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Abstract: This study focused on demonstrating the use of a self-organizing map (SOM) algorithm to
elucidate patterns among variables in simulated syngas combustion. The work was implemented
in two stages: (1) modelling and simulation of syngas combustion under various feed composition
and reactor temperature implemented in AspenPlusTM chemical process simulation software,
and (2) pattern recognition among variables using SOM algorithm implemented in MATLAB.
The varied levels of feed syngas composition and reactor temperature was randomly sampled
from uniform distributions using the Morris screening technique creating four thousand eight
hundred simulation conditions implemented in the process simulation which consequently produced
a multivariate dataset used in the SOM analysis. Results show that cylindrical SOM topology models
the dataset at lower quantization error and topographic error as compared to the rectangular SOM
topology indicating suitability of the former for variables pattern elucidation for the simulated
combustion. Nonetheless, the variables pattern between component planes from rectangular SOM
(9 × 28 grid) and those from cylindrical SOM (9 × 28 grid) are almost similar, indicating that either
rectangular or cylindrical architectures may be used for variables pattern analysis. The component
planes of process variables from trained SOM are a convenient visualization of the trends across all
process variables.
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1. Introduction

Like many traditional and emerging technologies on energy and materials use, syngas production
and combustion has been among those actively evaluated for cleaner implementation in pilot scale
and industrial scale [1]. Syngas (short for ‘synthesis gas’) is typically produced through gasification of
many resources such as natural gas, coal and biomass by reaction with steam or oxygen [2]. Syngas
have been studied for their chemistry and physics resulting in some established literature on reaction
mechanisms, reaction kinetic parameters, etc., of which some, in the form of simulations of system
performance, have been used to give insight into the possible design and operation considerations [3,4].
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Chemical process simulators (such as AspenPlus, CHEMCAD, and COMSOL Multiphysics) have been
instrumental not just in training but also in the practice of chemical process design and operation [5].
Most of these simulators have extensive property databanks and they allow rigorous material and
energy balance calculations for modeling complex process plants [6]. These features make process
simulators key tools in performing system-oriented analysis, which is the root of the modern process
design paradigm [7]. This work aims to demonstrate that systems analysis with process simulators may
be enhanced through the use of machine learning algorithms that extract patterns within multivariate
datasets of simulations. Specifically, this work implements self-organizing map (SOM) techniques to
elucidate patterns among variables in a simulated syngas combustion modeled in AspenPlus™.

SOMs, which are also called Kohonen networks due to the original proponent [8–10], are derivatives
of artificial neural network (ANN) algorithms with applications in data visualization, feature extraction,
clustering, and supervised classification [11,12]. These applications leverage on SOMs’ efficiency in
discovering patterns in high-dimensional multivariate data through projections onto low dimensions
such as 2D hence their designation as ‘maps’ [12,13]. In essence, an SOM defines an ‘elastic net’
of neuron nodes that are fitted to the input data space to approximate its density function in a
topologically ordered mapping [8]. The process by which such mappings are formed is the SOM
algorithm schematically depicted in Figure 1. So far, SOM is one of two ANNs executing competitive
learning, a form of unsupervised learning which allows for specialization of each neuron in the network
that ultimately becomes a feature-discovering tool for high-dimensional data [14]. The unsupervised
learning nature of SOM also means that it does not require model calibration towards a target response
such as those in regression.
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Figure 1. Schematic of basic sequential learning SOM applied to a dataset X: (a) two-dimensional
SOM modelling a n-dimensional (ξ1, . . . , ξn) input data vector x j onto a hexagonal lattice sheet map
of neurons with associated weight vectors such as mi in neuron i including the best-matching unit
(BMU) c with associated weight vector mc; (b) x j is projected to all the weight-initialized neurons
in the grid to determine the BMU, in this case neuron c, to initiate the learning process; and (c) the
weight vectors mi of the BMU and the neighboring neurons are updated to move the active neurons in
the BMU neighborhood closer to x j in a recursive manner. SOM trains until neuron weight vectors
asymptotically converge on all samples in X.
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The following are some of the areas of application for SOM: minmax objective for multirobot-
multigoal path planning [15]; graph-mining for economic measures [16]; social interactions [17];
fault diagnosis [8,18]; various clustering tasks [8,19,20]; various classification tasks [8,21]; speech
recognition [8]; image simplification of atmospheric data [22] for cloud detection and land cover
mapping [23]. The potential of SOM as a tool in chemical process systems has been claimed by Simula
and Kangas [24] around two decades ago, and they based their idea on the topology-preserving
property of SOM. Liukkonen, Hiltunen [25] used SOM to diagnose the various states of a utility-scale
fluidized bed combustion process. Muñoz, Martín-Torre [26] used SOM to extract patterns and cluster
dataset on the element release from sediments in contact with acidified seawater conducted via
laboratory leaching tests. Ganhadeiro, Christo [27] used SOM to analyze electric energy distribution
systems. Li, Du [28] used SOM as a process monitoring computational tool on the Tennessee Eastman
chemical process. However, a survey of the current literature indicates that, presently, there is no work
on the use of SOM as a data analytics tool in chemical process simulators. Hence, this work aims
to demonstrate the potential SOM to elucidate patterns in multivariate datasets of chemical process
simulators to aide in the study and clean implementation of alternative technologies such syngas.

