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Abstract: Industrialization has resulted in the discharge of a certain amount of lead (Pb) from
industrial sources causing damage risk to water quality and human health. Adsorption is an effective
technique to remove Pb, and biochar has been widely studied owing to its advantages of low cost and
high adsorption capacity. This review summarizes the influence of raw materials and modification
methods on the adsorption capability of biochar. The adsorption isotherms and kinetics of biochar
were summarized, and the main Pb removal mechanisms were studied systematically. In addition,
the challenges and future perspectives were discussed comprehensively. It is expected that the review
could provide insightful fundamentals for the experimental research and practical applications
of biochar.
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1. Introduction

Since the last century, the intensification of industrialization has put great pressure
on the environment [1]. Automobile maintenance, tetraethyl manufacturing [2], refining
process, and battery manufacturing process have produced a large amount of toxic lead (Pb),
which will pollute the water [3]. Pb is a toxic and harmful element with high molecular
weight, and it has the most abundant global distribution among heavy metals [2,4,5].
Besides, Pb is capable of accumulating in the human body, leading to serious health
problems including cancer, anemia, renal insufficiency, permanent brain damage [6], and
extreme mutations [7]. Recently, Pb pollution has become a major problem of water
pollution in developing countries [8]. Therefore, removing Pb from wastewater is an
important and urgent task to ensure human life and health [9].

In recent decades, a variety of techniques have been developed to remove Pb from
wastewater, such as ion-exchange [10], membrane processes [11], chemical precipita-
tion [12], filtration [13], electrocoagulation [14], coagulation [15], and adsorption [16–19].
Among these methods, adsorption is one of the most common removal technologies and
has attracted wide attention owing to its advantages of low cost, simple process, and high
removal efficiency [20–22]. Many adsorbents have been used to remove heavy metals from
aqueous solutions. Traditional adsorbents may be unpopular due to their high production
and regeneration costs [23], while lower-cost biochar is an effective material for removing
Pb from water and has received extensive attention [24]. Adsorption features have been
very recently exploited not only for environmental remediation by simple adsorption but
also for sensing and catalytic applications [25–27].
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Biochar, a porous carbonaceous material, is produced by the pyrolysis of biomass in an
oxygen-limited environment [28]. Considering that biochar originates from the ‘Terra Preta’
soils in the Amazon region, the application of biochar for soil improvement was extensively
investigated. Recently, biochars have been widely used in practical environments as
air filters, fuels, building materials, and adsorbents [29]. Notably, biochar is proved to
be a promising adsorbent for Pb removal in wastewater [30]. Common materials for
biochar production include crop residues [31–33], wood, animal manure [34], and sewage
sludge [35]. The adsorption capacity of biochar with different raw materials (sludge,
cow dung, corn stalk, and willow) for heavy metals was explored, and it was found that
corn stalk biochar had the best adsorption effect, which might be attributed to its larger
specific surface area and excellent pore structure [36]. Biochar has a porous structure,
large specific surface area, and abundant surface functional groups, which enables it to
efficiently adsorb Pb from aqueous solutions [37]. However, the adsorption capacity of
pristine biochar may be lower than that of conventional adsorbents [38]. For instance,
the maximum Pb adsorption capacity of pristine straw biochar produced at 500 ◦C was
165 mg·g−1 [39]. Therefore, chemical or physical modifications are usually carried out
to enhance the adsorption capacity of biochar [40,41]. For example, the N-doped MgO-
modified corn cob biochar had an adsorption capacity of 1429 mg·g−1 for Pb in aqueous
solution [42]. In addition, the micropore area and external specific surface area of ball-milled
bone biochar were significantly increased, and the Pb adsorption capacity of ball-milled
biochar was up to 558.8 mg·g−1 [43]. Hence, the modified biochars have considerable
adsorption capacity of Pb, which can promote the application potential of biochar in
wastewater treatment. At present, most of the relevant reviews are related to the summary
of multiple heavy metals removed by biochar in wastewater, and there are relatively
few summaries of single heavy metal. Considering the continual emergence of scientific
advancement, it is necessary to systematically summarize the recent development of the Pb
adsorption in wastewater by the pristine and modified biochars.

