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Abstract: In this work, the development of an energy recovery control unit to be incorporated in the
light-emitting diodes (LEDs) lighting systems of heavy-duty vehicles is presented. This innovative
industrial product adopts modern power electronics technology to improve existing trucks’ LED
lighting system by eliminating the so far inevitable power consumption by the conventional central
control unit of the majority of these vehicles, which is obligatory for the uninterruptable operation of
their lighting system. The main idea of this innovative product is its capability to virtually increase
the lighting system power consumption without actually consuming this amount of energy, thus
facilitating the central control unit requirements regarding these vehicles in an energy-conscious way.
Under this light, a mature power converter’s topology is employed to draw the proper amounts
of power from the vehicle’s batteries supply, to the level that the central control unit recognizes,
and return this energy back to the batteries. The tests results of the developed industrial product
highlight the energy saving potential of the proposed energy recovery scheme, while the Life Cycle
Cost Analysis (LCCA) results confirm its techno-economical and environmental profit for the truck
applications under study.

Keywords: energy recovery; LED lighting systems; power electronics; road transportation means; LCCA

1. Introduction

The significant advantages of LEDs over conventional incandescent and fluorescent
lamps along with the smart control schemes that their development facilitates [1,2] have
led to their massive incorporation in the lighting systems of the majority of heavy-duty
vehicles, such as buses, trucks and lorries. However, the energy saving profit of LED
technology, coming out from the direct conversion of the electric energy into light and
thus avoiding large heat emissions [3,4], is incompatible with the majority of vehicles’
central control units (CCUs) under study; the extremely low power consumption of LED
technology cannot be recognized as a normal operation condition by the CCUs, resulting
in the assumption of faulty operation in the lighting system. This is a common malfunction
concerning not only old trucks bearing lamps, but some new truck models as well. Under
this light, various products have been developed to eliminate this issue, regarding the
utilization of passive pseudo-load (such as ohmic resistors) connected in parallel with the
lamps to increase the power consumption to recognizable levels, as shown in Figure 1.
However, this results in unnecessary waste of significant amounts of energy, reducing the
efficiency of trucks’ lighting systems via increasing the fuel consumption. At the same
time, the vehicle battery is subjected to considerable strain which drastically decreases its
lifetime, therefore leading to more frequent battery replacements. In this context, frequent
battery replacement not only further increases the total cost of the lighting system, but also
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becomes an additional factor of environmental pollution, due to the necessity of recycling
the damaged lead-acid batteries [5–9].

Figure 1. Conservative Pseudo-Loads incorporated in heavy-duty vehicles LED lighting system.

The environmental impact associated with recycling and disposal of lead-acid batter-
ies regards not only the ambient environment, but also toxicity and human exposure; this
end of product life procedure is of great concern as it is the current practice for automo-
tive batteries [10]. Thus, the contribution of the recycling stage is critically important in
assessing the environmental impact of batteries; until recycling infrastructures for many
battery types are developed, disposal will remain for the majority of batteries, affecting
emission levels and consequently public health. It is noted that a study of blood lead levels
in people—especially children—living near a secondary smelter [11], has highlighted those
public health dangers. Under this light, the prolongation of the batteries’ life/usage miti-
gates the battery disposal procedure, contributing to the reduction of the aforementioned
environmental/public health impact.

To overcome this drawback, an innovative industrial product has been designed
and developed in order to replace the conventional pseudo-load, making the LED lights
compatible with trucks’ CCUs and thus enabling the massive use of LED lights in the
vehicles under study. The main advantage of this new product is the drastic reduction of
the power consumption in the lighting circuit, via returning the additional energy amounts
of the pseudo-load back to the battery, in real time, according to Figure 2.

Figure 2. Novel energy recovery unit to be incorporated in heavy-duty vehicles’ LED lighting system.

