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Abstract: Nowadays, most indoor cooling control strategies are based solely on the dry-bulb temper-
ature, which is not close to a guarantee of thermal comfort of occupants. Prior research has shown
cooling energy savings from use of a thermal comfort control methodology ranging from 10 to 85%.
The present research advances prior research to enable thermal comfort control in residential buildings
using a smart Wi-Fi thermostat. “Fanger’s Predicted Mean Vote model” is used to define thermal comfort.
A machine learning model leveraging historical smart Wi-Fi thermostat data and outdoor temperature is
trained to predict indoor temperature. A Long Short-Term-Memory neural network algorithm is employed
for this purpose. The model considers solar heat input estimations to a residence as input features. The
results show that this approach yields a substantially improved ability to accurately model and predict
indoor temperature. Secondly, it enables a more accurate estimation of potential savings from thermal
comfort control. Cooling energy savings ranging from 33 to 47% are estimated based upon real data for
variable energy effectiveness and solar exposed residences.

Keywords: thermal comfort control; solar heat gain; PMV; energy saving; smart Wi-Fi thermostat

1. Introduction

The latest International Panel for Climate Change (IPCC) urges worldwide carbon
neutrality by 2050 in order to ensure that the global temperature rise remains below 1.5 ◦C
above the preindustrial age level. A global temperature rise above this value is deemed to
have catastrophic effects [1].

Some recent studies offer recommendations on how to best get there. For example, a
recent study by Stanford researchers projects a need to reduce energy consumption by the
order of 59% [2]. Similarly, the National Renewable Energy Laboratory (NREL) has stated
that a deep energy demand reduction of 50% can permit renewable energy penetration to
expand to 80% by 2050 [3].

In general, retrofit investments are not as cost effective as controls improvements to
reduce consumption. Controls improvements are seen to be more cost effective, with its
value equal to USD 0.35/kWh savings [4]. In other words, it is far more cost beneficial to
save energy through controls improvements than to pay for the energy itself.

One controls improvement in both the residential and commercial sectors that has
significant savings potential is associated with management of thermal comfort instead
of management of temperature in interior spaces. In the commercial building sector,
prior research by Masoso and Grobler, 2010, Vakiloroaya et al., 2014, Ghahramani et al.,
2015a, and Ghahramani and Dutta, 2018 documented potential cooling energy savings
from using comfort-driven and energy-aware HVAC system operations in the range of
4–32% [5–8]. These researchers noted that the savings extent was dependent upon building
type, internal HVAC controls, and outdoor weather conditions. Other researchers have
employed thermal comfort control strategies based upon time-averaged ventilation (TAV),
a method of reducing airflow while still maintaining equal comfort and outside air supply,
to yield energy savings. Kaam et al., 2017 saw the following energy reductions: fan (15%),
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reheat (41%), and chilled water (23%) [9]. Two recent reviews document a wide range in
savings predictions from thermal comfort control. Yam et al. documented energy savings
ranging from 7–40% and peak demand reduction of up to 69%, whereas Merebat et al.’s
extensive review of over 125 research efforts showed energy savings ranging from 10 to
up to 70% [10]. Additionally, in another study, cooling energy saving estimations were
determined to be as high as 40% in residential buildings [11]. Last of all, Lou et al., studied
possible use of a smart Wi-Fi thermostat to achieve thermal comfort control. Their study
predicted energy savings of up to 85% for a 1-month period in the summer in the Midwest,
US [12].

In this context, the present research seeks to build upon the prior research of Lu
et al. [12] to improve the accuracy of energy savings predictions from use of smart Wi-Fi
thermostat data leveraged thermal comfort control. The prior work did not account for
solar fenestration and solar irradiation absorption on the residences’ exterior surfaces in
developing a data-based model of the internal temperature within a residence and on the
determination of human thermal comfort. Additionally, the research posited here aims to
demonstrate an ability to estimate both potential savings from thermal comfort control in
any residence where smart Wi-Fi thermostats are present.

2. Background

Maintaining human thermal comfort inside residential or commercial buildings is the
main goal of HVAC systems. There is a wealth of literature describing the factors which
contribute most to thermal comfort. Indoor environmental factors (indoor temperature,
indoor relative humidity, air velocity inside a space, and mean radiant temperature (MRT);
occupational factors (occupants’ age, gender, clothing, metabolic rate, and behavior, such
as turning on/off the a/c or opening or closing windows and blinds) have been seen as the
dominant influencers.

Fanger’s predicted mean vote (PMV) index has been used most for defining the
thermal comfort inside a controlled space. It basically predicts the mean value of votes of
a group of occupants on a seven-point thermal sensation scale (shown below). Thermal
neutrality is obtained when an occupant’s internal heat production is the same as their heat
loss. Different methods can be used to assess this for different combinations of metabolic
rate, clothing insulation, temperature, airspeed, mean radiant temperature, and relative
humidity [13]. With the PMV index value for a space calculated, the PPD, or index that
establishes a quantitative prediction of the percentage of thermally dissatisfied occupants
(i.e., too warm or too cold), can be determined. PPD essentially gives the percentage of
people predicted to experience local discomfort. These indices have been incorporated into
ASHRAE 55 and ISO 7730 standards. Further, the EN 16798 standard for thermal comfort
are based on the predefined PMV and PPD calculations found in the ASHRAE 55 and ISO
7730 standards [14].

