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Abstract: The net-zero global carbon target for 2050 needs both expansion of renewable energy and
substantive energy consumption reduction. Many of the solutions needed are expensive. Controlling
HVAC systems in buildings based upon thermal comfort, not just temperature, uniquely offers a
means for deep savings at virtually no cost. In this study, a more accurate means to quantify the
savings potential in any building in which smart WiFi thermostats are present is developed. Prior
research by Alhamayani et al. leveraging such data for individual residences predicted cooling energy
savings in the range from 33 to 47%, but this research was based only upon a singular data-based
model of indoor temperature. The present research improves upon this prior research by developing
LSTM neural network models for both indoor temperature and humidity. Validation errors are
reduced by nearly 22% compared to the prior work. Simulations of thermal comfort control for the
residences considered yielded potential savings in the range of 29–43%, dependent upon both solar
exposure and insulation characteristics of each residence. This research paves the way for smart Wi-Fi
thermostat-enabled thermal comfort control in buildings of all types.

Keywords: smart Wi-Fi thermostats; long short-term memory; thermal comfort; PMV; MRT; relative
humidity; moving average; energy efficiency

1. Introduction

The Intergovernmental Panel for Climate Change (IPCC) has set a target of net-zero
carbon emissions by 2050 [1]. To get there, the International Energy Agency (IEA) estimates
that clean energy investment by 2030 must increase three-fold to USD 4 trillion [2]. Technol-
ogy innovation is certain to comprise a sizeable part of this investment [3]. One of the recent
technologies proven to reduce the global energy demand are smart thermostats. In Europe,
this technology, which has been adopted in over 1 million residences, has demonstrated 22%
energy savings in this sector. If applied to all residences in Europe, total European carbon
dioxide (CO2) emissions can be reduced by around 5% [4]. Likewise, the US Government
has incentivized purchase of this technology for residences [5]. To date, 17% of residences
in the US now have such thermostats installed [6].

One application of smart Wi-Fi thermostats that has been identified is for use in con-
trolling for thermal comfort rather than temperature. Several researchers have reported
potential cooling energy savings from thermal comfort-driven and energy-aware HVAC
system control ranging from 4 to 32% in commercial buildings [7–10]. Ferreira et al., apply-
ing neural network-based model for predictive thermal comfort control in a commercial
building, reported even greater estimated energy savings of more than 50% [11].

In residential buildings, Danassis et al. implemented artificial neural network and
Fuzzy Logic inference models to assess smart thermostat thermal comfort control. They
estimated savings in the range of 18–40% [12]. Likewise, Lou et al. showed potential
cooling savings from similar control of up to 85% for a one-month period in the summer in
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the Midwest, US [13]. Lastly, Alhamayani et al. expanded Lou et al.’s effort by accounting
for the influence of solar heat gain. They showed that solar contributions to cooling were
significant. They reported more realistic cooling energy savings in the range of 33–47%.
Further, they showed that the extent of the savings clearly depended upon the amount of
insulation in a residence and exterior shading from other buildings and from trees [14]. A
very recent study by Sun et al. [15] demonstrated solar heat gain to the same housing set
considered by Lou et al. [13] and Alhamayani et al. [14] is responsible for up to 72% of the
cooling load in the residences considered [15].

The promise of implementing thermal comfort control in residences is increasing,
especially with the global market for manufacturing smart thermostats predicted to increase
from USD 88.7 billion to USD 228.2 billion from 2021 to 2027 [16]. This is expected to
translate to an estimated 1-2B new smart Wi-Fi thermostats entering the market. Such a
gain in the market coupled with implementation of thermal comfort control could yield
substantial worldwide carbon reduction at virtually no cost.

The objective of this study is to build upon the prior research of Alhamayani et al. [14]
to further improve the accuracy of estimation of the energy savings from implementing
smart thermostat thermal comfort control in residences. In comparison to the prior work
of Lou et al. [13] and Alhamayani et al. [14], which assumed a constant indoor relative
humidity of 55%, this study accounts for this influence. The improvement in temperature
and relative humidity models is discussed. The impact of the addition of a relative humidity
model to the estimation of the PMV value is documented. The estimated energy savings
from the current study is compared to the previous work by Alhamayani et al. [14].

2. Background

In general, residential and commercial buildings HVAC maintain human thermal
comfort through the maintenance of a set indoor temperature. However, human thermal
comfort depends on a number of other factors, including (i) other indoor environmental
factors (relative humidity, air velocity, and mean radiant temperature, MRT); and (ii) oc-
cupational factors (occupants’ age, gender, clothing, metabolic rate, and behavior, such as
turning on/off the a/c or opening or closing windows) [17].

