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Abstract: Heavy metal removal using genetically engineered organisms (GEOs) offer more cost
and energy-efficient, safer, greener, and environmentally-friendly opportunities as opposed to con-
ventional strategies requiring hazardous or toxic chemicals, complex processes, and high pres-
sure/temperature. Additionally, GEOs exhibited superior potentials for biosynthesis of nanoparticles
with significant capabilities in bioreduction of heavy metal ions that get accumulated as nanocrystals
of various shapes/dimensions. In this context, GEO-aided nanoparticle assembly and the related
reaction conditions should be optimized. Such strategies encompassing biosynthesized nanoparticle
conforming to the green chemistry precepts help minimize the deployment of toxic precursors and
capitalize on the safety and sustainability of the ensuing nanoparticle. Different GEOs with improved
uptake and appropriation of heavy metal ions potentials have been examined for bioreduction and
biorecovery appliances, but effective implementation to industrial-scale practices is nearly absent.
In this perspective, the recent developments in heavy metal removal and nanoparticle biosynthesis
using GEOs are deliberated, focusing on important challenges and future directions.

Keywords: heavy metals; biorecovery; biosynthesis; genetically engineered organisms; bioreduction;
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1. Introduction

The application of genetically engineered organisms (GEOs), with their great poten-
tials for heavy metal (HM) removal and biosynthesis of nanomaterials, is an attractive
field of science based on green chemistry principles and clean technologies [1–3]. Various
nanomaterials and nanoarchitectures can be prepared utilizing GEOs containing stabiliz-
ing, reducing, and capping agents. Bio-inspired synthesis of nanomaterials using GEOs
exhibited several advantages of simplicity, cost-effectiveness, and environmentally-benign
features in comparison with the conventional methods consisting of toxic/hazardous agents
and laborious processes [4–10]. In this context, GEOs are able to execute the biorecovery
and bioreduction of HM ions, offering excellent opportunities for HM removal. These
biofactories with great potentials for the metal ion bioreduction are capable of accumulat-
ing them as nanocrystals with well-organized and controllable size/morphology, but only
after optimizing their bioaccumulation/biotransformation, biosynthesis capabilities, and
reaction conditions (e.g., temperature, pH, substrate/biomass concentration, enzymatic
procedures, and cellular activity) [11,12]. Application of organisms for green synthesis and
sustainable removal of HMs is rapidly developing due to their unique intrinsic properties
and advantages [13,14]. For instance, Bacillus megatherium was applied for the synthesis
of gold (Au) nanoparticles (NPs); the reaction time and dodecanethiol (the capping agent)
were reported as the crucial factors for regulating the size and morphology of the NPs [15].

Clean Technol. 2022, 4, 502–511. https://doi.org/10.3390/cleantechnol4020030 https://www.mdpi.com/journal/cleantechnol

https://doi.org/10.3390/cleantechnol4020030
https://doi.org/10.3390/cleantechnol4020030
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cleantechnol
https://www.mdpi.com
https://orcid.org/0000-0003-3985-7928
https://orcid.org/0000-0001-9731-6228
https://doi.org/10.3390/cleantechnol4020030
https://www.mdpi.com/journal/cleantechnol
https://www.mdpi.com/article/10.3390/cleantechnol4020030?type=check_update&version=1


