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Abstract: The present study aims at comparing the life cycle environmental impacts of polyunsat-
urated fatty acids production (PUFA) from microalgae and farmed fish. PUFA production from
microalgae cultivated via heterotrophy and photoautotrophy was assessed and compared. The
primary energy demand (PED) and environmental impacts (EI) of PUFA production from microal-
gae via heterotrophy were significantly lower compared to PUFA produced via photoautotrophy.
Furthermore, PED and EI of PUFA production from fish farmed in marine net pens were assessed.
The results indicated that the PED and EI of PUFA production from farmed fish are higher than that
produced from microalgae cultivated via heterotrophy. Therefore, the results suggest that PUFA pro-
duced from microalgae via heterotrophy could substitute fish oil from an environmental perspective.
Furthermore, life cycle analysis results indicate that PUFA derived from microalgae could potentially
replace fish oil in the fish feed, thus reducing the pressure on oceans.
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1. Introduction

Polyunsaturated fatty acids such as Eicosapentaenoic acid (EPA, C20:5) and Docosa-
hexaenoic acid (DHA, C20:6) are essential fatty acids and are not produced sufficiently
in the human body. Therefore, for the general well-being of humans, they must be sup-
plemented. Due to the increased attention to health and well-being, the demand for EPA
and DHA has increased. Worldwide, the market for EPA+DHA supplements is about
USD 57.07 billion, and the predicted increase rate is 6% per annum [1]. The World Health
Organization recommends an intake of ~250 mg omega-3 fatty acids per day, but recom-
mendations vary per country. For example, the National Heart Foundation of Australia
recommends an intake of ~500 mg of EPA+DHA per day. Most European countries follow
the WHO recommendation. The Cardiology Society of India and the Ministry of Health,
Labor, and Welfare recommend ~1–2 g of EPA+DHA per day for an adult [2]. Therefore, the
global demand for these fatty acids reaches ~0.65–2.55 million tons. Currently, oil extracted
from fish is the predominant source of these fatty acids. The estimated production of
EPA+DHA from fish oil is ~160 thousand tons, which is far less than the demand. This
may lead to the overfishing of species [3]. Furthermore, 70% of produced oil is used as
aquafeed and unavailable for human consumption [4]. The current demand outstrips the
supply of EPA+DHA and therefore poses a challenge to find new sustainable alternatives
to relieve pressure on fisheries.

Microalgae and photosynthetic organisms are primary producers of EPA+DHA and
can be an alternative for fish oil-based EPA+DHA. Though a lot of research was carried
out on producing these fatty acids from microalgae, production at a commercial scale is
still in infancy. EPA+DHA can be produced from microalgae via both photoautotrophic
and heterotrophic modes of cultivation. Various microalgal species viz. Nannochloropsis,
Tetraselmis, Isochrysis, Pavlova, and Phaeodactylum were studied for their potential to produce
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EPA by photoautotrophic mode of cultivation [5–9], while species such as Schizhochytrium,
and Crypthecodinium were explored for EPA+DHA production via heterotrophic modes of
cultivation [10–15]. The main challenge in microalgal biomass production is lower biomass
concentration and biomass productivity. However, this challenge could be overcome
by choosing the heterotrophic mode of cultivation where biomass productivities up to
30 g/L can be obtained but at the expense of supplementation of high loads of glucose as a
carbon source. Food grade industrial wastewater such as brewery/dairy effluent rich in
sugar can be used as a carbon source, but prior sanitization of effluent to maintain axenic
conditions for heterotrophic cultivation remains expensive. Hence, given the challenges
for microalgal biomass production, a life cycle analysis (LCA) of EPA+DHA production
from microalgae is the need of the hour to understand the ability of microalgae to replace
conventional fish oil. LCA is a tool used to quantify environmental impacts and energy
requirements associated with the production of a target product or a process of interest.
It helps to identify the process’s hotspots that need improvement and helps to compare
environmental impacts associated with two different processes/products. Performing LCA
will help to choose an efficient process/product in terms of environmental profile. The
literature reports on LCA of EPA+DHA production from microalgae are scanty [16]. LCA
of microalgal biomass production via the heterotrophic mode of cultivation was conducted;
however, biomass was employed for biofuel production [17]. Hu et al. [15] studied life cycle
analysis of EPA+DHA production from microalgae cultivated via a photoautotrophic mode
of cultivation compared to fish extracted from caught fish. Depra et al. [18] performed
a comparative life cycle analysis of EPA+DHA production from photoautotrophic and
heterotrophic modes of nutrition. Bartek et al. [19] performed a life cycle assessment of
DHA production from microalgae cultivated on food waste. Furthermore, the authors
compared the environmental impacts of DHA production from microalgae to conventional
fish oils. Lu et al. [20] performed a life cycle assessment of oil production from microalgae
via a heterotrophic mode of nutrition. Fish oil can be produced via two approaches, viz.
extraction from fish caught directly from the oceans or from the farmed fish cultivated in
marine net pens. The comparative LCA reports on EPA+DHA production from microalgae
via photoautotrophic and heterotrophic modes of cultivation are scanty, and further studies
comparison to EPA+DHA production from farmed fish are not reported.