2. Methodology

The work was implemented in two stages (Figure 2): (1) modelling and simulation of syngas
combustion under various feed composition and reactor temperature implemented in AspenPlusTM

chemical process simulation software, and (2) pattern recognition among variables using SOM algorithm
implemented in MATLAB. For definitions of symbols, refer to the Nomenclature.
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Figure 2. Schematic overview of using SOM as variables pattern recognition in simulated chemical
processes. X is the set of all simulation variables values (ξn n ∈ [1 : N]) collected from each simulation
run (x j, j ∈ [1 : J]) and used as input dataset into SOM.

2.1. Process Kinetics Simulation

The AspenPlus chemical process kinetics simulation model (Figure 3) consisted of a mixing unit
and a combustion reactor modeled as a plug-flow reactor (PFR) under adiabatic condition, which is a
common model for syngas combustion [3]. The PFR was sized according to previous works [29] with
0.381 m internal diameter and 5.90 m total length. The thermodynamic properties were calculated
through the Soave-Redlich-Kwong (SRK) equation of state as implemented by AspenPlus V10.
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Figure 3. Process flow diagram of the simulated syngas combustion with AspenPlus using a plug-flow
reactor (PFR) under adiabatic condition.

The reaction kinetics were modeled in power-law form and the reaction constant, kb, was modeled
in Arrhenius law form to account for the effect of reactor temperature on the reaction constant.
These reaction mechanism and parameters used in the PFR (Table 1) were based on the works of
Khan, DeJong [30] and J. De Kam, V. Morey [3]. The feed gas component mole fraction y0,a of
the syngas, and the reactor temperature, hence the exhaust temperature, were varied according to
the Morris sampling technique [31,32]. The Morris sampling technique, which is typically used
in global sensitivity analysis, randomly samples [r(k + 1)] combinations of the k variables with
corresponding sets of lower bound and upper bound levels (see Table 2), where r is the number of
increments within the sampling bounds for each variable. In this work, the variables are the six
feed gas components and the reactor temperature, which makes k = 7. Based on previous works
implementing the Morris sampling technique, a conservative level of r was set r = 200. To ensure
the combinations of variable levels randomly covered a wide region of the design space, the Morris
sampling was performed using 3 random seed generators. Hence, the total number of simulation
runs was 3 × [200(7 + 1)] = 4800. The Morris random sampling was implemented in R-statistical
software using the ‘sensitivity’ R-package. See the Supplementary Information for the summary of
4800 simulation conditions, and the accompanying R-script used in implementing Morris sampling on
the variables.

Table 1. Syngas combustion key reaction steps, rate law expression, and reaction constant parameter as
function of temperature T implemented in the PFR.

Reaction Rate Expression Reaction Constant Parameter

1 CH4 + 1.5O2 → CO + 2H2O r1,CO = k1CCH4C0.8
O2 k1 = 1.547× 108 exp(−15098/T)

2 CO + 0.5O2 → CO2 r2,CO2 = k2CCOC0.5
O2C0.5

H2O k2 = 1.585× 1010 exp(−24157/T)

3 H2 + 0.5O2 → H2O r3,H2O = k3C0.1
H2CO2 k3 = 1.631× 109 exp(−3420/T)

Table 2. Variables sampling bounds (minimum and maximum), median, and average values through
the Morris sampling technique.