Figure 2 presents the schematic diagram of the developed energy recovery unit; this
unit controls the LED lighting power supply from the battery bank, according to the
truck driver’s commands, as well as increases—in a technical manner—the LED lighting
electrical consumption at the appropriate level, only to return the redundant energy back
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to the battery storage. Apart from the dc/dc converter topology, the energy recovery
unit also includes a programming and communication interface, which permits the set
of the system parameters—such as the energy recovery power level—providing system
design flexibility and the user data exchange capability—such as electric power and energy
recovery measurements, hours of operation, fault signals, etc.

Apart from the direct improvement of the energy consumption of the truck’s light-
ing system, the energy saving benefits of this novel industrial product also regard the
enhancement of safety in transportation; this is accomplished by increasing the use of
environmentally-friendly LED lighting systems, and the upgrade of trucks’ driving be-
havior due to the expanded adoption of LED-lighting systems and the elongation of the
trucks’ battery lifetime; the latter also results in the reduction of their replacement rat-
ing, which has multiple environmental benefits regarding battery recycling procedures,
such as the reduction of the need for dangerous lead-acid battery waste management,
the deterioration of the batteries’ polluting emissions and the battery recycling energy
consumption deterioration.

The developed control scheme is based on well-known, robust modulation techniques,
to form a prototype energy recovery unit, presented for the first time in literature, which
highlights its novelty in the area of such industry applications. Furthermore, the developed
innovative solution is flexible, plug-n-play, and thus adaptable by all types of heavy track
vehicles, that is by older and modern trucks’ lighting systems, ensuring the potential drastic
reduction of a serious quantity of transportation energy consumption.

The paper is organized in five more sections, apart from Introduction (Section 1). In
Section 2, the firm theoretical analysis of the energy recovery circuitry and the technical
specifications of the developed product are given. Furthermore, Section 3 presents the
performance results of the novel product and validates the proposed energy-saving scheme.
Moreover, in Section 4 the environmental and financial benefits of the incorporation of the
developed product in trucks’ lighting systems are evaluated through LCCA. Finally, in
Section 5 the commercial and environmental benefits of the innovative industrial product
are discussed, while Section 6 summarizes the main conclusions of the present work.

2. Description of the Innovative Energy-Recovery Unit
2.1. Power Converter Topology

To implement the energy recovery scheme of Figure 2, a power electronic topology
consisting of two separate converters, one Buck and one Boost converter, has been designed
and employed to perform the necessary energy transaction between the battery supply
system and the LED lights’ load in the most efficient way [12–14].

Figure 3 presents in detail the aforementioned converter topology; the two converters
are connected in series to perform the virtual electrical power consumption at the circuitry
input—i.e., the Buck converter’s side—and the electrical power recovery at the circuitry
output—i.e., the Boost converter’s side—having negligible actual power consumption.

Figure 3. Innovative virtual load topology, incorporating one Step-Down (Buck) and one Step-Up
(Boost) converter topology; symbols are in accordance with Table A1 Appendix A.
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The virtual power consumption concept is imposed via the Pulse Width Modulation
(PWM) control technique that has been selected to drive both Buck and Boost converters;
more specifically, in the Buck converter case, the Peak Current Control switching strategy
is selected [15–17], while in the Boost converter case Average Power Control technique
is used [18–20]. This way, the appropriate switching pulses for each control strategy are
applied to switches SBuck and SBoost.

2.2. Control Strategy Implementation

The implementation of the switching strategy in the Buck converter case involves a
double control loop, comprising of an outer proportional controller—Voltage Compensator,
including a comparator and an analog error amplifier—to perform the comparison of the
reference and actual mean output voltage value (Vout,Buck), as well as an inner control loop,
to which the error between the reference and actual values is fed. This error serves as a
reference peak switching current value (iS,Buck,ref), driving the actual switching current value
of SBuck (iS,Buck). This way, the appropriate pulses—using 450 kHz switching frequency in
this case—to drive the converter are generated, as Figure 4 depicts.

Figure 4. Control scheme of the Buck converter. Peak Current Control implementation.