Table 1 shows a summary of smart thermal control technologies. Included in this
table are the sensors and technologies employed, the algorithm and model applied, the
implemented control strategy, and the saving estimation derived.



Clean Technol. 2021, 3 745

Table 1. Summary of recent smart thermal comfort-based control technologies.

Ref. Building Type Technologies/Sensors
Employed

Model/Algorithm
Applied

Control Strategy
Implemented

Savings
Estimation

[15] Commercial
Building Simulation Software Deep Reinforcement

Learning (DRL)
Reinforcement
Learning Agent Up to 50%

[11] Residential
Building

Temperature, Relative
Humidity, and

Occupancy Sensors
No Simulation

Thermal
Comfort-Based

Controller
Up to 39.5%

[16] Residential
Building

Thermostat Data
Occupant Surveys of

Comfort

Second-Order
Equivalent Thermal

Parameter (ETP)

PMV-PPD-Based
Smart Thermostats

Control
Up to 11.5%

[17] Commercial
Building

Thermostat
Building Automation

System

Artificial Neural
Network (ANN)

No Control. Merely
Assessed Thermal

Comfort
Not Mentioned

[18] Commercial
Building Simulation Software Deep Reinforcement

Learning (DRL)
Deep Reinforcement

Learning Agent Up to 21%

[19] Residential
Building Simulation Software No Details PMV and Metabolic

Rate-Based Controller Up to 28.8%

Prior research has demonstrated success in controlling for thermal comfort using
smart Wi-Fi thermostats and/or building automation systems. With the global market for
smart Wi-Fi thermostats forecasted to increase from USD 2.5 billion to USD 6.4 billion from
2021–2026 [20] driven especially by the proliferation of smart home technologies, there is
much promise for implementing thermal comfort control in residences. However, equally
true is the promise for estimating with accuracy the savings achievable from thermal
comfort control based upon actual data unique to the residence in which a smart Wi-Fi
thermostat is installed.

Prior research has generally focused on implementing thermal comfort control gener-
ally on a single or several residences. Often these implementation pathways have required
additional sensors which limit widespread adoption of such control strategies. Integration
of thermal comfort control as a fundamental capability for all smart Wi-Fi thermostats is
now possible. The potential global impact on energy consumption and carbon emissions
is certainly substantial, and the timeline to achieve such savings is short. However, it
would be helpful for policy makers to understand with confidence the energy consumption
and carbon emission savings which could result from widespread adoption of residential
thermal comfort control.

It is observed in Section 1 that the derived savings for such control widely varies.
Clearly this variation is building- and climate-dependent. However, the ability to estimate
savings potential for thermal comfort control at scale has not yet happened. This paper
seeks to advance this capability.

Here, we propose to build upon a prior effort of one of the authors of this paper
reported in Lou et al. [12]. This effort investigated development of a data-based model
using archived smart Wi-Fi thermostat data to predict internal temperature as a function
of exterior weather conditions. This model was used to simulate thermal comfort control.
In their approach, they improved estimation of mean radiant temperature (MRT) for the
predicted mean vote (PMV) through smart Wi-Fi enabled predictions of wall and ceiling
R-Values for exterior room surfaces using the technique reported by Alanezi et al. [21]. With
wall and ceiling R-Values estimated, the inside wall/ceiling temperatures were calculatable
considering quasi-steady heat transfer. This estimate of the interior surfaces of exterior
walls and ceiling enabled better determination of the MRT, yielding improvement in the
PMV calculation. In a thermal comfort control scenario, the temperature setpoint needed to
achieve a minimal comfort condition could be calculated for all times. This setpoint target
could be used to control the on-off status of the cooling or heating system.

The research completed by Lou et al., however, did not account for solar heat gain to a
residence, either from solar fenestration or through the envelope both in the development
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of the data-based model to predict internal temperature and solar fenestration influence
on perceived thermal comfort. Their estimate of cooling energy savings (as high as 86%)
was as a result too high. Accounting for solar heat gain contributions will certainly yield
improved accuracy savings estimates.

The following describes the case study included in this research, presents the method-
ology for predicting MRT with inclusion of solar heat gain, and the what-if analysis used
to determine a more accurate estimation of cooling energy savings. It concludes with a
discussion of the results, its limitations, and the future research required. This research will
show the improvement of including the solar contributions to the predictive model of inter-
nal temperature leveraging smart Wi-Fi thermostat data and including solar fenestration
estimation inclusion in the PMV calculation. The improvement in model accuracy, impact
of solar input data inclusion in the model on cooling energy with temperature control,
and impact of both solar heat gain and fenestration on savings calculations for thermal
comfort control will be documented. The variable housing envelope thermal effectiveness
and house NSEW orientation will enable generalization of the results. In essence, we seek
to show that this technique can be applied to any residence with a smart Wi-Fi thermostat
to estimate thermal comfort control savings based upon the construction of the residence
and occupant preferences for internal temperature maintenance.