The present study describes a comparative life cycle analysis to assess the energy
requirements and environmental impacts associated with the production of EPA+DHA
from microalgae via photoautotrophic and heterotrophic modes of cultivation and farmed
fish. Furthermore, the use of microalgal oil as a substitute for fish oil for the cultivation of
fish is also explored.

2. Materials and Methods
2.1. Goal and Scope

The goal of the present study was to evaluate the primary energy demand and
environmental impacts of EPA+DHA production from microalgae via photoautotrophic
and heterotrophic modes of cultivation. Furthermore, the environmental impacts are
compared to fish oil extraction. A functional unit of 1 kg EPA+DHA was considered for
the study. EPA+DHA production from microalgae and farmed fish was evaluated with
a system boundary of “cradle-to-gate”. The LCA was conducted as per ISO 14040-14044
standards [21,22]. GaBi software (Version 9.5.1) with a professional database (DB) was used
as a platform to evaluate and compare the energy demand and environmental impacts
of EPA+DHA production from microalgae and farmed fish. The flowchart indicating
various unit operations involved in the production of EPA+DHA from microalgae (via
heterotrophic and photoautotrophic modes of nutrition) and from farmed fish is presented
in Figure 1.
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Figure 1. Overview of EPA+DHA production from microalgae and farmed fish.

2.2. Life Cycle Inventory Data

The data regarding biomass productivity, lipid content, EPA+DHA content of microal-
gae from photoautotrophic (Phaeodactylum Tricornutum) and heterotrophic (Schizochytrium
sps) modes of cultivation were considered from the literature [10,23,24]. The inventory data
regarding farming of fish and oil extraction were sourced from Refs. [25–28]. The inventory
data are provided in the Supplementary Material (Tables S1–S3). The GaBi software with
a professional database was used as a platform for predicting the overall primary energy
demand and environmental impacts associated with various unit operations for the pro-
duction of EPA+DHA from microalgae and farmed fish. The datasets relevant to Europe
were considered for performing LCA (e.g., Eu-28 electricity as an energy source).

2.3. Life Cycle Impact Assessment

The environmental impacts associated with various unit operations for the production
of EPA+DHA from microalgae and farmed fish were predicted using the CML 2001—Jan
2016 methodology. The environmental impacts such as abiotic depletion potential (ADP),
eutrophication potential (EP), global warming potential (GWP), acidification potential (AP),
etc., were assessed.

