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Abstract: This paper presents a data envelopment analysis (DEA) approach to benchmark a group
of wind farm (WF) projects in Greece by employing a series two-stage structure. In the first stage,
the investment performance of projects is evaluated using contract data and site wind conditions,
though in the second stage the WF operational efficiency is evaluated using data on production inputs
and output. Inefficiency occurs in both the construction and operating stages, but the construction
process appears to be more inefficient relative to the operating phase. Moreover, WF size is related
to operating efficiency and sensitivity analysis results identify wind speed and WF installation
capacity as the factors that affect the investment performance and operational efficiency, respectively.
The proposed approach is an addition to the existing literature and it can be used by managers and
facility operators.

Keywords: data envelopment analysis; wind energy; wind farm projects; power sector

1. Introduction

Renewable energy production has been increased rapidly over the last few years and wind energy
production has made an important contribution to this development [1]. Wind energy is produced by
onshore or offshore wind farms (WFs) that are groups of wind turbines (WTs) located in the same place.
Wind energy is deemed a mature and cost-competitive source of electricity production in Europe that
contributes to the security and sustainability of the energy system [2]. Europe installed 15.4 GW (13.2 GW
in the EU) of new wind power capacity (mainly onshore WFs) in 2019 and reached 205 GW of wind
energy cumulative capacity; wind energy accounted for 15% of the electricity consumption in the EU-28 in
2019. In Greece the new onshore installations in 2019 were about 0.7 GW, whereas the cumulative onshore
installed capacity reached about 3.6 GW; the percentage of the electricity demand covered by wind energy
in 2019 was 12%. According to data on fourteen countries the average power rating of onshore turbines in
Europe is 3.1 MW, whereas in Greece the average power rating is 2.3 MW [3].

A WT’s efficiency evaluation can be carried out using [4]: (i) the annual energy output (AEP), (ii)
the power curve, and (iii) the power coefficient. To measure a WT’s productive efficiency as the ratio of
current performance to best performance, a benchmark is required that represents the best performance
attainable. The use of AEP is inappropriate because wind conditions influence power production,
and it is difficult to adjust these conditions to comparable levels in real applications. In addition,
power curve and power coefficient are both average output metrics, and are thus not deemed suitable.
The shortcomings of the above metrics have driven researchers to look for benchmarks in the field
of production economics [4]. The measurement of efficiency is focused on estimating a production
function using input and output data for a set of production units which may be WTs or WFs in the
context of wind energy.

The productive efficiency of wind energy facilities is dependent on wind conditions, i.e., wind
speed and wind power density at the production site, and other factors such as implantation and
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generation costs, and turbine productivity. Except for the above factors, profitability is determined by
also taking into account the energy prices. Investments in WFs may attain high returns on investments
because, in many countries, producers can take advantage of the above market guaranteed wind
energy price. It is evident that production inefficiency can reduce the profitability of WFs, thus the
measurement of productive efficiency is essential [1].

Competitive approaches are used to assess the performance of WF projects such as the parametric
stochastic frontier analysis (SFA) [5,6] and the non-parametric data envelopment analysis (DEA) [7].
SFA includes the selection of a functional type for production or cost frontier function, estimated
econometrically, using two error term components, namely statistical noise and inefficiency. The normal
and half-normal assumptions for noise and inefficiency are usually made for these terms, respectively.

In frontier efficiency analysis, given a group of j (= 1, . . . , n) observations on homogeneous entities
that generate one output y using a vector of m inputs xj = (x1, . . . , xm) Equations (1) and (2), respectively
are assumed to provide frontier and observed production function [8]:

y f = f (x1, . . . , xm) (1)

y = f (x1, . . . , xm) + ε (2)

where, f (x1, . . . , xm) is the deterministic component and ε is an error term.
Different distributional assumptions set on ε that represent deviations from the frontier lead to

different models [8]: (i) If ε ≤ 0 such that yf
≥ y for all observations, then the frontier is deterministic

and DEA can be used. (ii) If ε is a two-error term of noise and inefficiency then the frontier is stochastic
and SFA should be used.

DEA, published by Charnes et al. [9] in the literature, is a mathematical programming technique
that is used to determine the efficiency of a group of decision-making units (DMUs), in this case WFs.
Efficiency ratings based on DEA take values between zero and unity (i.e., perfect efficiency for units
located on the border); units located off the frontier are considered inefficient. With regard to WFs,
it is necessary to identify two phases related to performance evaluation: the phase of construction
(i.e., investment) prior to start-up, and the phase of operation. These stages are related to the evaluation
ex ante and ex post [7], respectively.