3. Case Study

In this study, several two-story residences in the Midwest US were considered. The houses
selected were from a group of residences owned by a university that had been recently audited
to document the amount of insulation in the envelope [22]. The targeted residences in this study
had variability relative to size, envelope R-Values, and sunlight exposure. Table 2 lists all of the
residential energy and solar exposure characteristics employed.

Table 2. Residential building geometrical, shading, and energy characteristics data.

House Characteristics House #1 House #2 House #3 House #4 House #5

Afloor (m2) 54 84 54 59 45
Awall (m2) 159 187 156 152 149

Awindow (m2) 2–3 2–3 2–3 2–3 2–3
Rwall (m2 ◦K/W) 0.88 0.7 0.7 2.5 0.88

Rwindow (m2 ◦K/W) 0.35 0.35 0.35 0.35 0.35
RAttic (m2 ◦K/W) 3.87 2.15 1.1 6.69 3.17

Shaded Faces North/West North/East/West North/West North/East/West North/West
Compressor Cooling

Size (kW) 10.5 8.8 10.5 10.5 12.25

4. Methodology
4.1. Model Improvements Considering Solar Heating Inputs

The following describes the data employed, particularly emphasizing how the solar
data contribute to the prediction of the MRT.

4.1.1. Data Collection and Preprocessing
4.1.1.1. Data Employed

In addition to the residence specific data described in Table 2, other data were col-
lected. This data included smart Wi-Fi thermostat readings (cooling setpoint, indoor air
temperature, relative humidity, and cool demand status) and historical local weather data
obtained from NOAA’s Climate Data Online resource [23].

Solar heating inputs are based upon hourly solar irradiation with consideration of
the location, day of the year, time of the day, orientation of the exterior surfaces. Solar
data corresponding to clear sky days were collected from NASA Prediction of Worldwide
Energy Resources (POWER) [24]. The collected solar data, in addition to local times, were
utilized to estimate the hourly solar irradiation in order to be used in the developed model
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knowing the temporal cloud cover. Solar angles were also estimated for each house based
upon the same criteria that used in hourly irradiation estimation, all solar angles were
estimated based on methods from Duffle and Beckman [25].

In order to estimate the hourly solar irradiation at each surface, several solar angles
need to be determined considering the location of the house and the time of day. One of
the most important angles to calculate hourly solar irradiation is solar altitude angle (α)
which represents the angle between the horizontal and the line to the sun, (0 < α < 90). To
estimate hourly solar irradiation, solar incidence angle (θi,sur f ace) should be determined as
well and can be defined as the angle between the solar irradiation on a surface and a line
perpendicular to the same surface.

The most important variables to estimate hourly solar irradiation at each surface are
cloud cover, beam solar irradiance, diffuse solar irradiance, and ground-reflected solar
irradiance. Cloud cover is the fraction of sky that is overcast by clouds from an observed
location; beam solar irradiance (Ib,sur f ace) is the direct solar incidence that is received by a
surface; diffuse solar irradiance (Id,sur f ace) is the scattered solar radiation in the atmosphere
by molecules and particles, and the ground-reflected solar irradiance (Ig,sur f ace) is the solar
radiation fraction reflected by the ground. Hourly solar irradiation received by each surface
can determined simply using Equation (1) [25], as shown below. Table 3 shows a sample
of the solar data integrated with each house to be considered in the predictive model and
MRT estimations.

Itotal−solar,sur f ace = Ib,sur f ace cos
(

θi,sur f ace

)
+ Id,sur f ace + Ig,sur f ace (1)

Table 3. Sample of the solar related data established for each residence.

Date Time
Solar Altitude

Angle
(Degree)

Solar
Incidence

Angle (South)
(Degree)

Cloud
Cover

(%)

Beam
Solar

Radiation
(South)
(W/m2)

Diffuse
Solar

Radiation
(South)
(W/m2)

Ground
Reflective

(South)
(W/m2)

Total Solar
Radiation

Received by
South Side

(W/m2)

07/06/2018 09:02 41.139 86.837 24 38 97 10 109
. . . . . . . . . . . . . . . . . . . . . . . . . . .

14/06/2018 14:28 70.252 74.385 41.7 229 135 46 243
. . . . . . . . . . . . . . . . . . . . . . . . . . .

23/06/2018 16:14 42.096 87.691 91.7 16 96 6 103

4.1.1.2. Data Preprocessing

Following the prior work of Lou et al. [12], first, two-minute uniformly spaced data
were developed from the non-uniformly spaced delta smart Wi-Fi thermostat data using
linear interpolation. Secondly, the uniformly spaced smart Wi-Fi thermostat data were
synched with historical weather and solar data using a nearest neighbor interpolation
approach. The third step was to remove highly correlated features using Pearson’s corre-
lation method [26]. The last step was to apply min–max normalization. A sample of the
uniformly spaced smart Wi-Fi thermostat features synchronized with selected weather and
solar heating features is shown in Table 4.