The well-known model utilized to quantify the thermal comfort of an occupant inside
a controlled space is Fanger’s predicted mean vote (PMV). The PMV model generally
estimates the mean value of votes of occupants using a seven-point thermal sensation
scale, ranging from −3 (much too cold) to +3 (much too hot). The optimal PMV range, as
suggested in the ASHRAE 55 and ISO 7730 standards, is from −0.5 to +0.5 [18].

Prior research estimating savings from thermal comfort control in residences has
relied upon different control strategies and algorithms. Azuatalam et al. [19] leveraged
a reinforcement learning agent to control the heating, ventilation, and air conditioning
(HVAC) system in a commercial building. The power reduction realized from their control
strategy reached a maximum of 50% weekly. Further, Park et al. [20] utilized a thermal
comfort-based controller to reduce the cooling energy of air-conditioning systems in a
residential building in Kuwait. Energy savings of 39.5% on a representative summer day
were documented. Another developed control strategy developed by Li et al. [21] based
on PMV-PDD smart thermostat control showed savings in a residential building of up
to 11.5%.

The use of smart Wi-Fi PMV-based thermal comfort control is new. Only Lou et al. [13]
and Alhamayani et al. [14] are the only known efforts that have relied upon this technology.
Thus, in what follows in the results section, comparisons are made only with this prior work.

The proposed study here extends the prior work reported in Alhamayani et al. [14],
following the framework established by Bac et al. [22], which posed a process for identifying
suitable HVAC system options for a building by using building energy simulations. Here,
these simulations are based upon data-based models of the energy systems. This prior
work of Alhamayani et al. relied upon a data-based machine learning model using archived
smart thermostat data in addition to outdoor weather conditions and solar heating inputs
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to predict internal temperature. The developed model was utilized to estimate a residence’s
PMV and control the cooling load to achieve the optimal PMV at all times. The developed
model considered the overall solar heat gain through the building envelope and from
solar fenestration. However, as noted in Section 1, the prior research by Alhamayani et al.
utilized an assumption of constant internal relative humidity (set to 55%). This paper
again leverages archived smart Wi-Fi thermostat data (internal temperature and relative
humidity and cooling status). It relies upon these data to develop data-based machine
learning models to predict both the internal temperature and relative humidity. It then
integrates these models into a simulated thermal comfort control schema to evaluate more
accurately the thermal comfort control for several residences with variable solar exposure
and building envelope energy effectiveness. As a result, the predicted savings estimates
from thermal comfort control will be more realistic.

The remainder of the paper presents the methodology for developing a database
machine learning model for both the internal temperature and relative humidity. It then
employs the developed models into a simulated control of thermal comfort in several
residences with variable solar exposure and energy effectiveness. It concludes with a
discussion of the results and implications of this research.

3. Methodology
3.1. Data Collection
3.1.1. Buildings, Smart Thermostats, Weather, and Solar Data

All the building characteristics, smart thermostats, weather, and solar data used in the
earlier work by Lu et al. [13] and Alhamayani et al. [14] are utilized here. Table 1 documents
the building characteristics of the residences used in this study.

Table 1. Residential building geometrical and energy characteristics data.

Home Characteristics/House No. 1 2 3 4 5

Afloor
(
m2 ) 54 84 54 59 45

Awall
(
m2 ) 159 187 156 152 149

Awindow
(
m2 ) 2–3 2–3 2–3 2–3 2–3

Rwall

(
m2KW−1 ) 0.88 0.7 0.7 2.5 0.8

Rwindow

(
m2KW−1 ) 0.35 0.35 0.35 0.35 0.35

RAttic

(
m2KW−1 ) 3.87 2.15 1.1 6.69 3.17

AC power (kW) 10.5 8.8 10.5 10.5 12.25

3.1.2. Smart Thermostats Moving Averages

Prior work by Alhamayani et al. [14], Huang et al. [23], Sun et al. [15], and Lou et al. [13]
developed models from archived time smart Wi-Fi measurements. The analysis described
here uniquely considers possible inputs to the model described in Section 3.1.2, moving
averages of the smart Wi-Fi measured indoor temperature and relative humidity, as well as
the cooling demand status. The smoothing effect of using a moving average can improve
the prediction accuracy of machine learning models [24,25]. Different averaging window
time intervals were considered for each of the major features (indoor temperature, indoor
humidity, and cooling demand status). An optimal moving average window associated
with the lowest validation error from the models developed was determined for each
residence. This ranged from 1 to 7 h, with the lower range associated with poor energy
effectiveness residences and the larger range associated with high energy effectiveness
houses. Table 2 lists the optimal interval moving averages for the selected features for each
residence in this study.
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Table 2. List of the optimal interval moving averages for the selected features for each residence.