Clean Technol. 2022, 4 503

Nanomaterial production capacity of organisms can be extended via the detailed
cellular re-programming, offering the ease of handling and downstream processing via
the application of GEOs for eco-friendly synthesis of NPs at ambient temperature and
pressure [16]. However, their up-scalability and industrial appliances with an exact stance
towards their possible toxicity and biosafety issues are vital and should be analytically
evaluated. Finding the related nanoparticle synthesis pathways and HM removal mech-
anisms, as well as responsible enzymes/proteins and metabolic pathways, need to be
given high priority in research to obtain engineered systems with tuned characteristics
for specific purposes, especially via clean and sustainable technologies. In this context,
various nanotechnological advances have been inspired by nature, and consequently re-
searchers are looking for designing smart nature-inspired systems with various promising
environmental potentials. For bioremediation and nanoparticle synthesis purposes, there
are still concerns about the commercialization and large-scale applicability of organisms.
Thus, investigations should be focused on the engineering organisms with high capabilities
and standards of industrialization to obtain detailed optimization strategies/techniques,
surface functionalization of the prepared NPs, and analytical/characterization processes.
To identify the responsible genes for NP synthesis, several investigations have been con-
sidered to use gene silencing processes and identify the expected genes for synthesis. The
introduction of candidate gene clusters into the other organisms for the verification of
their capabilities to initiate NP production has been performed [17,18]. These strategies
are vital for understanding the related mechanisms of NP formation and controlling their
nucleation and growth. Herein, the deployment of GEOs with their unique potentials
in HM removal and NP formation has been deliberated, focusing on current advances,
important challenges, and future perspectives.

2. GEOs in Removal of Heavy Metals

Biological remediation is an environmentally benign and low-cost strategy that can be
deployed for cleaning up the complex industrial tannery effluent containing HMs, which is
a critical threat for contamination of ecosystem [19–21]. Notably, the toxicity of metals is a
critical concern because of their bioaccumulation in nature and non-biodegradability. GEOs
have been deployed for the bioremediation of HMs with the advantages of eco-friendliness,
cost-effectiveness, simplicity, and up-scalability (Tables 1 and 2). Several factors can influ-
ence the efficiency of bioremediation using GEOs, including reaction conditions, chemical
composition of HMs, redox potential, nutritional status, among others [22]. The chelation,
biotransformation, oxidative stress response, metal regulation and transportation, and
engineering of cell surfaces can play vital roles in HM remediation and NP synthesis by
these organisms [20]. In phytoremediation by genetically modified plants, the selection
of suitable plant species, interactions between plants and microorganisms, translocation
processes, mechanisms of tolerance, characteristics of metals, and environmental conditions
have significant effects [23–26]. Further, molecular modifications have been deployed for
displaying metal-binding proteins at the cell surfaces through the overexpression of genes
or introduction of exogenous DNA to produce transgenic algae with high selectivity and
efficacy for HM adsorption; however, these modifications are variable and more elabora-
tive studies are necessary for clarifying the underlying mechanisms and solving possible
limitations or challenges [27]. On the other hand, significant HM concentrations and poor
competitiveness may restrict the application of these organisms, but the efficacy can be
enhanced by improving their bioreduction and bioaccumulation potentials [28]. In this
context, active transportation of metal ions (efflux), extracellular barriers, intracellular or ex-
tracellular appropriation, and metal ions bioreduction capability should be considered [29].
Some important aspects regarding the sorption sites, configuration of microbial cell walls,
and ionization of chemical entities on the cell walls can affect the bioremediation by GEOs.
Microbes have shown several mechanisms for interacting and surviving in toxic metal
environment such as extrusion, biotransformation, enzymatic processes, exopolysaccha-
ride formation, and metallothioneins production [30]. As an example, bacteria exhibited
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metal resistance and detoxification potentials with ion exchange, surface complexation,
precipitation, redox procedure, and electrostatic interaction in reaction to metals in the
environment [31]. Notably, bacterial HM resistance includes methylation/demethylation,
metal chelators formation (e.g., metallothioneins and bio-surfactants), metal efflux pumps,
extracellular/intracellular metal appropriation, elimination by permeability barriers, metal
ligand destruction, metal-organic complexation, and metal oxidation [32].