Similarly, for the implementation of the switching strategy in the Boost converter case,
a double control loop is involved, comprising of an outer proportional controller—Current
Compensator, including a comparator and an analog error amplifier—to perform the
comparison of the average reference and actual Boost input current values (Iin,Boost,ref and
Iin,Boost respectively), as well as an inner control loop, to which the error is fed. This error
serves as a reference peak switching current value (iS,Boost,ref), driving the actual switching
current value of SBoost (iS,Boost). This way, the appropriate pulses—using 850 kHz switching
frequency in this case– to drive the converter are generated, as Figure 5 depicts [21,22].

Regarding the present application, the Boost IC provides an embedded controller
that implements a classical double loop peak current control, which is the same as that
provided by the Buck’s converter IC. However, in order to apply our control scheme, the
outer loop of Figure 5a must be converted from voltage loop to average current loop; the
latter is achieved by using an Operational Transconductance Amplifier (OTA), which in
our case is the INA138_DBV_5 IC [23], as illustrated in Figure 5b. The OTA converts the
measured voltage signal into a current signal with a specific gain (gm); this current signal
is then passed through an external resistor (RL) and the voltage drop (Vout) on this resistor
drives the negative input of the outer voltage compensator, as depicted in Figure 5a. The
total gain (g) of the current amplifier is affected by the selection of R and RL and is equal to
R*gm*RL.



Clean Technol. 2021, 3 585

Figure 5. Control scheme of the Boost converter; (a) Average Power Control implementation. (b) OTA
application IC.

As depicted in Figure 5a, the Boost converter’s IC has an inner voltage reference
(Vref,int) equal to 1.229 V, which defines the desired g of the circuitry for a specific input
current value. In our case, the input average current value that results in a constant Boost
converter input power is well known, since the voltage input is held constant from the
Buck converter. For example, if the desired Boost IC input power (Pin,Boost) is 10 W, the
desired input current is Iin,Boost = Pin/Vout,Buck = 10/9 = 1.11 A, which means that in
order to convert the 1.11 A current level into 1.229 V voltage level, the required g can be
calculated to the value of 1.229/1.11 = 1.1. In this way, the Boost converter’s control scheme
is modified to perform the average power control.

It is noted that iS,Boost has limited ripple, thus facilitating the Average Power Control of
the Boost converter; however, inductor filters (Lin, Lout) at the input and output stages of the
innovative virtual load are necessary for the battery current (ib) ripple minimization. Obvi-
ously, the battery voltage level (vb) is held constant, according to the battery specifications.
According to Figures 4 and 5, instantaneous current feedback of both switches’ current, as
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well as output Buck voltage feedback (vout,Buck) and input Boost current feedback (iin,Boost)
are necessary for the control scheme implementation.

3. Technical Features and Performance
3.1. Industrial Prototype

Figure 6 shows the industrial prototype of the innovative energy recovery unit, as
analyzed in Section 2. The industrial prototype performance under real conditions has
been validated with the use of the 6-Function rear LED lamp model of Dasteri Systems
S.A. [24].

Figure 6. Industrial prototype of the innovative energy recovery unit, incorporated in the 6-Function
rear LED lamp model of Dasteri Systems S.A.

Figure 6 presents the schematic circuit of the specific truck lighting system under
validation, consisting of the battery supply unit (which can be either at 12 V or at 24 V
voltage level), the 6-Function rear LED lamp and the novel virtual load unit. It is noted
that the Flasher component is a mechanical relay that implements the dynamic direction
indication function of the specific lamp model [25]. For the hardware implementation of the
designed converter topology, two industrial integrated converter modules are employed,
the TPS54140DGQR (Buck converter) [26] and the TPS55340RTER (Boost converter) [27];
detailed photos of the innovative virtual load package, along with the list of its main
components, can be found in Appendix A.