Variables: y0,H2(%) y0,CO(%) y0,CH4(%) y0,CO2(%) y0,N2(%) y0,H2O(%) Treact(K)

Minimum: 4.65 12.03 0.00 0.84 0.11 0.05 1000
Maximum: 59.30 67.59 15.10 38.95 54.26 43.43 1500

Median: 25.55 28.02 2.93 11.24 18.10 14.62 1263
Average: 24.91 28.66 2.98 11.33 17.75 14.38 1256

Setting the PFR at a constant temperature allowed for the determination of heat duty supplied by
(−) or to (+) the reactor. Table 2 summarizes the sampling bounds (minimum and maximum), median,
and average values of the variables. The range (lower-bound and upper-bound) of values used for
Morris sampling on the 7 variables in Table 2 were based on the work of McDonell [33] on syngas from
coal, and of Martínez, Mahkamov [4] on syngas from biomass. The feed syngas enters the PFR at 486 K
and 1 atm at a steady rate total molar flow rate of 5.58 kmol/hr based on previous works [29]. Pure
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oxygen was assumed to be mixed with the syngas going to the PFR and was supplied at 5% excess,
based on Martínez, Mahkamov [4], calculated for each reactant composition.

2.2. Variables Pattern Recognition via SOM

The SOM computational works in the study were implemented through MATLAB
(by MathWorks®) with program codes built on functions from the public-domain add-in SOM Toolbox
version 2.0 (available for download at http://www.cis.hut.fi/somtoolbox/) developed and maintained by
the Laboratory of Computer and Information Science at Helsinki University of Technology in Finland,
where Kohonen [8] and associates conducted many of the works on SOM. This toolbox has been
designed to accompany the SOM literature material by Kohonen [8], and it has been used and tested in
several research works. In addition to the script-embedded documentation on the use of the SOM
Toolbox, literature explaining some of the main features of code-functions and usage with the Toolbox
has been published previously [34,35]. Following are the key components of the SOM implementation
in the software. The program scripts used in the study are summarized in the Supplementary Material.

2.2.1. Data Pre- and Post-Processing

The simulation variables used for SOM training are the following (16 variables): heat duty
(Q); mole fractions of syngas components (y0,a’s): H2, CO, CH4, CO2, N2, H2O; feed O2 (at 5%
excess); reactor temperature (Treactor), total molar flow of outlet stream; mole fractions of outlet stream
components (ya’s): CO, CH4, CO2, N2, H2O, and O2. These variables are typical analysis variables in
chemical reactors, specifically in syngas combustion. The datasets from the AspenPlus simulation runs
were summarized in spreadsheets. Then in MATLAB, the variables were scaled through normalization
to treat the variables that were equally important, i.e., eliminate dominance of high-value variables in
the mapping [35]. For post-processing after SOM training, the values (as weight vectors at the end of
SOM training) were de-normalized to original scale to aid the meaningful interpretation of results [34].

2.2.2. Lattice Structure, Map Shape, and Size

The lattice structure may be rectangular or hexagonal. Hexagonal (see Figure 1) was preferred
because it does not favor horizontal and vertical directions as much as the rectangular array [8].
The global map shape may be a 2D sheet, a cylinder, or a toroid [34]. Though the projection 2D sheet
map has been found to be sufficiently effective in capturing patterns from the original high-dimensional
dataset [10], this study evaluated both the 2D sheet and cylinder projections. The sheet map must
be elongated, i.e., length > width, to attain a stable orientation as the learning process proceeds [8].
The total number of neurons should be at most 5

√
n× S, where n is the number of variables used for

SOM training (i.e., ξ1, . . . , ξn) and S is the number of samples [35,36] or simulation runs in this work
(4800 simulation runs).

2.2.3. SOM Initialization and Training

The SOM Toolbox uses Euclidean metric for vectorial distance calculations: c = argmini
{
x j −mi

}
.

The c-index neuron is the BMU with weight vector mc, which will be the first neuron to ‘learn’. This step
implements the competitive learning nature of SOM. Initialization of weight vectors was linear and
training was batch learning. Initialization and training were done in two stages: (1) rough—large radius
of neighborhood kernel and fast learning rate, and (2) fine-tuning—small radius of neighborhood
kernel and slow learning rate. These were the default parameters in the Toolbox, and the default
models were Gaussian model for the neighborhood function hci(t), and reciprocally decreasing learning
rate α(t) (see Supplementary Material for model forms) [34,35].