The current study focuses on DEA which is more flexible than SFA and can be used to assess
power facilities’ construction and operating phase [10]. There is a lack of studies assessing the WF
projects’ DEA-based efficiency with a focus on the investment and operational stage. In this context,
the current research aims at improving a single black box DEA [11] and evaluating the performance of
a group of WF projects in Greece using a series two-stage DEA.

This research adds to the existing literature in several ways. Firstly, it provides new empirical
evidence on the performance of investment and operational stages of WF projects. Second, it fills
the gap produced by the single DEA black-box model for WF projects, using a DEA series two-stage
model structure to assess both investment and operational efficiency. It determines for a group of
Greek WFs to what extent the performance of projects could be improved in the construction phase by
reducing selected inputs given the output and whether the WF operators could increase the produced
electricity given the inputs. Moreover, WF performance and size are studied, and sensitivity analysis is
conducted to provide more insight into the factors influencing WF performance.

Projects are seen as systems whose monitoring is based on the principles of the triangle of project
management (i.e., schedule, cost, and quality). Using DEA, project efficiency is measured employing
a results-oriented methodology based on the above principles [10]. In the case of the DEA-based
assessment of power plants, performance in the investment and operating process can be separately
differentiated and modeled [12].

The WF project assessment studies by DEA are divided into single-, two-stage and serial two-stage
works. WFs are specified as DMUs in the works reviewed below. The classic single-stage DEA studies
evaluate WFs within a black-box context in which the power facility is treated as a whole (i.e., black
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box) system without throwing light onto its structure [11]. Sarıca and Or [12] propose DEA models for
the operational and investment performance of a group of Turkey’s thermal, hydro and wind power
stations. In Greece, Champilomatis [13] assesses the performance of a group of 13 WFs. Kim et al. [14]
evaluate the efficiency of the investment for renewable energy in Korea and Akbari et al. [15] perform a
cross-European DEA-based efficiency assessment of offshore wind farms. Rodríguez et al. [16] provide
an empirical DEA-based study of the evolution of total factor productivity among Spanish wind farms
by deriving the Malmquist productivity index.

The two-stage studies measure the efficiency through DEA in the first stage, and then regress
it in the second stage on explanatory variables [17]. Two-stage studies typically incorporate DEA
and Tobit regression, such as Iglesias et al. [7] research on WF performance assessment in Spain, and
Wu et al. [18] and Sağlam’s [19] works on WF performance assessment in China and Texas. Ederer [20]
evaluates the performance of offshore WFs by also employing the two-stage DEA.

In another research strand, model building is based on the series two-stage DEA. Unlike the
single DEA black-box model, a two-series DEA series structure distinguishes sub-processes and aims
to calculate their efficiency [11]. In this strand lies the work of Niu et al. [21] proposing a DEA
approach with a two series structure to evaluate the performance of WTs. It is worth noting that a
series two-stage DEA can also be combined with Tobit regression [21]. With regard to explanatory
variables, in a different modeling approach [22], they can be considered as inputs but are not active in
the optimization process for the definition of the efficiency metrics. Examples of these explanatory
variables which are deemed exogenous are the solar irradiance and ambient air temperature for the
case of photovoltaic systems [23]. In a different setting, Sağlam [24] evaluates the US states’ wind
power performances for electricity generation by employing the two-stage DEA approach and treating
individual states as DMUs. DEA can also be combined with other methods such as SFA [7], life cycle
assessment (LCA) [25] and emergy analysis [2].

Single- and two-stage DEA have been already employed for ex-post evaluation of WF projects.
To the best of the author’s knowledge, a DEA-based assessment of the performance of WF projects in
Greece by employing a series two-stage structure has not been implemented so far. The current study
aims to fill this gap by adopting this structure to evaluate the efficiency of a group of WF projects
ex-post and to open the black box by identifying the investment and operational stages in a DEA
setting. Moreover, the current research is the first attempt to evaluate the performance of a group of
WFs in Greece by distinguishing discretionary (i.e., controllable) and non-discretionary inputs.

The rest of the paper unfolds as follows. In Section 2, the problem to be solved for the case of
WF projects is stated. Section 3 deals with methods and the data set for the analysis. In Section 4, the
results are presented and discussed. The final section concludes.