The main technical/design parameters of the developed energy recovery unit can be
summarized as follows:

• Recycling power (pseudo-consumption) level, 10 W (compatible with the CCU thresholds),
• Weight, 15 g,
• Total efficiency, over 80%,
• High reliability, implying MTBF (Mean Time Between Failures) indicator value of

10,000 h,
• Maximum operating temperature up to 70 ◦C,
• Low cost, <0.6 €/W,
• Plug-n-play device, and
• Design flexibility/compatibility with all vehicle types, by allowing the implementation

of various power level energy recovery scenarios via parameter management.

It is noted that the aforementioned technical characteristics highlight the developed
industrial product modularity, facilitating its potential adoption in other LED lighting
applications of various voltage and/or power levels.
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3.2. Performance Results

Figure 7 shows the test bench of the innovative industrial prototype, incorporated
in the 6-Function rear LED lamp model of Dasteri Systems S.A.; the performance tests
were implemented under two out of the six available functions of the specific lamp model,
regarding the continuous as well as the dynamic direction indicator function (with the use
of the Flasher). The battery supply unit is at 12 V voltage level.

Figure 7. Test bench of the innovative industrial prototype incorporated in the 6-Function rear LED
lamp model of Dasteri Systems S.A. Continuous and dynamic direction indicator operation.

Figure 8 depicts the Buck and Boost converters’ inductance voltage waveforms (i.e.,
Lbuck and LBoost voltages) under continuous function of the lamp, according to the set-up
seen in Figure 7.

Figure 8. Buck and Boost’s inductance voltages (i.e., Lbuck and LBoost voltages) under continuous
function, for a 12 V battery voltage level.

In the Buck converter case in Figure 8a, the LBuck voltage is held at the ub-vout,Buck
voltage level when SBuck is on and at -vout,Buck voltage level when SBuck is off (according to
the circuit in Figure 3). Similarly, in the Boost converter case in Figure 8b, LBoost voltage
is at vin,Boost voltage level when SBoost is on and at the vin,Boost-vb voltage level when SBoost
is off.

Moreover, Figure 9 presents the performance results of the innovative industrial
product operation under continuous and dynamic direction indicator functions, according
to the set-up seen in Figure 7.

More specifically, in Figure 9a–c the instantaneous battery current and voltage wave-
forms, as well as the recycled power waveform under the continuous lamp function, are
depicted. In Figure 9d, the instantaneous battery current under the dynamic direction
indicator function is presented, with 50/50% light on/off operation. It is noted that the
total efficiency of the virtual load regarding Figure 9 results is 82%.
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Figure 9. Real-time results regarding the novel industrial prototype incorporated in the 6-Function
rear LED lamp under real conditions performance test; (a) instantaneous battery current under
continuous function, (b) instantaneous battery voltage under continuous function, (c) instantaneous
battery recycled power under continuous function, and (d) instantaneous battery current under
dynamic direction indicator function.

Furthermore, the power consumption of the LED lamp under study, as well as the
passive pseudo-load and the innovative virtual load consumptions, under both continuous
and dynamic direction indicator functions, have been measured; afterwards, the power
consumption of the conventional and the novel industrial product, and thus the outcoming
power saving, is estimated. These results are summarized in Table 1.

Table 1. Power consumption of the LED lamp, and the conventional and the innovative industrial
product. Power saving level under both continuous and dynamic direction indicator functions.

LED Lamp consumption (W) 3.2 1.8

Passive/Virtual load consumption (W) 12.8/1.65 6.4/1.48

Total Conventional/Innovative product consumption (W) 16/4.85 8/3.08

Energy saving (%) 70 65

Table 1 results highlight the significant margin of the energy saving in heavy vehicles’
lighting systems with the incorporation of the innovative industrial product, which is up
to 70% for the continuous lamp operation. These motivating results are further evaluated
with the use of LCCA, which is presented in the following section.