This paper focuses on the adsorption of Pb in wastewater by biochars. Important
aspects such as raw materials, modification methods, and removal mechanisms are sum-
marized. The overall purpose of this review is to provide a comprehensive and systematic
analysis of the latest research results on biochar for Pb removal. The specific tasks of this
work are as follows: (1) Collect relevant data about the Pb adsorption by biochar; (2) Clarify
the influence of raw materials and modification methods on the Pb adsorption of biochar;
(3) Explore the kinetics and isotherm models of Pb adsorption by biochar; (4) Summarize
the adsorption capacity and removal mechanism of biochar; (5) Point out the shortcomings
of existing research and provide guidance for Pb adsorption by biochar.

2. Feedstocks for Biochar Production

A large amount of solid waste, such as crop straw and sludge, has caused a series of
environmental problems. The preparation of biochar can achieve the sustainable recycling
of resources. According to the existing raw material data of biochar used for Pb adsorption,
the raw materials were mainly divided into the following six categories: wood materials,
agricultural wastes, animal residue, sludge, fruit peel, and other wastes. The proportions
of the six raw materials are approximately 23.01%, 46.02%, 7.08%, 8.05%, 5.31%, and 9.73%
(Figure 1).

Biochars prepared from different raw materials have different adsorption capabilities.
The adsorption capacity of different raw material-derived biochars for Pb is presented in
Figure 2. As for wood materials, the KMnO4-modified hickory wood biochar obtained a
maximum Pb adsorption capacity of 153.1 mg·g−1 [44]. In addition, pine sawdust biochar
had an adsorption capacity up to 606.00 mg·g−1 [45]. Therefore, wood could be made into
biochar as an effective material for heavy metal adsorption.



Clean Technol. 2022, 4 631Clean Technol. 2022, 4, FOR PEER REVIEW  3 
 

 

 
Figure 1. The proportion of raw materials for biochar to adsorb Pb in water.  

Biochars prepared from different raw materials have different adsorption 
capabilities. The adsorption capacity of different raw material-derived biochars for Pb is 
presented in Figure 2. As for wood materials, the KMnO4-modified hickory wood biochar 
obtained a maximum Pb adsorption capacity of 153.1 mg·g−1 [44]. In addition, pine 
sawdust biochar had an adsorption capacity up to 606.00 mg·g−1 [45]. Therefore, wood 
could be made into biochar as an effective material for heavy metal adsorption. 

 
Figure 2. The Pb adsorption capacity of biochars derived from different raw materials.  

As for agricultural wastes, Medulla tetrapanacis biochar had a high efficiency for the 
sorption of Pb (1031.23 mg·g−1) [46]. Similarly, corncob-to-xylose residue biochar could 
efficiently adsorb Pb in aqueous solution with a maximum adsorption capacity of 1429.00 
mg·g−1 [42]. There was one study that showed that the excellent adsorption capacity of 
tobacco stem biochar was 2047.00 mg·g−1 according to the Langmuir model [47]. 
Agricultural waste biochar has attracted more attention than other raw materials (Figure 
1). It is a key material for biochar research and industrial application.  

As for animal residue, the biochar prepared from cow bone and optimized by ball 
milling technology had an adsorption capacity of 558.88 mg·g−1 [43]. At the same time, 
biochar derived from cow manure showed a maximum adsorption capacity of about 
230.00 mg·g−1. The animal residue biochar has a certain adsorption capacity, but the 
relative research is not enough.  

Figure 1. The proportion of raw materials for biochar to adsorb Pb in water.

Clean Technol. 2022, 4, FOR PEER REVIEW  3 
 

 

 
Figure 1. The proportion of raw materials for biochar to adsorb Pb in water.  

Biochars prepared from different raw materials have different adsorption 
capabilities. The adsorption capacity of different raw material-derived biochars for Pb is 
presented in Figure 2. As for wood materials, the KMnO4-modified hickory wood biochar 
obtained a maximum Pb adsorption capacity of 153.1 mg·g−1 [44]. In addition, pine 
sawdust biochar had an adsorption capacity up to 606.00 mg·g−1 [45]. Therefore, wood 
could be made into biochar as an effective material for heavy metal adsorption. 