Table 4. Sample of selected synchronized Smart Wi-Fi thermostat features with weather and solar heating features.

Date Time Outdoor
Temperature (F)

Indoor
Temperature

(F)

Cooling Setpoint
Temperature (F)

Cooling
Demand

Status (0/1)

Cloud
Cover (%)

Solar
Altitude

Angle
(degree)

Southern
Beam Solar
Radiation

(W/m2)

Western
Beam Solar
Radiation

(W/m2)

02/6/2018 0:00:00 69 77 80 0 53.5 −27.549 0 0
. . .

12/6/2018 10:16:00 76 72.5 72 1 96.2 55.93 57 0
. . .

24/6/2018 16:06:00 83 72 72 0 35.2 −27.714 137 448
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4.1.2. Model Development and Improvement

One of the aims of this research was to improve the data-enabled dynamic model
to predict the indoor temperature inside a residence by accounting for solar heat gain
terms. Huang et al. [27] employed various recurrent Neural Networks (RNN) described by
Hochreiter and Schmidhuber in 1997 [28]. Their research showed that the Long Short-Term
Memory (LSTM) algorithm yielded the most accurate predictions. The present research
particularly looks to improve the LSTM model self-learning algorithm to predict indoor
temperature using smart Wi-Fi thermostat and weather data through the inclusion of solar
heating input data.

The Long Short-Term Memory (LSTM) neural network has a complex architecture
in comparison to RNN methods, as shown in Figure 1 [28]. Basically, it has three unique
gates: a forget gate (ft), which decides whether to maintain or delete the combination of
the old hidden state (ht-1) and the input data (Xt); an input gate (it), which allows to new
information to be stored in the cell state (Ct), and an output gate which determines the
next hidden state.
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Figure 1. Long Short term memory architecture.

The LSTM is a type of recurrent neural network (e.g., prior values of the response
variable—indoor temperature—and all other inputs) can be used as predictors for the
current response. The lookback period controls how far back in time prior values are used
to predict the current response. Here, a lookback period of 60 points (2 h) is considered.
For computational efficiency and to prevent overfitting of a model, the data is “batched”.
In this study, a batch size of 128 was selected. This means that the total number of response
periods was divided into 128 bins of input–output pairs. Batching enables propagation of
weightings across time. This, along with regularization, helps to prevent over-fitting. Here
regularization constants for L1 and L2 were both set to 0.0001. R-squared, MAE and RMSE
metrics were employed to evaluate the validation quality.

In this study, the first 70% of the data were used for training. The remaining 30% of the
data were used for testing to demonstrate confidence in the developed model to new data.

Best models were developed for input data features both including and excluding the
solar input features described in Section 4.1.1.1.

4.2. Estimating Changes in Cooling Required When Solar Heating Is Included

The required cooling energy to maintain the specified thermostat setpoint temperature
was calculated for the two models emerging from Section 4.1.2 (e.g., with and without
solar heating inputs). This comparison permits estimation of the solar heat gain into the
building and its effect on the cooling demand.

The cooling demand can be simulated through use of the developed dynamic model to
predict indoor temperature using simple on–off control logic commonly used in thermostat
systems. Equation (2) describes the simple control logic that was used in this research.

Cooling Demand Status (CDSt) z =


ON (1), Tindoor > Tcooling setpoint + 0.5◦(F)

CDSt−1, Tindoor = Tcooling setpoint
OFF (0), Tindoor ≤ Tcooling setpoint − 0.5◦(F)

(2)
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4.3. Estimating Impact of Solar Heat Gain on PMV Control
4.3.1. PMV Model

“Fanger’s predicted mean vote (PMV) model” is used in this study to quantify thermal
comfort [13]. Its use in the literature is well documented and not described here. A seven-
point thermal sensation scale proposed by the American Society of Heating, Refrigerating,
and Air-Conditioning Engineers (ASHRAE) is typically used to define various levels of
comfort [3]. This seven-point thermal sensation scale ranges from −3 to +3. This range
accounts for the thermal comfort experienced by a majority of people. A general hot feeling
corresponds to a PMV index of +3. A general cold feeling corresponds to a PMV index
of −3, and so. Most people experience thermal comfort satisfaction when the PMV index
ranges between −0.5 and +0.5.

The following values were set for the parameters entering into the PMV calculation.
The metabolic rate, M, was set to 1 met (seated at rest), applicable to a resident sitting.
The clothing insulation value, Icl, was set to 0.5 in the summer. The relative air velocity
term, var, was equated to 0.1 m/s, based upon the minimum value accepted by ASHRAE-
55. The room temperature and humidity were based upon the smart Wi-Fi thermostat
measurement. The next section details the calculation of the MRT.