The detection of metal-binding peptides responsible for capturing HMs has been paid
attention to by researchers. As an example, cadB encoding a metal-binding protein with
cadmium (Cd) (II) and zinc (Zn) (II) or pbrT and pbrD encoding proteins with binding and
uptake ability for lead (Pb) (II) have been recognized. Additionally, copM encoding a bind-
ing protein for copper (Cu) (II), as well as metallothioneins with cysteine and sulfhydryl
groups for binding with HMs, have been exploited in several investigations [33–35]. Ad-
ditionally, some genes encoding enzymatic transformations have been reported, such as
aoxA/aoxB encoding arsenite oxidase or arsC encoding the cytoplasmic arsenic (As) (V)
reductase for the altering arsenite into arsenate [36]. Mercury and arsenic transporter genes
have been investigated, in addition to the genes encoding regulatory proteins (e.g., aoxS
and aoxR) [37,38]. Modifications in enzymes, regulation or control of biological path-
ways, developments in affinity sensors, post-release monitoring of GEOs, and application
of molecular tools (such as rational designing, direct evolution, saturation mutagenesis,
metabolic engineering, and whole-transcriptome profiling) are crucial aspects in construct-
ing GEOs for the removal of pollutants. In addition, risk assessments, pathogenesis, adverse
environmental and health effects, and biosafety issues should be considered [39–41].

Table 1. Some selected GEOs investigated for the removal of HMs.

GEOs Removal Efficiency HMs Refs.

Escherichia coli (MT2 and MT3) 212 and 250 mg L−1 Cd(II) [42]
E. coli (Jm109) 10.11 mg/g Ni(II) [43]
E. coli (Jm109) 90 % Hg(II) [44]
E. coli (Jm109) 96% Hg(II) [45]
E. coli (Jm109) 98% As(III) [46]

Saccharomyces cerevisiae (W303) 27.1 ± 0.46 nmol mg−1 Zn(II) [47]
Pseudomonas putida (X4) 90% Cd(II) [48]

Rhodopseudomonas
palustris 77.58 mg g−1 Hg(II) [49]

E. coli (pBLP1) 526 µmol g−1 Pb(II) [50]
E. coli (BL21) 7.59 mg As/g dry cells As(III) [51]

E. coli 99% Hg(II) [52]
Cd: Cadmium; Ni: Nickel; Hg: Mercury; As: Arsenic; Zn: Zinc; Pb: Lead.

Table 2. Some important transgenic plants applied for the removal of HMs.

Plants HMs Genes Refs.

Nicotiana tabacum As AtACR2 [53]
Oryza sativa Cu and Cd ricMT [54]

Brassica napus Zn and Cu OsMyb4 [55]
Sedum plumbizincicola Cd SpHMA1 [56]

Arabidopsis thaliana Cd MAN3 [57]
Brassica juncea Pb AtACBP1 AtACBP4 [58]

A. thaliana Cd YSL [59]
N. tabacum As and Cd OsMTP1 [60]
A. thaliana Cd PCs1 [61]

As: Arsenic; Cu: Copper; Cd: Cadmium; Zn: Zinc; Pb: Lead.

Bacteria can bind to metal cations because of the negative change on their cell surfaces
owning to the anionic structures [62]. In one study, Tetragenococcus halophilus and Halomonas
elongata have shown great potentials for removing HMs in the examined medium; pH and
incubation time could significantly affect the metal removal capacity of these microbes [63].
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By genetically engineering bacteria, some of their capabilities such as metal-chelating
proteins, metal stress tolerance, metal bioaccumulation of HM, and overexpression of
peptides can be improved [64,65]. As an example, after genetically engineering of HM-
tolerant Ralstonia eutropha, the metallothioneins were overexpressed on the cell surfaces,
and the inoculation of Cd2+-polluted soil with this GEOs could significantly reduce the toxic
effects of HMs on the growth of tobacco plant [66]. Further, after genetically engineering
of Escherichia coli JM109, metallothioneins and merT-merP protein were expressed in this
bacterium to increase its mercury bioaccumulation ability, providing excellent opportunities
for treating contaminated water [45].