As an unsupervised learning algorithm, a specific SOM is not amenable to evaluation of the ‘best
fit’ of a particular SOM architecture to the dataset. However, two parameters are typically used to
measure the performance of SOM mapping on data—(1) quantization error (Qe), and (2) topographic

http://www.cis.hut.fi/somtoolbox/
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error (Te) [35]. Qe is the average distance between each data vector and its BMU and it measures
map resolution. Te is the proportion of all data vectors for which first and second BMUs are not
adjacent units and it measures topology preservation. Pölzlbauer [37] found that these two measures
of quality of SOM were found to be inversely proportional when map sizes are large. To establish
a measure of map quality, each Qe and Te were normalized within their respective range of values
and the normalized Qe and Te (nQe and nTe) were added, i.e., sum(nQe,nTe). Hence, the map sizes
that minimize sum(nQe,nTe) would indicate a good compromise of the quantization and topographic
errors of an SOM model.

3. Results

The collected data from process simulations are summarized as Supplementary Information
(see the Supplementary Information). Of interest for discussion are the outputs of SOM trained on the
process simulation dataset.

3.1. SOM Architecture

Many possible combinations of size and shape may be specified to create an SOM architecture
to map a dataset. When the formula for the number of neurons (size) 5

√
n× S is used with n = 16

and S = 4800, the size of the SOM should be 1386 neurons. With this SOM size, the resulting sets
of U-matrix produced random patterns instead of the hypothesized organized patterns on the maps
(see Supplementary Material showing 47 × 28 rectangular SOM grid). Based on the findings of
Kohonen [10], it is not possible to determine the exact size of the SOM beforehand, and that it must
be determined by trial-and-error. Hence, using the U-matrix as indicator for patterns in the SOM,
a trial-and-error analysis of the number of neurons was done and it was found that organized patterns
emerge if the n is reduced down to the number of variables originally varied through Morris sampling,
i.e., n = 7, and if the formula for size is changed to 2

√
n× S, which is consistent with the proposed

mathematical form to estimate SOM size [38]. Consequently, a working maximum neuron size of
2
√

7× 4800 = 367 was used (a graphical comparison of U-matrix between a 9 × 28 rectangular grid
and a 47 × 28 rectangular grid is shown in the electronic Supplementary Material).

The sum of the normalized Qe and normalized Te is summarized in Figure 4 for the rectangular
SOM (Figures 4 and 5) and in Figure 6 for the cylindrical SOM (Figures 6 and 7). The sum of errors
(Figures 4 and 6) have been compared with one of the response variables—heat duty—to examine the
trends of mapping performance with varying SOM size and shape. Frequency distribution plots of the
16 variables are summarized in the supporting information (see Supplementary Material). The range
of Heat Duty values in this study is from negative to positive (minimum: −17,497 cal/sec to maximum:
42,498 cal/sec; median: 14,690 cal/sec; mean: 15,138 cal/sec). The lowest nominal value of the head
duty at a neuron center was noted for each SOM architecture used for mapping. The closer the heat
duty nominal value at a neuron center to the minimum value in the data set (−17,497 cal/sec) would
indicate a good mapping of the data. The lower bound heat duty observed on a neuron for each
architecture was summarized in Figures 5 and 7. In the chemical system, negative heat duty indicates
an exothermic process, while positive heat duty indicates an endothermic process.

Comparing Figures 4 and 5 for the rectangular SOM, the size and shape of SOM that minimizes
the sum of errors (8 × 9 and 8 × 10 grids) (Figure 4) does not overlay well with the size and shape of
SOM that renders heat duty value closest to the lower bound value (example: 8 × 22 to 8 × 29 grids,
or 10 × 22 to 10 × 28 grids) (Figure 5). For the cylindrical SOM, on the other hand, the sizes and shapes
of SOM that minimizes the sum of errors (Figure 6) overlay well with sizes and shapes that render heat
duty value closest to the lower bound value (example: 9 × 28 grid, or 10 × 28 grid) (Figure 7).
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3.2. Syngas Combustion Variables Pattern