House
Number

Moving Average Period
for Temperature (h)

Moving Average Period
for Relative Humidity (h)

Moving Average Period
for Cooling Demand (h)

1 4 3 2
2 4 5 1
3 3 2 1
4 7 5 1
5 4 6 1

3.1.3. Data Preprocessing and Feature Engineering

The data pre-processing required here consisted of (i) creating uniformly spaced
thermostat data from the actual event-based data. The thermostat data were archived only
when one of the measured features changed values. Additionally, the hourly weather and
solar data were synched with these data using linear interpolation. This data pre-processing
was described in earlier work [14].

In addition, Pearson’s correlation method was applied to eliminate highly correlated
features (r > 0.9) [26]. Min–max normalization was applied as well. Sample smart Wi-Fi
thermostat features for one of the residences are shown in Table 3.

Table 3. Sample of synchronized Smart Wi-Fi thermostat, weather, and moving averages features for
relative humidity model.

Indoor
Relative

Humidity
(%)

Outdoor
Temperature

(F)

Outdoor Dew
Point

Temperature (F)

Cooling
Setpoint

Temperature (F)

Cooling
Demand

Status (0/1)

Moving
Average
Relative

Humidity (%)

Moving Average
Indoor

Temperature (F)

Moving Average
Cooling
Demand

(0–1)

61 79 70 75 0 61 74.7 0
54 78 65 75 0 53.8 75.5 0.2
56 83 66 72 1 58.8 72.1 0.53

3.2. Temperate and Relative Humidity Models Development
Long Short-Term Memory (LSTM)

In this study, a deep learning neural network algorithm was considered for developing
two separate dynamic models to predict the indoor temperature and relative humidity
using archived smart Wi-Fi thermostat data. The deep learning neural network developed
employed the long short-term memory (LSTM) neural network algorithm introduced
by Hochreiter and Schmidhuber in 1997 [27]. The LSTM is a type of recurrent neural
network (RNN). Much prior work has validated that LSTM performs better than RNN by
overcoming the gradient vanishing problem or gradient explosion problem by forgetting
the previous observations having little influence over current predictions [27–30].

The architecture of the LSTM can be summarized as a combination of three types of
gates (forget gate, input gate, and output gate). LSTM advantages gates to add or remove
information to the cell state [26]. The equation for all gates (forget ft, input it, and output
ot) are:

ft = σ
(

W f [ht−1, xt] + b f

)
(1)

it = σ(Wi[ht−1, xt] + bi) (2)

ot = σ(Wo[ht−1, xt] + bo) (3)

The cell state Ct equation is:

C̃t = tanh(Wc[ht−1, xt] + bC) (4)

Ct = ft ∗ Ct−1 + it ∗ C̃t (5)
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The output ht that comes out from the LSTM unit is:

ht = ot ∗ tanh(Ct) (6)

Generally, LSTM utilizes prior readings or values for all features (including the re-
sponse variable) as predictors for the next response prediction by considering a lookback
period that controls the time period of prior readings or values used to forecast the next
response time step. To achieve the most effective predictive models and prevent overfitting
issues, as well as speed up the computations, the data are batched. The batch size controls
the number of training samples applied in one iteration and enables the propagation of
weightings across time.

The data used for model development, validation, and testing were split sequentially
according to 72%/18%/10%. The batch size was set to be 128 in both models. Model
performance was assessed utilizing R-squared (R2), mean absolute error (MAE), mean
absolute percentage error (MAPE), and root mean square error (RMSE).

3.3. The Effect of Multiple Predictive Models on PMV
Predictive Mean Vote (PMV) Model

The quantification of thermal comfort in this study is obtained by “Fanger’s predicted
mean vote (PMV) model” [17]. The levels of comfort are well defined in the seven-point
thermal sensation scale proposed by the American Society of Heating, Refrigerating, and
Air-Conditioning Engineers (ASHRAE). The thermal sensation scale is: −3 (Cold), −2
(Cool), −1 (Slightly cool), 0 (Neutral), +1 (Slightly warm), +2 (Warm), and +3 (Hot); and it
represents the thermal sensation of a majority of people. A PMV index range between −0.5
and +0.5 is most satisfactory to 80% of people [31].