In another approach, magnetic NPs were combined with metal binding proteins to
improve the removal Pb and Cd from solutions. E. coli cells were engineered to express
metallothioneins on the surface of cells. These cell surface structures also comprised
histidine tags, which enabled the cells to form a complex with chemically modified magnetic
NPs. The cells and magnetic NPs would precipitate for easy isolation and removal of the
metal bound cells. Genetically engineered E. coli cells were obtained via the introduction
of a de novo synthetic HM-capturing gene to encode a protein SynHMB consisting of a
six-histidine tag, two cysteine-rich peptides, and a metallothionein arrangement in addition
to the synthetic type VI secretory system (T6SS) cluster of Pseudomonas putida, providing the
synthetic cells (SynEc2) with significant capability of showing the HM-capturing SynHMB
on their cell surfaces (Figure 1) [67]. The synthetic bacterial cells and magnetic NPs were
co-accumulated to produce biotic/abiotic complexes showing self-evolving characteristics,
because of the surface exposure of six-histidine tag on the synthetic bacteria and carboxylic
functionalities on magnetic NPs@SiO2-polyethylenimine-diethylenetriaminepentaacetic
acid. Consequently, the prepared complexes could remove Cd2+ and Pb2+ with high
removal efficiency (>90%) and recyclability by artificial magnetic fields [67].
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(DTPA) for efficient removal of HMs. MNP: Magnetic NPs; TEOS: Tetraethyl orthosilicate. SiO2:
Silicon dioxide. Adapted from Ref. [67] with permission. Copyright 2020 American Chemical Society.
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3. GEOs in NP Synthesis

Biosystems with unique intrinsic capabilities have shown attractive applicability in
nanoparticle synthesis. In this context, with developments in genetic tools and technolo-
gies, various GEOs can be reportedly deployed as biofactories with great potentials for
NP fabrication and HM removal [68]. However, several challenging issues regarding the
polydispersity of NPs, limited investigations in up-scalable production, lack of details
pertaining to the underlying mechanisms, commercialization, and optimization conditions
are still lingering. The related metabolic pathways or the role of proteins/enzymes for
NP synthesis need to be systematically evaluated [18,69]. Additionally, industrial scale
challenges with a focus on yield of production and monodispersity, as well as the cellular
metabolism and product recovery optimization, are essential aspects. The improvement
of strains with controllable NP synthesis and HM removal ought to be given the priority
in such explorations. Notably, understanding the signal transduction, formation of stress-
related proteins, stress perception, and transcriptional activation of stress-responsive target
genes have to be considered [1,70]. In one study, genetically engineered Pichia pastoris strain
that overexpressed metal-resistant variant of cytochrome b5 reductase enzyme was studied
for the biosorption and eco-friendly synthesis of silver (Ag) and selenium (Se) NPs ranging
from 70 to 180 nm [71]. After 24 h incubation, the max level of recombinant enzyme expres-
sion could be obtained ~31 IU ml−1 in the intercellular fluid. Additionally, the recombinant
biomass capacity for the biosorption of Ag and Se in examined aqueous solutions was
~163.90 and 63.71 mg g−1, respectively. The produced NPs of spherical shape are crystalline
and well-dispersed in nature [71]. Recombinant E. coli could be applied for synthesizing a
variety of nanostructures via the deployment of the strain co-expressing metallothioneins
(metal-binding proteins) as well as phytochelatin synthase that produces phytochelatins
(metal-binding peptides) [72]. Besides, E. coli JM109 bacteria were genetically engineered to
generate phytochelatins (as capping agents) for intracellularly fabricating CdS quantum dot
nanocrystals (~3–4 nm); the size of the semiconductor nanocrystals was tuned by adjusting
the amount of phytochelatins [73].