4. Environmental and Financial Benefits
4.1. Life Cycle Cost Analysis

In order to evaluate the energy saving margin presented in Table 1 under realistic
conditions of heavy-duty vehicles’ annual operation (h/y), three alternative scenarios are
considered; these regard high, medium and low frequency annual operation of the vehicles,
which are considered for 7000 h/y, 6000/5000 h/y and 4000 h/y driving hours, respectively.
In every case, the electrical energy consumption of the lighting system is derived from
diesel thermal energy consumption [28], reduced by the efficiency of the electrical generator,
which is moderately considered at 80%. Moreover, the current rate prices of diesel oil for
transportation purposes in Greece (refinery prices) are also considered [29].

The annual thermal energy consumption (kWhth,h) of the conventional and innovative
industrial product are examined under the continuous function of the specific LED lamp
model for the three aforementioned alternative scenarios of the vehicles’ operation; the
results are summarized in Table 2.
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Table 2. Annual thermal energy consumption of the conventional and the innovative industrial
product, under alternative scenarios of vehicles’ operation: high (7000 h/y), medium (6000 and 5000
h/y) and low (4000 h/y) annual driving hours.

Driving
h/y

Consumption
kWhth,h/y

Consumption
lt/y Saving

Conventional Innovative Conventional Innovative kWhth,h/y %

4000 200 60.62 16.8 5.09 139.375

70
5000 250 75.78 21 6.37 174.29

6000 300 90.93 25.21 7.64 209.063

7000 350 106.09 29.41 8.915 243.907

From Table 2, it turns out that the annual thermal energy saving under the alternative
vehicles’ operation scenarios with the adoption of the innovative industrial product is
significant (up to 70% energy saving in every examined case).

Next, the initial cost of production and distribution of the innovative industrial
product is estimated though current commercial components’ prices [30]; this way, the
initial cost, defined as the market price of 30 €/unit, can result in the safe assessment of the
payback period of the developed product. Under this light, a ten-year period LCCA has
been carried out [31,32], taking into account the results of Table 2 as well as the values of
the economic and time parameters in Table A2 of Appendix B. The results of the LCCA
regarding the alternative vehicles’ operation scenarios are depicted in Figure 10.

Figure 10. LCCA of the innovative industrial product regarding a ten-year period; (a) 4000 h/y,
(b) 5000 h/y, (c) 6000 h/y, (d) 7000 h/y.

Figure 10 implies that the more frequent the vehicles’ use, the more effective the
energy and financial savings become; specifically, regarding the frequent usage of a heavy
truck, i.e., 7000 h/y, or the medium usage of 6000 h/y, the investment (that is the innovative
energy recovery unit incorporation in the truck’s lighting system) payback period turns
out in less than two years, while in the case of low and medium frequency vehicle usage,
4000 h/y and 5000 h/y, respectively, the payback period is less than three years.

4.2. Battery Cycles Saving Assessment

The results of Section 4.1 (Figure 10) regarding the incorporation of the innovative
industrial product in trucks’ lighting systems are promising not only in terms of the energy
and financial savings for the next decade of the present analysis, but also for battery
operating cycle savings, resulting in a considerable battery lifetime elongation.

To investigate this assessment, three alternative cases of mature commercial battery
technologies (dedicated to the heavy-duty vehicles under study) of 200, 400 and 800 opera-
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tional cycles are considered [33,34]; once again, these batteries’ categories are evaluated
under the already discussed alternative scenarios of vehicles’ usage, i.e., 4,000–7,000 h/y.
Under this scope, Figure 11 depicts the number of the cycles that are saved (Cs) as a portion
of the total battery operating cycles (Cb) for the ten-year period of the analysis and for each
vehicle usage-case under examination.

Figure 11. Number of the cycles that are saved (Cs) as a portion of the total battery operating cycles
(Cb), for the ten-year period of the analysis; (a) 4000 h/y, (b) 5000 h/y, (c) 6000 h/y, (d) 7000 h/y.