The following values were set for the required parameters in the PMV calculation. The
metabolic rate, M, was set to range from 1 to 1.3 met, applicable to a residential activity. The
clothing insulation value, Icl, was set to range from 0.45 to 0.5 in the summer. The relative air
velocity term, var, was equated to range from 0.1 to 0.2 m/s, based upon the minimum value
accepted by ASHRAE-55 [18]. The next subsections detail the estimation and validation of
the MRT, respectively. Future work could potentially relax these assumptions.

The flowchart shown in Figure 1 summarizes how thermal comfort control was
enhanced from earlier work [14] and simulated in the housing set described in Table 1. It is
clear the relative humidity model has been added to the thermal comfort control logic to
add more realistic PMV estimates to the previous work.
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Figure 1. Flowchart showing process for simulated thermal comfort control using two developed
LSTM deep learning neural network models of internal relative humidity and temperature.

3.4. Potential Savings from PMV Control Utilizing Two Predictive Models

The potential savings from thermal comfort control was determined by comparing
the simulated cooling using thermal comfort control to the actual cooling. The energy
savings were determined by considering the effective duty cycle for the whole period and
the cooling size of the residence’s HVAC, where the cooling duty cycle is defined as:

E f f ective Duty Cycle = ∑(Cooling time)× (Cooling Demand Status)
∑ Time

(7)

4. Results

Results are presented to provide evidence that the use of two data-based models for
indoor temperature and relative humidity, coupled with the use of time-averaged quantities
for internal temperature, internal relative humidity, and cooling demand status, improves
the estimation of savings from PVM-based thermal comfort control relative to prior work
done by Alhamayani et al. [14].
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4.1. Model Performance and Validation Results

Models for the moving average thermostat temperature and humidity were developed
using the Adam optimization algorithm [32]. Different neural network architectures were
considered. Two hidden layers with 25–30 and 10–20 neurons were tested. Additionally,
different lookback time steps (15–20 time steps) were considered. The validation error
metrics (R2, MAE, MAPE, and RSME) were used to identify the best values for these
hyperparameters. Table 4 lists the optimum hyper-parameters and the validation metrics
for the two models. Noteworthy is the MAE of 0.317 for temperature model validation.
This represents a significant improvement relative to the prior work of Alhamayani et al.,
for which the MAE was 0.406 [14]. Clearly, the addition of the internal humidity as a
predictor for temperature and use of moving averages of temperature, relative humidity,
and cooling demand status clearly improved the model.

Table 4. Hyper-parameters and the validation metrics for the relative humidity and temperature
models.

Model Lookback Steps Hidden Layers (Units) Batch Size MAE R2 MAPE (%) RSME

Relative humidity 15 25 10 128 0.3694 0.9540 0.6709 0.6793
Temperature 20 30 15 128 0.317 0.9551 0.4256 0.4455

Figure 2 presents a time series plot of the measured internal relative humidity and
the predicted internal relative humidity over the time period of 2 June 2018–24 June
2018 for House #1. Included in this figure are the actual humidity value (black color),
the predicted humidity value for training (deep pink color), and the predicted humidity
value for validation (blue color) and testing data (dark violet color). There is excellent
correspondence between the predicted humidity and the actual humidity in the validation
and testing ranges.
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Figure 3 shows a similar plot for the enhanced temperature model, which uses as an
input the relative humidity. Included in this figure are plots of the measured temperature
data (black color), and the predicted temperature data for the training (blue color), testing
(green color), and validation (red color) data. The correspondence between the measured
data and the predictions in the validation and testing ranges is strikingly better than the
previous work of Lou et al. [13], Huang et al. [23], and Alhamayani et al. [14].
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Other considered residences detailed in Table 1 show similar results, as documented
in Table 5. As seen in this table, the MAE values for each of the residences considered range
from 0.317 to 0.412.

Table 5. Validation matrices for all residences’ models.

House No. MAE R2 MAPE (%) RSME

1 0.317 0.9551 0.4256 0.4455
2 0.319 0.9512 0.4313 0.4577
3 0.349 0.9457 0.4730 0.5230
4 0.396 0.9398 0.5285 0.5752
5 0.323 0.9498 0.4402 0.4607