Silver-resistant Morganella morganii, gram-negative bacteria, were applied for the
biosynthesis of Cu NPs. Consequently, Cu2+ ions were reduced within the bacterial cells
and strong link between the Ag and Cu resistance machinery of bacteria could be detected
regarding the metal ions bioreduction [74]. Furthermore, Magnetospirillum gryphiswaldens
magnetotactic bacterium was applied for synthesizing Fe3O4 NPs (~50 nm) inside the self-
assembled magnetosomes (membranous structures present in magnetotactic bacteria) [75].
Magnetosome biomineralization pathway was moved from M. gryphiswaldense for heterolo-
gous expression into Rhodospirillum rubrum (as another synthetic host) via the incorporation
of mamGFDC, mamAB, mms6, and mamXY genes to produce magnetite NPs (~24 nm)
encircled by protein shells. [76]. It was established that mamO gene played an important
role in the synthesis of magnetic NPs in magnetotactic bacteria [77]. Besides, chalco-
genide nanostructures were synthesized after transferring reductase genes originating
from Shewanella sp. ANA-3 and Salmonella enterica serovar Typhimurium into E. coli as a
heterologous host [78]. The initial materials were processed by redox enzymes, and arsenic
sulfide nanomaterials were formed after the nucleation started by the cellular components
(Figure 2). Rapid culture, cost-effectiveness, and simplicity are important advantages, pro-
viding genetically engineered strains expressing metal reductases suitable for synthesizing
various nanomaterials [78].
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nanomaterials (C). Adapted from Ref. [78] with permission. Copyright 2018 John Wiley & Sons Ltd.
(CC BY 4.0).

Genetically engineered Thalassiosira pseudonana micro-algae were applied for the at-
tachment of IgG binding domain on biosilica for cancer targeting appliances. Accordingly,
chemotherapy drug-loaded liposomes were affixed to the IgG biosilica complexes to target
cancerous cells [79]. Besides, plasmids originated from Bacillus host could be deployed
as scaffolds for producing Ag NPs (~20–30 nm) at room temperature [80]. The phosphate
backbone of DNA was negatively charged and could fasten to the positively charged metal
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ions via the associated electrostatic interaction. After the photo-irradiation by UV light,
the NP nucleation was initiated on plasmid scaffolds as reducing agents, showing these
plasmids as suitable templates for NP synthesis [80]. The fusion of glutamates on the
N-terminus of the capsids of P8 of M13 bacteriophages was performed to produce barium
titanate (BaTiO3) NPs (~50–100 nm) after the incubation with barium (Ba) and titanium (Ti)
glycolates. The production of NPs with perovskite crystal structures and viral fibrous mor-
phologies have been reported via the electrostatic interaction and hydrogen bonding [81].
Genetically engineered tobacco mosaic viruses were employed for surface-displaying a
characterized peptide with strong metal ion binding and reducing capacity. Unlike wild
type tobacco mosaic viruses, these constructs led to the formation of isolated Au NPs with
stability and crystallinity (~10–40 nm) [82].

4. Conclusions and Future Directions

A variety of GEOs have been introduced by applying recombinant DNA or RNA
strategies, showing great potential for the elimination or remediation of HMs and for the
fabrication of nanomaterials. Rapid culture, high yield of production, monodispersity, sim-
plicity, and formation of well-organized NPs are important advantages by deployment of
these biofactories. However, finding the underlying mechanisms and identifying responsi-
ble agents ought to be undertaken; important mechanisms of HM uptake such as cell surface
adsorption, bioaccumulation, surface complexation, electrostatic interactions, precipitation,
and ion exchange need to be profoundly investigated. Bioremediation using organisms
has exhibited cost-effectiveness and simplicity advantages for treating environmental HM
contaminations. However, the pathways for HM removal using these organisms such as
bioaccumulation, bioleaching, biotransformation, biosorption, and biomineralization still
must be analytically addressed. Additionally, the selection of suitable host, growth rate,
recombinant strains, biochemical activities, and replication processes are crucial aspects
that need to be considered for optimized NP production and efficient HM removal. No-
tably, designing cost-effective processes for acquiring recombinant strains is imperative
for environmental appliances, particularly on an industrial scale. The specific recognition
of related biomolecules with excellent stabilization and reduction capabilities, as well
as microbial growth parameters and optimization conditions, should be systematically
analyzed, especially for additional movement from laboratory to industrial stages.
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