3. Results and Discussion
3.1. EPA+DHA Production from Photoautotrophic and Heterotrophic Microalgae

The primary energy demand of omega-3 fatty acid production from microalgae via
photoautotrophic and heterotrophic cultivation modes are presented in Figure 2a,b, respec-
tively. It can be noticed from Figure 2a,b that the cultivation of microalgae contributes
majorly to the primary energy demand (PED). In the case of photoautotrophy, the culti-
vation accounts for about 76.30% of the overall PED, while, in the case of heterotrophy,
it contributes to 71.17% of the overall PED of the process. The main factor attributing
to the PED is the requirement of energy for mixing the culture components. Similar ob-
servations were reported by Depra et al. [18] for the cultivation of microalgae in tubular
photobioreactors for the production of EPA+DHA. The comparative analysis of EPA+DHA
production from microalgae via photoautotrophic, heterotrophic modes of cultivation is
presented in Figure 3. It can be observed from Figure 3a that the PED of heterotrophic
mode is significantly less compared to photoautotrophy. This is due to the fact that in the
heterotrophic mode of cultivation, a biomass yield of ~10–30 g/L can be obtained, whereas,
in photoautotrophic mode, a biomass yield of up to 5 g/L could be achieved. Furthermore,
the yield of EPA+DHA is higher in heterotrophic cultivation compared to the photoau-
totrophic mode of cultivation. Similar observations were reported by Depra et al. [18]
with regards to EPA+DHA production from the autotrophic and heterotrophic mode of
cultivation. Hence, a heterotrophic mode of cultivation can be a more viable option for the
production of EPA+DHA production. Furthermore, the PED of heterotrophic cultivation
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can be minimized via supplementation of food-grade industrial effluents such as dairy
effluent rich in sugars as an alternative to the supplementation of glucose. However, sup-
plementation of industrial effluent would demand the requirement of prior sanitization to
avoid bacterial contamination. Further detailed LCA on the use of industrial effluents to
cultivate heterotrophs for high-value products is required. The impact of biomass yield
on primary energy demand for production of EPA+DHA via a photoautotrophic and
heterotrophic mode of cultivation was assessed and compared. Regarding the autotrophic
cultivation of microalgae, the biomass yield could vary from a low of 0.5 g/L to a maximum
of 5 g/L [24]. In contrast, in heterotrophic mode, the biomass yield would vary from a
minimum of 10 g/L to a maximum of up to100 g/L [10]. It can be noticed from Figure 4
that an increase in biomass productivity resulted in a significant reduction in primary
energy demand. Hence, by achieving high biomass densities, the photoautotrophic mode
of cultivation could also be an energy-efficient way of producing EPA+DHA as a substitute
for a conventional method of oil extraction from fish.

3.2. EPA+DHA Production from Farmed Fish

Due to the concerns of contamination by high molecular weight compounds and heavy
metals and fears of overexploitation of certain fish species, farmed fish under controlled
conditions could be an alternative to caught fish from oceans. In the present study, omega-
3 fatty acid production from farmed fish was analyzed. The primary energy demand
associated with unit operations involved in oil extraction from farmed fish (Scenario 3) is
represented in Figure 5a. It can be noticed from Figure 5a that the farming of fish contributes
mainly to the primary energy demand. This is attributed to extensive usage of fertilizers
and fossil-based energy to cultivate and process grains for fish meal production. Pelletier
and Tyedmers [25] studied the sustainability of feeding farm fish and has highlighted
the need for significant alterations in feed composition. The PED of omega-3 fatty acid
production from farmed fish is compared to that from microalgal biomass and is presented
in Figure 3a. It can be observed from Figure 3a that omega-3 fatty acids production from
farmed fish is significantly higher compared to oil extraction from microalgal biomass.
These results suggest that microalgae can be a viable vegetarian option for producing
EPA+DHA to fish oil produced from farmed fish. The literature reports on comparative life
cycle analysis of EPA+DHA production from microalgae and farmed fish are not available.
However, Barr and Landis [16] compared EPA+DHA production from microalgae with
fish caught from oceans. The authors reported that microalgae could be an alternative to
fish caught from oceans for EPA+DHA production. Furthermore, the authors identified
cultivation and dewatering as major unit operations that require significant improvements
in order to minimize the overall primary energy demand and environmental impacts.