2. Problem Statement

A number of WF projects may be over budget in the construction phase or unproductive during
operation. An assessment of the performance of a WF project group is based on data analysis and
benchmarks. The benchmarks (i.e., best-in-class WF projects) for the investment and operational stages
can be established by means of DEA and moreover, their use as points of reference is essential for
planning necessary interventions to improve performance. Corrective actions to improve performance
should focus not only on the budgeting process in the investment stage but also on the optimization of
production in the operating stage with the aim of maximizing the produced electricity. Thus, for WF
projects, benchmarks should be established for the investment and operating stage.

It should be noted that the assumption of the existence of a local transmission grid should be
made in the case of power facilities [10]. Since the WFs evaluated in the current study are in operation,
they are grid-connected. The grid-connected WFs may operate at a down-rated capacity due to the
restrictions imposed by the grid.

Classic single-stage DEA modeling only uses input and output information to generate the
efficiency metric that represents the relationship between inputs and outputs; i.e., the maximum output
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given fixed inputs or the minimum input given a fixed output [26]. Each facility is regarded as a
system with two sub-processes in the case of a group of WF projects: the investment and operation
stage. Rather of assessing the performance of each WF project as a whole system, without recognizing
its internal structure (i.e., investment and operation stage), the entire system is divided into these two
sub-processes and is evaluated separately for each. Thus, the performance of the WF project involves
two DEA efficiency metrics: investment stage DEA efficiency and operating stage DEA efficiency.
The current study proposes a DEA with a series two-stage structure: In the first stage (investment
sub-process) the contract cost of the project, wind speed and wind power density are considered inputs,
while the number of turbines is the considered output. In the second stage (operation sub-process)
the number of turbines (i.e., the output of the first stage) is considered to be the input along with
other extra inputs such as plant operating and maintenance costs, while the electricity produced is the
considered output.

3. Methods—Data Set

3.1. Series Two-Stage DEA Structure

The current study, taking into account the availability of data, employs the series two-stage DEA
model to derive WF project efficiency scores in both the investment and operational stages.

The independent approach [27] is used to evaluate the WF projects (i.e., each stage is handled
separately and their common feature is the outputs of the first that are inputs for the second stage),
and the efficiency of each stage is separately determined. Figure 1 illustrates the DEA series two-stage
structure used for the assessment of sampled WF projects. The inputs of the stage 1 are distinguished
into controllable and uncontrollable as described in detail in the following subsection.
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3.2. Model Building

The group of WF projects assessed in the current research includes WFs of different size, and
therefore the BCC (Banker, Charnes and Cooper) model [28] was chosen to take into account the effects
of the scale economies. With respect to the model orientation, input minimizing models evaluate the
input decrease that could be accomplished with the current output level, while output maximization
models indicate the highest possible output increase for the given input amount.

Usually, WF contractors have little to no direct control over the pre-specified number of turbines
(stage 1) and therefore input orientation (i.e., BCC input-oriented model) was selected. In the operational
stage 2, output optimization aims to the maximum electricity production given the inputs and, therefore,
the output-oriented version of the BCC model was employed. In the case study application, the
determination of to what extent the performance of WF projects could be improved in the construction
phase by reducing project cost given the pre-specified project number of turbines was sought and,
moreover, whether the WF operator could be effective by increasing the produced electricity from
the grid-connected WFs given the number of turbines installed, capacity, and annual operating and
maintenance cost.
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The inputs used in DEA-based evaluation of WFs can be distinguished into discretionary
(i.e., controllable) such as project cost and non-discretionary (i.e., uncontrollable) inputs, such as wind
speed and wind power density. Assuming that there is a group of n WF projects, j = 1, . . . , n using
discretionary inputs X ∈ Rm

+ and non-discretionary inputs Z ∈ Rp
+ to generate outputs Y ∈ Rk

+, the
following BCC (envelopment form) or variable returns to scale (VRS) input-oriented Model (3) [22,23]
and output-oriented Model (4) [29] are selected to assess the investment and operational efficiency of
projects, respectively:

Min θ
subject to

n∑
j=1

λ jxi j ≤ θ xi j0

n∑
j=1

λ jzl j ≤ zl j0

n∑
j=1

λ jyrj ≥ yrj0

n∑
j=1

λ j = 1

λ j, s+r , s−i ≥ 0, j = 1, 2, · · · , n, i = 1, 2, . . .m, l = 1, . . . , p, r = 1, 2, . . . , k