From Figure 11, it turns out that the battery operating cycles’ savings range from
the minimum 20%—regarding the advanced technology of 800 operating cycles battery,
under the low-frequency vehicle usage of 4000 h/y (Figure 10a)—up to 150% (regarding
the technology of 200 operating cycles battery), under the high-frequency vehicle usage of
7000 h/y (Figure 10d);

Regarding the 200 operating cycles battery case, even a total battery unit can be saved
within the ten-year LCCA of the innovative energy recovery unit operation, under the
5000–7000 h/y operation scenarios, according to Figure 11b,c.

5. Discussion on the Performance and LCCA Results

The developed energy recovery unit provides an innovative solution for the drastic
reduction of the energy consumption of both older and modern trucks’ lighting systems,
especially when extremely low power LED lamps are used. Under this frame, the high-
efficiency energy management capabilities that modern power electronics technology
provides are exploited; a simple and mature DC/DC converter topology, which is controlled
by the proper energy-recycling scheme, succeeds in achieving energy saving amounts up
to 70%. What is more, the design flexibility of the innovative industrial product regarding
its incorporation in several vehicle types further facilitates its widespread adoption.

The LCCA results (Section 4) along with the battery operating cycles’ saving potential
assessment (Section 5) highlight the effectiveness of the developed energy recovery product
to be incorporated in heavy-duty vehicles’ LED lighting systems. The initial cost of the
innovative product is finally estimated at approximately 1.4 €/W, which for these low
power applications is a tolerable expense, taking into consideration the prominent payback
period; in every case of the vehicles’ annual usage, even under the moderate driving hours
scenarios, the payback period turns out in less than three years, which highlights the
cost-effectiveness of the innovative product.

Last but not least, the battery operating cycles’ saving hypothesis, with positive
impact on the battery lifetime, further accounts for the initial commission; especially in
the conventional battery case of 200 operating cycles, there is significant potential for
saving a total battery unit within seven years of the innovative energy recovery unit
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operation; the latter can be a strong motivation, in terms of the enhancement of the trucks’
environmentally-friendly usage, via more rarely necessary battery replacement.

6. Conclusions

In the present work, the design and development of an innovative energy recovery
unit dedicated to heavy-duty vehicles’ lighting systems is presented. In the first place, the
main theoretical analysis of the project is described; a mature power converter topology is
employed to absorb the appropriate amount of energy from the vehicles’ battery supply, in
order to virtually raise the LED lighting power consumption—ensuring the unobstructed
operation of the truck lighting system—and return it back to the battery unit. The developed
unit’s performance tests results on an industrial lamp model proved the effectiveness of
the initial energy saving concept. The LCCA results highlight the significant power/energy
and financial amounts’ savings. Finally, the commercial trucks’ battery characteristics were
taken into account in order to evaluate the potential battery lifetime increase resulting
from this energy recovery; the latter also contributes to the reduction of lead-acid batteries’
recycling rate, with a direct positive environmental/public health impact.

7. Patents

The work reported in this manuscript is patent pending (Application Nr. 20200100205).
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Appendix A

Table A1. Main components of the energy recovery unit of Figure A1 [30].

Component Commercial Product MTBF

Step down (Buck) converter TPS54140DGQR 1.96 × 109

Step up (Boost) converter TPS55340RTER 1 × 1010

Operational transconductance amplifier (OTA) INA138_DBV_5 4.71 × 109

Lin, Lout (1 uH) TFM201208ALD-
1R0MTCA 5.13 × 1010

LBuck, LBoost (33 uH) MSS1048-333MLB 5.13 × 1010

DBuck B340A-13-F 4.2 × 109

DBoost B340LB-13-F 4.2 × 109

CBuck, CBoost (47 uF) 16SVPG47M 1.66 × 108
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Figure A1. Novel energy recovery unit. Package dimensions: height: 10 mm, width: 39 mm, length:
27 mm.

Appendix B

Table A2. Economic and time parameters for the calculation method of LCCA [31,32].

Financial Parameters

Discount rate, d 0%

Inflation rate, g 0.30%

Cost of debit, i 0%

Down payment, D 100%

Escalation of energy cost, e 0.50%

Time Parameters (Years)

Period analysis, N 10

Loan period, NL 0
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