The majority of the population consume fish and have fish as one of their staple
dietary components. Furthermore, as per the FAO [3], the majority of fish oil produced
from caught fish is not available for human consumption. Therefore, the oil extracted from
caught fish is used as feed for the farmed fish. As the fish oil from caught fish is contributing
majorly to feed, a scenario was developed to assess supplementation of microalgal-derived
oil as feed to farmed fish to replace fish oil derived from caught fish from oceans. The
primary energy demand of replacing microalgal oil with caught fish oil is assessed and
is presented in Figure 6a. The results indicate that replacing fish oil with microalgal oil
produced via heterotrophic cultivation can be viable. The overall primary energy demand
of oil extraction from microalgae via the heterotrophic mode of cultivation and fish oil
derived from caught fish are similar. Hence, microalgal oil can be used as an alternative to
conventional fish oil, thereby minimizing the overexploitation of fishes. However, detailed
insights into life cycle costing and social LCA are required.
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Figure 2. Primary energy demand and environmental impacts of EPA+DHA production from
microalgal biomass via photoautotrophic (A,C) and heterotrophic (B,D) mode of nutrition. (ADP—
Abiotic Depletion Potential; AP—Acidification Potential; EP—Eutrophication Potential; FAETP—
Freshwater Aquatic Ecotoxicity Potential; GWP—Global Warming Potential; HTP—Human Toxicity
Potential; MAETP—Marine Aquatic Ecotoxicity Potential; ODP—Ozone Depletion Potential; POCP—
Photochemical Ozone Creation Potential; TETP—Terrestrial Ecotoxicity Potential).
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Figure 3. Comparison of primary energy demand (a) and environmental impacts (b) of EPA+DHA
production from microalgal biomass via two modes of cultivation and from fish biomass. (ADP—
Abiotic Depletion Potential; AP—Acidification Potential; EP—Eutrophication Potential; FAETP—
Freshwater Aquatic Ecotoxicity Potential; GWP—Global Warming Potential; HTP—Human Toxicity
Potential; MAETP—Marine Aquatic Ecotoxicity Potential; ODP—Ozone Depletion Potential; POCP—
Photochemical Ozone Creation Potential; TETP—Terrestrial Ecotoxicity Potential).
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Figure 4. Impact of biomass yield on primary energy demand for production of EPA+DHA ((a) Pho-
toautotrophy, (b) Heterotrophy).
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Figure 5 Primary energy demand (a) and environmental impacts (b) of EPA+DHA production from 
fish biomass produced via farming in marine net pens.  

*ADP—Abiotic Depletion Potential; AP—Acidification Potential; EP—Eutrophication Potential; FAETP—
Freshwater Aquatic Ecotoxicity Potential; GWP—Global Warming Potential; HTP—Human Toxicity Potential; 
MAETP—Marine Aquatic Ecotoxicity Potential; ODP—Ozone Depletion Potential; POCP—Photochemical 
Ozone Creation Potential; TETP—Terrestrial Ecotoxicity Potential. 
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Figure 5. Primary energy demand (a) and environmental impacts (b) of EPA+DHA production
from fish biomass produced via farming in marine net pens. (ADP—Abiotic Depletion Potential;
AP—Acidification Potential; EP—Eutrophication Potential; FAETP—Freshwater Aquatic Ecotoxicity
Potential; GWP—Global Warming Potential; HTP—Human Toxicity Potential; MAETP—Marine
Aquatic Ecotoxicity Potential; ODP—Ozone Depletion Potential; POCP—Photochemical Ozone
Creation Potential; TETP—Terrestrial Ecotoxicity Potential).
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Figure 6. Primary energy demand (a) and environmental impacts (b) of EPA+DHA production from
fish biomass fed with microalgal oil produced via photoautotrophic mode/heterotrophic mode/ fish
oil. (ADP—Abiotic Depletion Potential; AP—Acidification Potential; EP—Eutrophication Potential;
FAETP—Freshwater Aquatic Ecotoxicity Potential; GWP—Global Warming Potential; HTP—Human
Toxicity Potential; MAETP—Marine Aquatic Ecotoxicity Potential; ODP—Ozone Depletion Potential;
POCP—Photochemical Ozone Creation Potential; TETP—Terrestrial Ecotoxicity Potential).