(3)

Max φ
subject to

n∑
j=1

λ jxi j ≤ xi j0

n∑
j=1

λ jyrj ≥ φ yrj0

n∑
j=1

λ j = 1

λ j, s+r , s−i ≥ 0, j = 1, 2, · · · , n, i = 1, 2, . . .m, r = 1, 2, . . . , k

(4)

where xij, and zlj are the ith discretionary and lth non-discretionary input, respectively, used by the
jth project; yrj is rth output produced by the jth project; θ and 1/ϕ denote the efficiency score of WF0

derived by the model (3) and model (4), respectively; WF0 denotes the farm under evaluation; and λ j
is intensity factor that shows the contribution of WFj in the derivation of efficiency of WF0.

The optimal solution, θ∗ of Model (3), yields an investment efficiency score for the WF0. The solving
process is repeated for each WF. The efficiency of WF0 deals with the WF which has inputs xi j0, zi j0 and
outputs yrj0, respectively. The model searches for a group of WFs created by weighting each WFj by a
coefficient λ j so that they do not generate more outputs than WF0 and minimize inputs in comparison
to those of WF0. WFs for which θ∗ = 1 and θ∗ < 1 are deemed efficient and inefficient, respectively.

The operational efficiency of WF0 is given by q = 1/ϕ∗, where ϕ∗ is the optimal solution of Model
(4). The model searches for a group of WFs created by weighting each WFj by a coefficient λ j so that
they do not use more inputs than WF0 and maximize outputs in comparison to those of WF0. WFs for
which q = 1 and q < 1 are deemed efficient and inefficient, respectively.

Charnes et al. [9] developed the CCR (Charnes, Cooper and Rhodes) model that calculates the
DMU’s global technical efficiency (GTE) by assuming constant scale returns (CRS). Banker et al. [28],
on the other hand, proposed the BCC model, which calculates (local) pure technical efficiency (PTE)
with the assumption of variable scale returns (VRS). The dual (i.e., multiplier [29]) of Model (4) can be
used to estimate the returns to scale (RTS) of WFs [18]. The WFs operating at the most productive
scale exhibit CRS and are scale efficient. The scale efficiency (SE) is determined by the ratio of GTE to
PTE; i.e., the efficiency of the scale tests the difference between GTE and PTE [19]. The CRS version

(i.e., CCR (Charnes, Cooper and Rhodes [9]) model) stems from Model (4) if the restriction
n∑

j=1
λ j = 1
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is omitted. Scale inefficient WFs operate under increasing returns to scale (IRS) or decreasing returns to
scale (DRS) and they should increase or decrease, respectively, their production level to become scale
efficient. Table 1 summarizes all the efficiency measures used in the analysis for both input (stage 1)
and output-oriented models (stage 2).

Table 1. Summary of the efficiency calculations.

Model Input-Oriented
Model—Stage 1

Output-Oriented
Model—Stage 2 Efficiency Definition

BCC input oriented
efficiency (PTEin) θ

Scalar derived from
Model (3)

CCR output oriented
efficiency (GTEout) θ′

Scalar derived from a
modified Model (4)

without the restriction
n∑

j=1
λ j = 1

BCC output oriented
efficiency (PTEout) q = 1/ϕ Reciprocal of scalar ϕ

derived from Model (4)
Scale output oriented

efficiency (SEout) θ′/q SEout = GTEout/PTEout

3.3. Data Set

For the purpose of the current paper study a group of thirteen Greek onshore WF projects
are evaluated. In principle they are deemed homogeneous, because they use the same production
technology and can therefore be compared in terms of their efficiency by means of DEA.

In the first subprocess (investment phase) project investment cost, wind speed, and wind power
density are considered as inputs and the number of WTs as the output variable. Project investment
cost is the total funds used during the construction period of the power facility from the design up to
the start of operation [14]. Wind speed and wind power density are parameters that reflect the wind
resource [21] that is provided by Nature. The wind speed is deemed as one of the most important
input variables that is related to the amount of energy produced by a WT. The input to WT depends on
the wind, and the wind power density (i.e., the power of the wind per unit area) is used as a proxy for
the potential of site wind resources [16]. Since the wind power is determined by air volume, air speed
(velocity), and air mass (density), the wind power density can be calculated by using Equation (5) [19]:

P = 0.5ρAν3Cp (5)

where P is the wind power density, ρ = 1.225 kg/m3 is the air density, A is the swept area (A = πr2),
i.e., the area through which the rotor blades of a WT spin, ν is the average wind speed, and Cp = 0.593
is a power coefficient that reflects the maximum power which can be extracted. The diameter of WT
is taken from equipment technical data. It is worth noting that the average wind speed at each WF
site was used to estimate the wind power density in line with previous studies [7]. A more precise
estimation will require taking into account the distribution of wind speed, which is typically a Weibull
distribution [7]. This was difficult to obtain in our case, because of the lack of data. The purpose of the
investment phase is to arrange WTs reasonably and thus, the number of WTs is selected as the output
variable [21].

The second subprocess (operating stage) deals with electricity production optimization and
thus, electricity produced by each WF is set as an output variable. In line with previous DEA-based
WF studies, the production factors (inputs) include installed capacity [18] and operation (including
maintenance) cost [18]. In addition to these factors the current research also includes the WT number
(i.e., the output of the first subprocess) [21]. The installed capacity of the WFs is obtained as the product
of the number of WTs multiplied by each turbine’s nominal power [5]. The cost of operation and
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maintenance (O&M) is the total expense for the year. The variables used in the analysis are depicted in
Table 2.

Table 2. Variable descriptions.

Variable Definition Units Source

Project cost Estimated cost to complete the project 106 Euros [13]
Wind speed Speed (velocity) of air m/s [13]

Wind power density Wind power available per square meter
of swept area of a turbine W/m2 This study

Number of wind turbines The number of wind turbines 1 This study
Installed capacity Facility capacity MW [13]

Operating and maintenance cost Estimated cost of annual operating and
maintenance cost 106 Euros [13]

Power generation Estimated annual generated electricity MWh This study

Two isotonicity tests [30], one for investment and operational process, justify the selection of
input and output variables in the DEA evaluations. These tests are carried out by calculating all
inter-correlations between all variables to investigate whether input increases lead to higher outputs.
Tests for the two stages were passed and thus the selection of variables was justified. The 13 projects
listed fulfill the criteria of the Cooper et al. thumb rule [29].

Two types of onshore WTs (WT1 and WT2) are used in the group of WFs analyzed in the current
paper. The features of such WFs listed in Table 3.

Table 3. Specification of the wind turbines.

Features WT1 WT2

Rotor diameter, m 90 52
Area swept, m2 6362 2124

Number of blades 3 3
Wind speed cut-in, m/s 4 4
Wind speed rated, m/s 15 14

Wind speed cut-out, m/s 25 25
Nominal output, kW 3000 850

Installation Onshore Onshore

The characteristics of thirteen WFs evaluated in the current paper are summarized in Table 4.
Two WFs are part of autonomous systems and the rest are connected to the mainland grid. Two WFs
have down-rated capacity due to grid restrictions. In more than half of the WFs the construction of a
voltage rise substation is needed which increases the cost of the project.

Table 4. Summary of WF characteristics.

Project No. Wind Turbine Type Autonomous System Down-Rated Capacity Voltage Rise Substation
Construction

WF1 WT1 X
WF2 WT2 X
WF3 WT1 X
WF4 WT1 X
WF5 WT1 X
WF6 WT1 X
WF7 WT1 X
WF8 WT1 X
WF9 WT1 X X

WF10 WT1
WF11 WT2
WF12 WT1
WF13 WT2 X
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The project investment cost and average wind speed variables used in stage 1 are taken from
a previous study [13]. Wind power density and number of turbines are variables which are not
considered in [13] and they are estimated in this paper. The wind power density is calculated using
Equation (5) and magnitude values, as stated above. The number of turbines is estimated using data
from [13] on installed capacity and nominal turbine type output. Installed capacity and annual O&M
cost in stage 2 are taken from [13]. Annual electricity produced is calculated using data from [13] on
annual electricity sales revenue and a tariff for each WF. The descriptive statistics of the WF project
variables used are shown in Table 5.

Table 5. WF projects: Descriptive statistics.