4.3.2. MRT Estimation

The mean radiant temperature (MRT) is one of the main factors needing calculation in
order to quantify the thermal comfort inside a residence. Different approaches have been
employed to estimate it. One of these requires direct measurement of the temperature for
each interior surface in a room, and calculation of the view factors between the surfaces
and a person approximated within the room [29]. However, the difficulty of identifying the
angle factors due to the position of an occupant makes this approach time consuming and
complex. Another effort employed use of a black-globe thermometer, along with measured
room temperature and the air velocity [29]. One of the issues with this approach is the size
of the black body that used in the thermometer; the smaller the size, the lower the accuracy.
The simplest method equates the MRT to the indoor temperature. Collectively these
approaches are either inaccurate [29] or are made impractical, through the requirement of
additional measurements, beyond just the room temperature.

In a recent study, Lou et al. [12] used knowledge of the wall, window, and ceiling
R-Values (information that ultimately could be inferred from smart Wi-Fi thermostat data,
Alanezi et al. [21]) to develop a model to estimate the MRT which could be completely
reliant upon readily available geometrical data and smart Wi-Fi thermostat data. This
model estimated the interior temperature of all exterior wall and ceiling surfaces enclosing
a space using smart Wi-Fi thermostat-derived envelope R-Values. To do this, a steady-
state analysis with knowledge of the real-time indoor and outdoor temperature was used.
Assuming negligible solar gain to an exterior surface (an assumption that will be relaxed
in this study), a steady-state energy balance between the heat flow from interior surface
of an envelope to the indoor air and the heat flow through the envelope component was
developed. This energy balance was rearranged to obtain the interior surface temperature
of envelope component according to Equation (3).

Te,in =
(Re + Rho)Tindoor − RhiTo

Rhi + Re + Rho
(3)

Above Rho is the overall thermal resistance on exterior surface, Rhi is the overall ther-
mal resistance on the interior surface (assumed to be 0.04 and 0.12 m2-K/W respectively),
Re is the conductive thermal resistance through envelope component, and Te,in is interior
surface temperature of envelope component.

Interior surfaces unconnected to exterior surfaces are assumed here to be equal to the
indoor temperature, which is considered equal to the measured smart Wi-Fi thermostat
temperature. Undoubtedly, there will be temperature variation within a residence. There-
fore, this estimation as representative of all spaces in a residence certainly is associated
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with some error. However, most centrally heated and cooled residences are controlled by a
single thermostat based upon temperature in a single room, so the approach posed here
simply represents a natural extension of this type of whole residence HVAC control.

Solar heat gain certainly influences the thermal comfort residents perceive. Solar
fenestration can cause residents to feel warmer. Moreover, solar heat gain through walls
and ceilings can render warmer interior surfaces and a higher MRT. Not accounting for
both in calculating the PMV, such as in the work of Lou et al. [12], as a result yields a
non-conservative estimate of comfort. The following describes how the MRT model of Lou
et al. was consequently modified to account for both solar heat contributions.

Exterior residential surfaces are exposed to solar irradiation during the day. This
solar irradiation can be accounted for through the use of what is referred to as the sol-air
temperature, Tsol-air by replacing To in Equation (3) with this temperature [30]. The sol-air
temperature is defined by Equation (4).

Tsol−air = To +
α Itotal−solar,sur f ace

ho
− ε ∆R

ho
(4)

where Itotal-solar,surface is the total incident solar flux exposed to a surface comprised of the
diffuse, ground reflected, and beam solar irradiance, as given in Equation (1); ∆R is the
difference between long wave radiation incident on surface from sky and surroundings and
radiation emitted by black body at outdoor air temperature; α is the absorptance of surface
for solar radiation; ε is the hemispherical emittance of surface, and ho is the coefficient of
heat transfer for long wave radiation and convection outer surface.

From Equations (3) and (4), the interior surface temperature of envelope component
can be expressed as

Te,in =
(Re + Rho)Tindoor − RhiTsol−air

Rhi + Re + Rho
(5)

Previously, the MRT was estimated using an area weighted average of room surface
temperatures as given by Equation (5). The exterior wall/ceiling component interior
surface temperatures can be calculated according to Equation (6).

MRT0 =
A1Ts1 + . . . + ANTsN

A1 + . . . + AN
(6)

Above, the subscript 0 refers to an MRT calculation exclusive of solar fenestration. If
there is solar fenestration heat gain in a room, it must influence the MRT. To compute an
MRT with consideration of this, the transmitted solar heat needs to be estimated based
on the incident solar irradiation to the windows, the solar incidence angle, θincidence, on
each wall (defined as the angle between the solar irradiation on a surface and a line
perpendicular to the same surface), and the solar heat gain coefficient (SHGC) as shown in
Equation (7)

Itransmitted−solar,window,i = Itotal−solar ∗ SHGC (θincidence,i) (7)

where i represents the ith surface.
With the transmitted solar radiation through fenestration on each surface, a delta MRT

for each room can be calculated using an average transmitted solar energy from multiple
windows in a space (Equation (7)) from Equation (8) [29,30].