3.3. Life Cycle Impact Assessment

The environmental impacts associated with various unit operations for EPA+DHA pro-
duction from microalgae and farmed fish were evaluated and compared based on the func-
tional unit of 1 KG EPA+DHA produced. The environmental impacts of EPA+DHA produc-
tion from microalgae and farmed fish are represented in Figures 2c,d, 3b, and 5b. Among
the various unit operations involved in EPA+DHA production, the cultivation/farming
of microalgae and fish is a major contributor to all the environmental impacts assessed
except ADP (elements) (Figures 2c,d, 5b). This may be attributed to the demand for elec-
tricity during the cultivation/farming of microalgae/farmed fish. Furthermore, microalgae
harvesting by inorganic flocculants viz. ferric chloride has contributed considerably to
the ADP (elements) (Figure 2c). Across all the scenarios, the environmental impacts viz.
MAETP (Marine aquatic eco-toxicity potential) and ADP were found to be predominant.
Further, the environmental impacts of fish oil production were compared to that of oil
production from microalgae via photoautotrophic and heterotrophic modes of cultivation.
It can be noticed from Figure 5b that the environmental impacts concerning oil extraction
from farms were dominant compared to that of omega-3 fatty acids production from mi-
croalgae. This can be attributed to the extensive use of fossil-based energy for farming and
processing of grains required for the formulation of feed. The literature reports were not
available to compare the results of this study. Few studies have reported the extraction
of EPA+DHA from caught fish. Bartek et al. [19] reported that environmental impacts
of EPA+DHA production from microalgae are lower compared to that extracted from
caught fish. In the present study, the EPA+DHA extraction from fish was considered from
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farmed fish rather than caught fish. The present study is the first of its kind to compare
the environmental impacts of EPA+DHA production from microalgae and the farmed
fish. As farmed fish requires EPA+DHA as a supplement for its growth, a scenario was
developed by supplementing EPA+DHA from microalgae rather than supplementing oil
from caught fish. It can be noted from Figure 6b that environmental impacts of EPA+DHA
production from farms were similar when fish oil from caught fish is replaced with oil
from microalgae cultivated via a heterotrophic mode of cultivation. This clearly indicates
omega-3 fatty acid production from microalgae via the heterotrophic mode of cultivation
could be an alternative to conventional fish oil. More research insights into life cycle costing
and social LCA could facilitate in designing an optimum system for the production and
commercialization of omega-3 fish oil to a greater extent.

4. Conclusions

Ensuring access and supply of nutritious food to meet the demand of the increasing
population is vital for sustainable development [29]. Therefore, new and efficient food
production methods need to be developed that are characterized by minimal environmental
impacts and do not cause damage to ecosystem quality. The cultivation of microalgae to
meet the demands of global food needs is gaining recognition. The production of omega-3
fatty acids from microalgae minimizes the burden on fisheries and reduces dependency
on biotic resources [30]. As fish are considered the only source for EPA and DHA, in
order to avoid overfishing, it is essential to develop alternative options and strategies
for the production of EPA and DHA [31–33]. The present compares life cycle analysis
of EPA+DHA production from microalgae and fish biomass. The LCA results indicated
that microalgal EPA+DHA production via a heterotrophic mode of cultivation could be
an alternative to conventional fish oil resources. Farming is the major contributor to
primary energy demand in EPA+DHA production from fish and fish feed accounts majorly
to the primary energy demand. The requirement of huge loads of fish oil is the major
factor, and supplementing the microalgal meal cultivated via heterotrophic mode could
minimize the environmental impacts and helps to reduce the pressure of ocean fisheries,
thus preserving the biodiversity. However, detailed insights into the nutritional profile
of fish cultivated with microalgal biomass are required. Moreover, while performing
LCA, the direct impacts on biodiversity cannot be quantified with the current impact
assessment methods. Factors such as overfishing and resource depletion are considered
threats to ocean biodiversity [34]. Therefore, there is a need to develop methodologies to
quantify and assess the key indicators related to ocean biodiversity to support sustainable
development [35–37].

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cleantechnol3040042/s1: Table S1: Life cycle inventory of microalgal cultivation via photoau-
totrophic and heterotrophic modes of nutrition; Table S2: Life cycle inventory of fish farming and
oil extraction from fish biomass; Table S3: Environmental impacts of EPA+DHA production from
microalgal biomass via photoautotrophic and heterotrophic mode of nutrition and from Farmed Fish.
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