Descriptive
Statistics

Project Cost
(106 Euros)

Wind Speed
(m/s)

Wind Power
Density (W/m2)

Number
of Wind
Turbines

Installed
Capacity

(MW)

Annual
Operating and
Maintenance

Cost (106 Euros)

Power
Generation
(103 MWh)

Mean 20.78 7.57 3.25 7.15 17.88 0.55 38.10
Standard
deviation 12.07 1.11 1.29 3.29 10.97 0.32 20.57

Median 25.15 7.47 3.16 8.00 18.00 0.49 38.39
Min 2.86 5.63 1.65 3.00 2.55 0.09 5.77
Max 34.66 9.37 5.83 12.00 36.00 1.12 67.20

4. Results

In the light of the results produced by the BCC input-oriented Model (3), out of the 13 projects,
5 (38%) were found to be ex-post relatively efficient; mean investment performance efficiency: 0.76.
The model satisfactorily discriminates the efficient and inefficient WFs. The median investment
performance efficiency was about 0.78. The efficiency score of 0.76 means that, on average, a reduction
of 24% (= 1− 0.76) of the current discretionary (i.e., controllable) input level is possible while maintaining
the same level of output (Table 6). The results of the BCC output-oriented model (4) suggest that 7
(54%) of the 13 projects were found to be relatively efficient ex-post; mean operating efficiency: 0.89.
The model’s discriminatory power is lower relative to stage 1, however that is a characteristic of the
BCC model and, thus, the findings are deemed acceptable. Moreover, efficiency in operating phase can
be improved by producing more electricity by about 12% (= (1/0.89) − 1) (Table 6). It is evident from
the above findings that the construction stage is more ineffective compared to the operating stage.

Table 6. WF project efficiency measures for investment and operating phase and descriptive statistics.

Project No.
Investment Phase Operating Phase

Investment
Performance (%)

Operating
Efficiency (%) Scale Efficiency (%) RTS

WF1 100.00 100.00 67.42 DRS
WF2 100.00 100.00 100.00 CRS
WF3 75.07 100.00 77.08 DRS
WF4 100.00 75.99 98.91 IRS
WF5 85.01 77.66 84.10 DRS
WF6 78.04 78.15 99.46 IRS
WF7 67.52 100.00 74.50 DRS
WF8 35.19 100.00 99.30 DRS
WF9 100.00 66.64 81.56 DRS

WF10 46.03 87.31 85.96 DRS
WF11 100.00 100.00 94.37 IRS
WF12 31.42 100.00 100.00 CRS
WF13 66.43 74.59 92.36 IRS
Mean 75.75 89.26 88.85

Standard deviation 25.30 12.82 11.19
Median 78.04 100.00 92.36

Min 31.42 66.64 67.42
Max 100.00 100.00 100.00

Returns to scale; CRS: Constant returns to scale; IRS: Increasing returns to scale; DRS: Decreasing returns to scale.
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One of the major drawbacks of the DEA framework is that efficiency scores are solely dependent
upon the model’s input and output variables. To address this constraint, a sensitivity analysis is
performed to assess the effects of input removal on the DEA efficiency scores. The efficiency scores for
the different multiple-input single-output scenarios are reported in Table 7. In modified models (3′)
and (3”) and models (4′) and (4”) one of the non-discretionary input and one of the input variables has
been removed at a time, respectively. In all modified models at least one discretionary input and one
output variable is necessary. However, the variable representing the number of turbines is not omitted
because it is the variable that the two subprocesses have in common.

Table 7. Sensitivity analysis results.

Variables

Investment Performance Operating Efficiency

Original
Model

(Model (3))

Modified
Model (3′)

Modified
Model (3”)

Original
Model

(Model (4))

Modified
Model (4′)

Modified
Model (4”)

Project cost X X X
Wind speed X X

Wind power density X X
Number of turbines X X X X X X

Installed capacity X X
Annual O&M cost X X

Annual generated electricity X X X
Average efficiency score (%) 75.75 53.90 75.75 89.26 86.11 87.29

The average investment performance efficiency score of the original Model (3) including all the
discretionary and non-discretionary inputs and the output variable is higher or equal compared to
models (3′) and (3”), respectively. Removing the wind speed non-discretionary input variable results in
the lowest average efficiency (0.54) in the initial Model (3). The original Model’s (4) average investment
efficiency score including all the input and output variables is higher compared to models (4′) and (4”).
Removing the input variable related to installed capacity in original Model (4) results in the lowest
average efficiency (0.86). The results of the sensitivity analysis show that the wind power density has
no effect on investment performance. The other input variables have an effect on efficiency. It is worth
noticing that the installed capacity has the greater effect on operating efficiency.

