. *Soil Biol. Biochem.* **2013**, *66*, 193–196.
- Yates, E.L.; Detweiler, A.M.; Iraci, L.T.; Bebout, B.M.; McKay, C.P.; Schiro, K.; Sheffner, E.J.; Kelley, C.A.; Tadić, J.M.; Loewenstein, M. Assessing the role of alkaline soils on the carbon cycle at a playa site. *Environ. Earth Sci.* 2012, *70*, 1047–1056.
- 16. Brummell, M.E.; Farrell, R.E.; Hardy, S.P.; Siciliano, S.D. Greenhouse gas production and consumption in High Arctic deserts. *Soil Biol. Biochem.* **2014**, *68*, 158–165.
- 17. Chen, X.; Wang, W.; Luo, G.; Ye, H. Can soil respiration estimate neglect the contribution of abiotic exchange? *J. Arid Land* **2013**, *6*, 129–135.
- 18. Chen, X.; Wang, W.F. On the apparent CO₂ absorption by alkaline soils. *Biogeosci. Discuss.* **2014**, *11*, 2665–2683.
- 19. Ma, J.; Liu, R.; Tang, L.-S.; Lan, Z.-D.; Li, Y. A downward CO₂ flux seems to have nowhere to go. *Biogeosci. Discuss.* **2014**, *11*, 10419–10450.
- Thomas, A.D.; Dougill, A.J.; Elliott, D.R.; Mairs, H. Seasonal differences in soil CO2 efflux and carbon storage in Ntwetwe Pan, Makgadikgadi Basin, Botswana. *Geoderma* 2014, *219-220*, 72–81.
- 21. Wang, W.; Chen, X.; Luo, G.; Li, L. Modeling the contribution of abiotic exchange to CO2 flux in alkaline soils of arid areas. *J. Arid Land* **2013**, *6*, 27–36.
- 22. Zhou, X.; Zhang, Y. Seasonal pattern of soil respiration and gradual changing effects of

nitrogen addition in a soil of the Gurbantunggut Desert, northwestern China. *Atmos. Environ.* **2014**, *85*, 187–194.

- Fa, K.-Y.; Liu, J.-B.; Zhang, Y.-Q.; Wu, B.; Qin, S.-G.; Feng, W.; Lai, Z.-R. CO2absorption of sandy soil induced by rainfall pulses in a desert ecosystem. *Hydrol. Process.* 2014, 29, 2043–2051.
- 24. Liu, J.; Feng, W.; Zhang, Y.; Jia, X.; Wu, B.; Qin, S.; Fa, K.; Lai, Z. Abiotic CO2 exchange between soil and atmosphere and its response to temperature. *Environ. Earth Sci.* **2014**, *73*, 2463–2471.
- 25. Zhang, T.; Wang, G.; Yang, Y.; Mao, T.; Chen, X. Non-growing season soil CO2 flux and its contribution to annual soil CO2 emissions in two typical grasslands in the permafrost region of the Qinghai-Tibet Plateau. *Eur. J. Soil Biol.* **2015**, *71*, 45–52.
- 26. Fa, K.; Liu, Z.; Zhang, Y.; Qin, S.; Wu, B.; Liu, J. Abiotic carbonate dissolution traps carbon in a semiarid desert. *Sci. Rep.* **2016**, *6*, doi:10.1038/srep23570.
- 27. Fa, K.-Y.; Zhang, Y.-Q.; Wu, B.; Qin, S.-G.; Liu, Z.; She, W.-W. Patterns and possible mechanisms of soil CO2 uptake in sandy soil. *Sci. Total Environ.* **2016**, *544*, 587–594.
- 28. Thomazini, A.; Francelino, M.R.; Pereira, A.B.; Schünemann, A.L.; Mendonça, E.S.; Almeida, P.H.A.; Schaefer, C.E.G.R. Geospatial variability of soil CO2-C exchange in the main terrestrial ecosystems of Keller Peninsula, Maritime Antarctica. *Sci. Total Environ.* **2016**, *56*2, 802–811.
- 29. Wang, W.; Chen, X.; Zheng, H.; Yu, R.; Qian, J.; Zhang, Y.; Yu, J. Soil CO2 Uptake in Deserts and Its Implications to the Groundwater Environment. *Water* **2016**, *8*, 379.
- 30. Yu, X.; Li, X.; Xu, L.; Wang, M.; Zhang, J.; Jiang, M.; Wang, G. Diurnal variation of soil CO2 efflux and its optimal measuring time-window of temperate meadow steppes in western Songnen Plain, China. *Chin. Geogr. Sci.* **2016**, *26*, 518–526.
- 31. Ma, J.; Liu, R.; Li, Y. Abiotic contribution to total soil CO2 flux across a broad range of land-cover types in a desert region. *J. Arid Land* **2016**, *9*, 13–26.
- 32. Fa, K.; Zhang, Y.; Lei, G.; Wu, B.; Qin, S.; Liu, J.; Feng, W.; Lai, Z. Underestimation of soil respiration in a desert ecosystem. *Catena* **2018**, *16*2, 23–28.
- 33. Li, X.; Guo, D.; Zhang, C.; Niu, D.; Fu, H.; Wan, C. Contribution of root respiration to total soil respiration in a semi-arid grassland on the Loess Plateau, China. *Sci. Total Environ.* **2018**, *627*, 1209–1217.
- 34. Ayala-Niño, F.; Maya-Delgado, Y.; Troyo-Diéguez, E. Almacenamiento y flujo de carbono en suelos áridos como servicio ambiental: Un ejemplo en el noroeste de México. *REVISTA TERRA LATINOAMERICANA* **2018**, *36*, 93.