Itransmitted−solar = Itransmitted−solar,window,i + . . . + Itransmitted−solar,window,n (8)

where n is the number of surfaces in a room which allow solar radiation to be transmitted
through fenestration.
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The effect of solar fenestration on human feeling of comfort can be accounted for
through use of a radiation heat transfer coefficient acting between the actual mean radiant
temperature and the indoor temperature as referenced in ASHRAE 55 [30], according to:

Qrad = Itransmitted−solar = hr (MRTactual − Tindoor) (9)

Here, MRTactual = MRT0 + ∆MRT, where ∆MRT is the change in MRT as a result
of solar fenestration. The radiation heat transfer coefficient in the standard is listed at
typically being 4.7 W/m2-K [29].

As a first approximation, Tindoor can be equated to MRT0. This assumption is reason-
able when solar fenestration gain has a small effect on MRT (if the window area is small
relative to the wall area) and when the walls and ceiling are reasonably well insulated.
All residences in this study had window area fractions of no more than 0.14 so the first
requirement is satisfied. However, the latter is only satisfied in the higher efficiency resi-
dences considered here. With this assumption, Equation (10) can be reorganized to solve
for ∆MRT acording to:

∆MRT =
Itransmitted−solar

hr
(10)

The actual MRT can then be approximated as:

MRTactual ∼ MRT + ∆MRT (11)

4.3.3. Summary of PMV Calculations

While these values have been set, they are offered with caution. A recent review of
fifty years of the PMV model acknowledges that improper specification of any of these
parameters can significantly affect the PMV calculation. The EN 16798-1 and 16798-2
Standards offer guidance about how all six terms in the PMV can be calculated, but doing
so in practice can be difficult [31]. The methodology posed here leverages reasonable
values for the terms which are not measured and for the PMV. The thermal comfort savings
calculated will therefore nominal. However, the actual thermal comfort for a residence
ultimately could adapt to resident feedback of discomfort when the algorithm is not
working for the residents. This type of feedback would improve the resident specific model
of thermal comfort.

4.3.4. Thermal Comfort Control Logic

A simple on–off control logic based upon measuring the internal temperature and
humidity, estimating the current PMV values, and comparing the present value to the
desired or setpoint PMV value was employed. This comparison will then prompt the
turning on or off the HVAC system. Here the PMV setpoint was 0.25 (slightly warm). A +−
PMV setpoint delta of 0.25 was established. Thus, if the PMV value rose above 0.5, cooling
was initiated. If it fell below 0, cooling was disengaged. Otherwise, the cooling demand
was not changed from the prior state.

The flowchart shown in Figure 2 summarizes the complete control strategy. In step 1,
current weather data are accessed and synchronized with the smart Wi-Fi data. The
next step is to estimate the solar heat inputs using Equation (1) mentioned previously
in Section 2 to identify their effect on thermal comfort. Next the indoor temperature is
predicted using the trained LSTM Model obtained from historical weather data, smart
Wi-Fi data, and solar related data (described in Section 4.1.2). The subsequent step is
to estimate for a given zone the MRT; in one case, disregarding solar heating inputs, as
given by Equation (6), and in other case, accounting for solar heating inputs, as given
by Equation (11). With an MRT calculated, the PMV index can be determined at each
sampled time considering the predicted indoor temperature, the indoor humidity obtained
from thermostat data, estimated mean radiant temperature (MRT), and occupants’ data
(M ranges from 1.1–1.3 met and Icl ranges from 0.36–0.5 clo). The last step is to check if
the estimated PMV value is larger or equal to the highest desired PMV value; if the PMV
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value is larger or equal to 0.5, the cooling demand is set to 100%; if it is below 0, the cooling
demand is set to 0%; otherwise, it is not changed. This control logic is repeated each time
step in this study.
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4.4. Evaluating Savings from PMV Control with Solar Contributions Accounted For

As was reviewed in Section 2, energy savings from thermal comfort control, not
temperature control, have been reported as ranging from 10–85% depending on several
factors, such as location of the building, the number of the occupants, and other factors
related to the PMV. Comparing savings from thermal comfort control to conventional
controls, it can be seen clearly that utilizing comfort controls would have an impact on the
global energy reduction goals as well as carbon dioxide pollution. The prior work of Lou
et al. reported savings at the high end of this range. However, as previously mentioned,
their work did not consider solar heat gain contributions to comfort.

Here we estimate cooling energy savings from thermal comfort control for the five
residences shown in Table 2 for the time period from 2/6/2018–24/6/2018 for actual
weather conditions and with and without consideration of solar heat gain. The baseline for
comparison is a temperature control scenario, where the indoor setpoint temperature was
considered to be 22 ◦C during the day (from 6 a.m.–5 p.m.) and 26 ◦C during the remainder
of the day.