The dual BCC output-oriented model can provide information on scale efficiency and RTS.
The average scale efficiency score of the sample WFs is about 0.89. There are two WFs (15% of the
total) that operate at their most productive scale under CRS; WF2 and WF12 are the only scale efficient
projects. As for the scale inefficient farms, four WFs (31% of the total) exhibit IRS and they should
increase their size to reach the optimum production scale. Notably, the rest of WFs (54% of the total)
exhibit DRS and they should decrease their size (Table 6). Figure 2 illustrates the distribution of RTS in
operating performance for the sampled WFs.

In Figure 3, a so-called bubble diagram, the scale efficiency scores for operating performance and
size (measured by installed capability of the WF) are plotted. Within this diagram, a circle reflects the
size of a WF, with larger circles representing greater WFs. The three categories of scale (CRS, IRS, and
DRS) are shown on the y-axis. From Figure 3 it is evident that large-sized WFs tend to exhibit DRS
compared with the small- and medium-sized WFs that exhibit CRS and IRS.

Results of the investment performance evaluation include the WF1, WF2, WF4, WF9, and WF11
as best-in-class projects. The operating performance results include the WF1, WF2, WF3, WF7, WF8,
WF11 and WF12 as the best-in-class projects. The WF1, WF2, WF11 projects are the best-in-class in both
investment and operating performance. The WT2 type turbine is used by WF2 (autonomous system)
and WF11 (with down-rated capacity), while the WT1 type turbine is used by WF1. In addition, the
construction of a voltage rise substation is required for WF1. In the light of the sensitivity analysis
results, the benchmarks of investment performance assessment in all scenarios considered are: WF1,
WF2, WF9, and WF11. In the operating performance efficiency evaluation, the benchmarks for all
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scenarios are: WF3, WF8, WF11 and WF12. The benchmark in both dimensions of performance for all
scenarios is the project WF11.

Clean Technol. 2020, 2 FOR PEER REVIEW  10 

 

The average investment performance efficiency score of the original Model (3) including all the 

discretionary and non-discretionary inputs and the output variable is higher or equal compared to 

models (3′) and (3″), respectively. Removing the wind speed non-discretionary input variable results 

in the lowest average efficiency (0.54) in the initial Model (3). The original Model’s (4) average 

investment efficiency score including all the input and output variables is higher compared to 

models (4′) and (4″). Removing the input variable related to installed capacity in original Model (4) 

results in the lowest average efficiency (0.86). The results of the sensitivity analysis show that the 

wind power density has no effect on investment performance. The other input variables have an 

effect on efficiency. It is worth noticing that the installed capacity has the greater effect on operating 

efficiency. 

The dual BCC output-oriented model can provide information on scale efficiency and RTS. The 

average scale efficiency score of the sample WFs is about 0.89. There are two WFs (15% of the total) 

that operate at their most productive scale under CRS; WF2 and WF12 are the only scale efficient 

projects. As for the scale inefficient farms, four WFs (31% of the total) exhibit IRS and they should 

increase their size to reach the optimum production scale. Notably, the rest of WFs (54% of the total) 

exhibit DRS and they should decrease their size (Table 6). Figure 2 illustrates the distribution of RTS 

in operating performance for the sampled WFs. 

2 (15%)

4 (31%)

7 (54%)

0 1 2 3 4 5 6 7 8

CRS

IRS

DRS

 

Figure 2. Summary of RTS data of WFs—Stage 2 (Operating efficiency). 

In Figure 3, a so-called bubble diagram, the scale efficiency scores for operating performance 

and size (measured by installed capability of the WF) are plotted. Within this diagram, a circle 

reflects the size of a WF, with larger circles representing greater WFs. The three categories of scale 

(CRS, IRS, and DRS) are shown on the y-axis. From Figure 3 it is evident that large-sized WFs tend to 

exhibit DRS compared with the small- and medium-sized WFs that exhibit CRS and IRS. 

Figure 2. Summary of RTS data of WFs—Stage 2 (Operating efficiency).Clean Technol. 2020, 2 FOR PEER REVIEW  11 

 

60 65 70 75 80 85 90 95 100

CRS

IRS

DRS

Scale  efficiency scores (%) - Stage 2

 

Figure 3. Scale of operation. Stage 2 (Operating efficiency). 