From the evaluation of the SOM architecture’s effect on the mapping performance of the simulated
syngas combustion dataset (Section 3.1), one SOM architecture in the rectangular (9 × 28 hexagonal)
grid and one architecture in the cylindrical (9 × 28 hexagonal) grid were used to render the patterns in
the simulated variables. Figures 8 and 9 summarize the variables pattern from the trained rectangular
SOM and cylindrical SOM, respectively. One of the advantages of using SOM for pattern extraction in
multivariate data becomes apparent in these surface renderings. As graphically illustrated in Figure 1,
each SOM neuron after training contains the quantized values of all the attributes (variables). When the
quantized values are rendered as surface maps with each attribute having its own map (also called
component plane), the maps of all the attributes may then be compared for pattern analysis. The black
dots in the surface maps in Figures 8 and 9 indicate the neurons of the SOM. A neuron (black dot) on
a specific row and column index in one component plane is the same neuron in another component
plane of the same row and column index. In other words, component plane rendering is like ‘slicing’
a trained SOM into its various variables. This then may make the comparison of variables pattern
a visual technique, which may be more advantageous over numerical measures such as variables
correlation [12].
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Figure 8. Surface projection of the system variables modelled through rectangular SOM consists of
neurons in hexagonal pattern of nine grid rows × 28 grid columns. (a) process heat duty (cal/sec);
(b–h) mole fraction of chemical species in the feed; (i) reactor temperature; (j) total molar out flow from
reactor; (k–p) mole fraction of chemical species in the reactor outflow stream.
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Figure 9. Surface projection of the system variables modelled through cylindrical SOM consists of
neurons in hexagonal pattern of nine grid rows x 28 grid columns. (a) Process heat duty (cal/sec);
(b–h) mole fraction of chemical species in the feed; (i) reactor temperature; (j) total molar out flow from
reactor; (k–p) mole fraction of chemical species in the reactor outflow stream.

In general, the variable patterns via component planes from the rectangular SOM (Figure 8) are
almost of the same variables pattern from the cylindrical SOM (Figure 9). This shows that either
rectangular SOM (9 × 28 grid) or cylindrical SOM (9 × 28 grid) may be used to analyze the relationships
among variables. A variable pattern of interest for clean technologies is the use of syngas for exothermic
process (negative heat duty) that produces lesser harmful emissions [1]. In both rectangular and
cylindrical SOM results, the heat duty (Figures 8a and 9a) approaches negative values (exothermic)
when the mole fraction of H2 in the syngas (Figures 8b and 9b) increases while at the same time, the
mole fraction of CO and CH4 decreases (Figures 8c,d and 9c,d). Interestingly, the reactor temperature
(Figures 8i and 9i) does not seem to show any definite inverse or direct relationship with the heat duty
(Figures 8a and 9a). The mole fraction of CO in the outflow stream (Figures 8k and 9k) does not seem
to vary so much from the mole fraction of CO in the feed syngas (Figures 8c and 9c). This may be due
to the high activation energy for the decomposition of CO to CO2 (reaction 2 in Table 1), which requires
higher reaction temperatures to increase the reaction constant. The H2 gas in syngas supplied in all the
runs was completely consumed; hence, no component plane for H2 was rendered.
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4. Discussion

SOM has been finding applications in areas beyond the original problems it was intended for
in the 1970s and 1980s—speech recognition with the inherent tasks of clustering, visualization, and
abstraction [8]. The unprecedented efforts in SOM research and applications in recent decades may
indicate the growing realization of the potential of SOM as a computational tool in broader spectra.
Nonetheless, current literature does not show applications of SOM in the area of computer-based
simulations of chemical systems.

Simulation-based analysis of technologies aimed at clean implementation has been gaining interest,
owing to the availability of computational tools. Syngas combustion has been a case study of many
modelling-simulation analyses due to the rigorous models [39] and availability of empirically estimated
model parameter values [40,41]. Inherent to the use of rigorous models is the task of dealing with
multivariate datasets arising from chemical simulations of the process. This paper demonstrates the
use of a proven machine learning algorithm—SOM—in aiding the analysis of patterns in multivariate
dynamical systems such as syngas combustion. This technique is proposed to be a data analytics tool
in studies that require evaluation of the effects of varying variables or variables that may naturally
fluctuate within certain ranges, and that a set of process conditions must be identified for design
and operation of the system. For example, the composition of the syngas was found by Kousheshi,
Yari [40] to significantly affect the performance of the reactivity controlled compression ignition (RCCI)
syngas/diesel engine. Moreover, the composition of syngas from the gasification of natural gas, coal,
or biomass typically varies with H2 as the main component followed by CO, CO2 and CH4 [2].