Figure 4 presents a time series of the PMV values estimated for two cases: (a) a constant
relative humidity of 55% all over the time period, and (b) a relative humidity predicted
using the developed machine learning model for indoor humidity. The plot represents a
humid day in Dayton, Ohio, and demonstrates how the relative humidity affects the PMV
estimations. It is clear that the more realistic higher relative humidity obtained here causes the
PMV index estimation during the day (orange line) to be greater than the constant relative
humidity case considered by Alhamayani et al. [14]. Also shown is that for the more realistic
relative humidity model, additional cooling is required (see purple cooling demand status)
in comparison to the case where a constant relative humidity is assumed. Thus, the model
improvement almost certainly yields a more realistic perspective of the potential savings from
PMV thermal comfort control relative to typical temperature control of thermal comfort.
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4.2. Potential Savings from PMV Control Utilizing Current Approach Reliant upon Both a
Temperature and Humidity Predictive Model as Compared to Previous Approach Reliant upon
Only a Predictive Model for Temperature

Figure 5 presents a comparison of the total cooling energy consumption for each of
the eight residences over the time period from 2 June 2018 to 24 June 2018 for two cases:
(i) thermal comfort control using only a predictive model for temperature (the demonstrated
results were taken from the previous work done by Alhamayani et al. [14]); and (ii) thermal
comfort control using two predictive models (relative humidity and temperature). The blue
bars represent the cooling energy consumption for case (i), while the red bars represent
the cooling energy consumption for case (ii). It is clear that the addition of a humidity
model yields greater cooling energy consumption in comparison to similar predictions
based upon an assumed constant indoor relative humidity.
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Figure 6, which shows lines chart for the relative humidity measured in selected
residences over the time period covered, sheds some light on the differences seen in
Figure 5. Also included in this plot is the outdoor relative humidity. It is shown that the
indoor relative humidity tends to a damped tracking of the outdoor relative humidity.
Notable is that one of the buildings (House No. 7) generally has lower relative humidity
values than the other houses. The reason for this is likely because the air leakage in this
newer residence designed to Energy Star criteria is significantly lower. It is certain that
the thermal comfort experienced by residents during this time period was negatively
influenced by indoor humidity as the simulated relative humidity is greater than the 55%
constant value assumed in the prior study. Subsequently, the energy savings from thermal
comfort control are lower than was predicted from the previous work done by Alhamayani
et al. [14], as documented for each of the residences in Table 6. The energy savings from
thermal comfort control for the residences considered ranged from 29 to 43%, in contrast to
savings ranging from 33 to 47% in the prior work by Alhamayani et al. [14].
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Figure 6. Actual outdoor relative humidity versus selected residences’ relative humidity for the
whole dataset.

Table 6. Savings from the implementation of thermal comfort control for the residences considered
in study.

Model Savings/House No. 1 2 3 4 5

Temperature model only 40% 47% 46% 33% 40%
Relative humidity and temperature models 36% 42% 43% 29% 31%

5. Conclusions

The current work was on the prior work introduced by Lou et al. [13] and Alhamayani
et al. [14]. In comparison, this study demonstrates a more realistic simulation of smart
thermostat-based thermal comfort control in residences through consideration of a variable
relative humidity. Greater accuracy was also achieved by using moving averages for the
critical predictors (indoor temperature, indoor humidity, and cooling demand status). With
improved accuracy models, the estimated cooling energy savings are more realistically
predicted to be in the range of 29–43%, where the greater potential savings are achievable
in residences with poor energy effectiveness.



Clean Technol. 2022, 4 405

The significance of this research is (1) that significant cooling energy and carbon
savings could be achieved with virtually no cost and (2) that this approach could be used
today in any residence with smart Wi-Fi thermostats to estimate savings from thermal
comfort control. The next step has to be implementation of thermal comfort control at scale.

This work also has potential policy implications. As the smart Wi-Fi thermostat posed
PMV thermal comfort control has a demonstrated potential to save energy and reduce
carbon emissions at virtually no cost, it is reasonable to imagine policies emerging to set
thermostat control standards based upon thermal comfort control. The establishment of
standards for this would certainly be the domain of organizations such as ASHRAE in the
US and REHVA in Europe. Of course, any standard emerging should not be draconian.
Elderly people and people with health conditions may not be able to tolerate “stretch” PMV
comfort levels to yield greater savings.

The limitations of this research are clearly seen. The shading and actual solar fenes-
trations can affect the developed MRT estimations accuracy. It is complex to figure out
the time that a residence is shaded by a tree or surrounded residence. However, the study
developed by Sun et al. [15] can be modified to let smart thermostats understand when
the house is receiving solar irradiances or not, which could help this proposed technology
overcome this limitation. Other limitations, such as the number and type of windows, can
also be overcome by utilizing the same work done by Sun et al. [15] with knowledge of
the total solar transmitted into the house and using in estimating the MRT value for the
whole residence.
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