Results of the investment performance evaluation include the WF1, WF2, WF4, WF9, and WF11 

as best-in-class projects. The operating performance results include the WF1, WF2, WF3, WF7, WF8, 

WF11 and WF12 as the best-in-class projects. The WF1, WF2, WF11 projects are the best-in-class in 

both investment and operating performance. The WT2 type turbine is used by WF2 (autonomous 

system) and WF11 (with down-rated capacity), while the WT1 type turbine is used by WF1. In 

addition, the construction of a voltage rise substation is required for WF1. In the light of the 

sensitivity analysis results, the benchmarks of investment performance assessment in all scenarios 

considered are: WF1, WF2, WF9, and WF11. In the operating performance efficiency evaluation, the 

benchmarks for all scenarios are: WF3, WF8, WF11 and WF12. The benchmark in both dimensions of 

performance for all scenarios is the project WF11. 

5. Conclusions 

The current study adopts a series two–stage structure for the ex-post DEA-based performance 

assessment of a sample of 13 WF projects taking into consideration the structure of the WF projects. 

The data on onshore WF projects in Greece are used to illustrate the applicability and empirical 

usefulness of the approach being proposed. The series two-stage structure is considered superior to 

the traditional single-stage DEA setting because, in the case of WFs, it seeks to open the project 

black-box. DEA-based efficiency scores from the BCC model of input minimization are produced in 

the first stage of the investment project analysis using data on project cost, wind speed, and wind 

power density as inputs and turbine number as output. In the second stage, the operating efficiency 

of the WF projects is evaluated using the BCC model of output maximization using the number of 

turbines, installed power, and annual O&M cost as inputs and the annual electricity generated as 

output. The modeling approach provides project DEA-based efficiency scores for each stage that 

take values between zero and unity and represents how well the project performs at each stage. 

The findings suggest that only five and seven of the 13 sample WF projects in stages 1 and 2, 

respectively, are ex-post efficient in the context of the DEA; however, only two WFs operate at the 

optimum production scale. It is also evident that the investment stage has a lower level of 

performance than the operational stage. Although the results are sample-specific, WF size appears to 

be related to operating efficiency. Small- and medium-sized WFs operate under CRS and IRS, while 

large-sized WFs operate under DRS. Moreover, in the light of the sensitivity analysis results, wind 

speed and WF installation capacity appear to be the factors that affect the investment performance 

and operational efficiency, respectively. 

Figure 3. Scale of operation. Stage 2 (Operating efficiency).

5. Conclusions

The current study adopts a series two–stage structure for the ex-post DEA-based performance
assessment of a sample of 13 WF projects taking into consideration the structure of the WF projects.
The data on onshore WF projects in Greece are used to illustrate the applicability and empirical
usefulness of the approach being proposed. The series two-stage structure is considered superior to the
traditional single-stage DEA setting because, in the case of WFs, it seeks to open the project black-box.
DEA-based efficiency scores from the BCC model of input minimization are produced in the first stage
of the investment project analysis using data on project cost, wind speed, and wind power density as
inputs and turbine number as output. In the second stage, the operating efficiency of the WF projects
is evaluated using the BCC model of output maximization using the number of turbines, installed
power, and annual O&M cost as inputs and the annual electricity generated as output. The modeling



Clean Technol. 2020, 2 375

approach provides project DEA-based efficiency scores for each stage that take values between zero
and unity and represents how well the project performs at each stage.

The findings suggest that only five and seven of the 13 sample WF projects in stages 1 and 2,
respectively, are ex-post efficient in the context of the DEA; however, only two WFs operate at the
optimum production scale. It is also evident that the investment stage has a lower level of performance
than the operational stage. Although the results are sample-specific, WF size appears to be related to
operating efficiency. Small- and medium-sized WFs operate under CRS and IRS, while large-sized
WFs operate under DRS. Moreover, in the light of the sensitivity analysis results, wind speed and WF
installation capacity appear to be the factors that affect the investment performance and operational
efficiency, respectively.

The derived consolidated metrics in stages 1 and 2 can serve for project managers and facility
operators as an indicator for the level of achievement of the projects in the investment and operational
stage, respectively. In addition, they may also be viewed as performance metrics for the project’s
design and operating team.

Throughout the current study, static DEA models were used to analyze a group of WF projects
from the point of view of the contractor/operator. If a long time series on WF operating data will be
made available, future research can be focused on dynamic analysis and DEA can provide a dynamic
evaluation of WF performance. Since the distribution of wind speed is not taken into account in
the current research this can be seen as a limitation of the study that can be addressed by using
high-frequency data in future research.
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