As shown in Figures 4–7, both rectangular and cylindrical SOMs may be designed to map the
original dataset, while both topographic error and quantization error are minimized. The importance of
properly designed SOM (size, shape, lattice structure, etc.) is apparent in these results (Figures 5 and 7).
The quantization of the dataset via each neuron centroid may result to aggregation of data that may
not closely map the original dataset. Selecting the lower-bound value of the heat duty (minimum:
−17,497 cal/sec) as an analysis variable on this aspect revealed that certain sizes and shapes of SOM
result to neurons centroids that are close to the reference value (−17,497) (upper right portion of
Figures 5 and 7), while other SOM architectures produce neuron centroids far from the reference
value (lower left portion of Figures 5 and 7). Another SOM design consideration that was already
accounted for during the planning of the simulation experiment is the need for a sufficient number of
data [8,10], which usually means a large amount of data. This requirement, however, is easily addressed
in computer simulation-based works as up-to-date computers are fast enough to run multitudes of
chemical process simulations through advanced methods such as parallel computation, for solving
large scale equation-oriented models [42]. Further, the 4800 simulation runs in AspenPlus in this work
were performed within a couple of days, most of which was spent organizing the data into the data
summary spreadsheets and less time on each simulation run, which took less than a minute each on
a laptop computer. The results of properly designed and trained SOMs (Figures 8 and 9) may then
be used to render the component planes as surface plots. These component plane surfaces (Figures 8
and 9) are 2D visualizations of the originally multi-dimensional dataset. These 2D maps preserve the
relationship of all the variables as they are the various attributes of a fixed set of neurons on the SOM.
Hence, comparison of the multivariate patterns becomes a task of comparing the surface plot levels of
the various variables on a particular area of the maps, since the same portion of each component plane
pertains to the same set of neurons ‘sliced’ to render the component planes. This dimension reduction
(usually to 2D) while preserving the variables relations in the original dataset is one of the strengths of
SOM [10,43,44].

This demonstration of the use SOM for the patterns analysis of multivariate datasets from chemical
process simulation aims to lay down the potential of SOM algorithm in improving the data analytics of
simulation-based works on clean technologies such as syngas. Numerous possible similar applications
are foreseen: integration of SOM algorithm in chemical simulation packages such AspenPlus, COMSOL
MultiPhysics, etc.; application in other simulation-heavy areas such as computational fluid dynamics;
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mining of material properties suitable for clean technology implementation; the visualization of the
variable patterns of traditional systems, such as the operational variables of wastewater treatment
facilities. The introduction of machine learning algorithms such as SOM into the methodology of
developing and implementing traditional and emerging technologies may be one of the key paths to
realizing clean technology implementation.
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for the SOM computations, (4) R-script on Morris sampling technique for the seven variables (y0,a’s and Treactor),
(5) summary of the 4800 simulation run conditions (y0,a’s and Treactor), (6) comparison of U-matrix between
9 × 28 rectangular grid and 47 × 28 rectangular grid, and (7) frequency distribution of the 16 variables used for
SOM training.
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Nomenclature

ANN artificial neural network
Ca chemical species a concentration, mol/m3

rb,a rate of generation (+) or consumption (−) of a in reaction step b, mol/m3/s
kb reaction constant parameter in reaction b
Treact reaction temperature, degree K
ya gas-phase mole fraction of chemical species a at reactor exhaust, %
y0,a gas-phase mole fraction of chemical species a in the syngas feed, %
BMU best-matching unit neuron in the SOM grid
X SOM input dataset of dimension J × N
ξn nth feature variable of the SOM input dataset X, n ∈ [1 : N]

xj jth observation vector in the SOM input dataset X, j ∈ [1 : J]
mi weight vector of ith neuron in the SOM grid
PFR plug-flow reactor
SOM self-organizing map
Te topographic error of trained SOM
Qe quantization error of trained SOM
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