The cooling energy consumption was determined by considering the cooling size of
the residence’s HVAC and the effective duty cycle for the whole period. The cooling duty
cycle is defined as:

E f f ective Duty Cycle = ∑(Cooling time)× (Cooling Demand Status)
∑ Time

(12)

5. Results

LSTM machine learning predictive models for the residential internal temperature
were developed using the input features previously described in Section 4.1.1.2. Best
models were developed with and without inclusion of the solar input terms. As noted
previously, the models were trained using the earliest 70% of the data. The remainder of
the data was used for testing. Table 5 shows the hyper-parameter settings and validation
metrics for both considerations (disregarding and accounting for solar inputs).

Table 5. Hyper-parameter settings and validation metrics for the best model developed for each consideration.

Model Lookback
Steps

Hidden
Layers (Units)

Batch
Size MAE R2 MAPE (%) RMSE

LSTM w/o Solar Inputs 30 40 25 15 128 0.66296 0.847 0.866 1.003
LSTM w/Solar Inputs 30 40 25 15 128 0.406 0.912 0.537 0.627
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Figure 3a shows a time series plot of the measured indoor temperature and the
predicted indoor temperature over the entire time period without taking solar heating
inputs into account for House #1 (with almost 50% shading and medium insulation level).
Figure 3b shows a similar plot for the model including solar heating inputs. A comparison
between the two plots, especially in the validation and testing range, shows a substantial
improvement in the predictions. This same result was seen for all of the residences
considered. Clearly the additional solar heat inputs are critical for improvement of the
predictive model in comparison the results of Lu et al., which was effectively represented
by the case shown in Figure 3a.
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5.1. Cooling Reduction from Thermal Comfort Control versus Traditional Temperature Control
with and without Consideration of Solar Heat Gain

Solar heat gain certainly increases the required cooling of a residence. Figure 4 shows
a time series for a fairly cloudy day (Figure 4a) of the predicted temperature, actual setpoint
temperature, and predicted real time cooling demand with and without inclusion of the
solar heat input terms (Figure 4b). Figure 4c shows the cooling duty cycle for a 24 h window
for the solar heat input and no solar heat input cases. It is obvious that the required cooling
is slightly reduced due to the high cloud cover during the day. It can be inferred that solar
heat gain effects on the cooling required to maintain comfort are relatively small.
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Figure 5 shows similar results for a mostly sunny day. It is clear especially from
comparison of the cooling duty cycle with and without solar terms of Figure 5c to Figure
4c that this reveals a much greater reduction in cooling if solar inputs are not considered
for the sunny day case. Solar heating in the cloudy case accounts for 17% of the cooling,
whereas in the mostly sunny case, it accounts for 58%.
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5.2. Impact of Solar Heat Gain on PMV Value

Figures 6 and 7 provides time series of the PMV values calculated for the cases
considered in Figure 4 (mostly cloudy) and Figure 5 (mostly sunny) with and without
consideration of solar heating. The two plots reveal the impact of the solar heat gain on the
actual PMV for, respectively, a mostly cloudy and mostly sunny day for the same residence.
It is clear for the mostly cloudy case presented in Figure 6 that the solar heat gain has little
impact on the actual PMV value. In contrast, Figure 7 reveals a large difference between
the PMV value calculated by accounting for solar heat gain and discounting it. The solar
heat gain case yields a substantially higher PMV value.
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5.3. Savings from PMV Control with Solar Heat Gain Contributions Accounted For

Figure 8 shows a comparison of the total cooling energy consumption for several
residences over the complete time period for three cases: (i) the actual temperature control
case (baseline); (ii) thermal comfort control with solar heat gain contributions considered,
and (iii) thermal comfort control when solar heat gain contributions were not considered.
The light blue bars represent the actual cooling energy consumption, while the red and the
dark blue bars represent the cooling energy consumption for thermal comfort with and
without considering solar heat gain. PMV control simulations were conducted for each of
the residences shown in Figure 2 in order to evaluate the impact of residence shading.
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control with solar heat gain, and (3) PMV control without solar heat gain.

From this figure it is clear that for all residences, inclusion of the solar heat gain
contributions yields smaller savings from PMV-based thermal comfort control than similar
calculations if these contributions are not included. This result is not surprising. However,
this research uniquely uses actual data and a well-validated model to demonstrate this. It
also shows that the amount of savings depends upon the amount of shading a residence has.
With greater shading (e.g., Houses 2 and 4), smaller differences in savings from PMV-based
thermal comfort control between the solar heat gain and non-solar heat gain cases are
estimated in comparison to residences with less shading (e.g., Houses 1, 3, and 5). It is
also clear that residences with greater wall and ceiling insulation see smaller savings from
thermal comfort control (House 4 is the most insulated house). In contrast, the residence
having the poorest insulation is associated with the biggest savings from thermal comfort
control (House 2 and 3).

Table 6 summarizes the savings from thermal comfort control for each of the residences
included in this study and for both the solar heat gain contribution and non-solar heat
gain cases.

Table 6. Savings from application of thermal comfort control logic for the residences considered in study.

House #1 House #2 House #3 House #4 House #5

Insulation Level Medium Low Low High Medium
Savings from Thermal Comfort Control w/
and w/out Solar Heat Gain Consideration 40%/53% 47%/56% 46%/60% 33%/43% 40%/52%
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In this study, cooling energy savings range from 33 to 47% by applying thermal comfort
control with consideration of solar heat gain, well below that observed by Lou et al. [13],
whereas cooling energy savings range from 43 to 60% if solar heat gain is not considered.

6. Conclusions

This paper has demonstrated improvement in data-based machine learning dynamic
models to predict the indoor temperature through the addition of solar heating inputs.
Model improvements were made possible through the use of an LSTM algorithm and
through accounting of solar heat gain. This model was critical to the conduct of what-if
assessments which permitted both improved accuracy of cooling energy savings from
thermal comfort control and quantitative estimation of the solar heat gain contribution to
any residence. In total, cooling energy savings from thermal comfort when considering
more realistic solar heat gain ranged from 33 to 47%; in contrast, 43 to 60% were solar heat
gain to be ignored. The extent of savings and the influence of solar heat gain on it was
seen to depend upon the energy effectiveness of a residential construction and the level of
shading. Greater wall and ceiling insulation reduces thermal comfort savings potential.

The value of this research is that is shows that smart Wi-Fi thermostat data in any
residence can be used to estimate thermal comfort control energy savings. Such information
should be extremely useful for policy makers and smart Wi-Fi thermostat manufacturers.

It is clear that there are limitations of this research. The modified MRT approach
used here relies upon knowledge of the number and type of windows in a room. This
information would certainly be difficult to come by. There is a potential work-around
relative to this issue; however, one that is enlightened by the research posed here. The
difference in cooling required with and without solar heat gain should permit estimation
of solar heat gain to the residence. This data-based assessment, derived from models
developed with and without solar contributions, could be performed readily for any
residence using smart Wi-Fi thermostat data. A corrected MRT could be developed from
this solar heat gain estimate. Further, the corrected MRT calculation should be validated
with measurements.

Secondly, while the savings estimations were reasonable and saw expected depen-
dency on residence efficiency and solar heat gain, there is a need to validate the estimations.
There is a need to implement this strategy in multiple residences and validate resident
perceived thermal comfort. The implementation must include resident feedback about
when the algorithm is not providing them the thermal comfort they desire. The thermal
comfort model would then need to adapt based upon this feedback.

More importantly, in order to derive value from this research, it is essential that a
smart Wi-Fi thermostat manufacturer integrate this technology into their thermostat control
algorithms. This will also require such manufacturers to market and sell comfort control to
its customers.

There is a wealth of future research potentially triggerable by this research. Here,
as noted above, the corrected MRT was obtained based upon estimation of the solar
fenestration. This approach could be very laborious if it was implemented at scale. It is
feasible that Geographical Information Systems (GIS) could be used to automatically make
this calculation for any residence using technologies such as Google Earth. Secondly, there
is opportunity for research to estimate aggregate potential savings from regional efforts to
improve shading and to implement thermal comfort control.
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Nomenclature List

Symbol Description Unit Symbol Description Unit
PMV Predicted mean vote - Qrad Radiant heat transfer W/m2

MRT Mean radiant temperature K θi,sur f ace
Solar incidence angle per
building’s surface

degree

A f loor Building floor area m2 Ib,sur f ace
Beam solar irradiance per
building’s surface

W/m2

Awalll Building wall area m2 Id,sur f ace
Diffuse solar irradiance
per building’s surface

W/m2

Awindow Single window area m2 Ig,sur f ace
Ground-reflected solar irradiance
per building’s surface

W/m2

Rwall Wall thermal resistance m2 K/W Itotal−solar,sur f ace
Total solar irradiance
per building’s surface

W/m2

Rwindow Window thermal resistance m2 K/W Itransmitted
Transmitted solar radiation
through windows

W/m2

Rattic Attic thermal resistance m2 K/W SHGC Solar heat gain coefficient -

Re
Conductive thermal resistance
through envelope

m2 K/W Tsol−air Solar-air temperature ◦C

Rhi
Overall thermal resistance on
interior surface

m2 K/W Tindoor Indoor room temperature ◦C

Rho
Overall thermal resistance on
exterior surface

m2 K/W To Outdoor temperature ◦C

α
Absorptance of surface for
solar radiation

- Tcooling setpoint Cooling setpoint temperature ◦C

ε
Hemispherical emittance
of surface

- Te,in or TS
Interior surface temperature
of envelope

◦C

∆R

Difference between long
wave radiation incident
on surface from
sky and surroundings and
radiation emitted by
black body at
outdoor air temperature

W/ m2 RH Indoor relative humidity %

ho

Coefficient of heat
transfer for long wave
radiation and convection
outer surface

W/m2 ◦C hr Radiation heat transfer coefficient W/m2 ◦C
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