 
Figure 2. The Pb adsorption capacity of biochars derived from different raw materials.  

As for agricultural wastes, Medulla tetrapanacis biochar had a high efficiency for the 
sorption of Pb (1031.23 mg·g−1) [46]. Similarly, corncob-to-xylose residue biochar could 
efficiently adsorb Pb in aqueous solution with a maximum adsorption capacity of 1429.00 
mg·g−1 [42]. There was one study that showed that the excellent adsorption capacity of 
tobacco stem biochar was 2047.00 mg·g−1 according to the Langmuir model [47]. 
Agricultural waste biochar has attracted more attention than other raw materials (Figure 
1). It is a key material for biochar research and industrial application.  

As for animal residue, the biochar prepared from cow bone and optimized by ball 
milling technology had an adsorption capacity of 558.88 mg·g−1 [43]. At the same time, 
biochar derived from cow manure showed a maximum adsorption capacity of about 
230.00 mg·g−1. The animal residue biochar has a certain adsorption capacity, but the 
relative research is not enough.  

Figure 2. The Pb adsorption capacity of biochars derived from different raw materials.

As for agricultural wastes, Medulla tetrapanacis biochar had a high efficiency for
the sorption of Pb (1031.23 mg·g−1) [46]. Similarly, corncob-to-xylose residue biochar
could efficiently adsorb Pb in aqueous solution with a maximum adsorption capacity of
1429.00 mg·g−1 [42]. There was one study that showed that the excellent adsorption ca-
pacity of tobacco stem biochar was 2047.00 mg·g−1 according to the Langmuir model [47].
Agricultural waste biochar has attracted more attention than other raw materials (Figure 1).
It is a key material for biochar research and industrial application.

As for animal residue, the biochar prepared from cow bone and optimized by ball
milling technology had an adsorption capacity of 558.88 mg·g−1 [43]. At the same time,
biochar derived from cow manure showed a maximum adsorption capacity of about
230.00 mg·g−1. The animal residue biochar has a certain adsorption capacity, but the
relative research is not enough.

As for sludge, coagulation sludge biochar had a maximum adsorption capacity of
450.58 mg·g−1 [48]. As for fruit peel, there were six related papers, and the Pb adsorption
capacities were, respectively, 86.96 mg·g−1 [49], 247.10 mg·g−1 [50], 134.00 mg·g−1 [51],
88.70 mg·g−1 [52], 742.00 mg·g−1 [53], and 359.00 mg·g−1 [54]. It could be seen that the
fruit peel was a suitable raw material for biochar production. The adsorption capacities of
different biochars are shown in Figure 2. In addition, the different adsorption capacities are
ascribed not only to the nature of the feedstock but also to the pyrolysis conditions and
modification techniques.
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3. Modification Methodology

Many experimental results showed that the unmodified biochar had a weak adsorption
capacity for heavy metals [55]. Thus, the biochar could be modified to further improve the
adsorption capacity. The surface functional groups, pore structure, specific surface area,
cation exchange capacity, and other physicochemical properties could be greatly improved
after modification [31].

As shown in Figure 3, there are three main methods of biochar modification: biological
modification, physical modification, and chemical modification. There are many studies
on chemical modification, and it has a relatively good modification effect. Therefore, the
chemical modification method will be analyzed and summarized, and the physical and
biological modification methods will be introduced briefly.
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3.1. Biological Modification

The well-developed pore structure and acid-base buffering capacity of biochar are
beneficial to the growth of microorganisms. Biologically modified biochar is mainly used
to load suitable microorganisms, which has achieved synergistic effects in both biochar
adsorption and microbial adsorption, but suitable microorganisms need to be screened.
Besides, anchoring proteins on the cell surface have metal-responsive motifs that can be
specialized for metal adsorption and dissociation [56]. Wang et al. studied the Pb adsorption
by biochar-loaded UV-mutant Bacillus subtilis, and a higher Pb adsorption capacity was
achieved for the modified biochar [57]. The adsorption amount of Pb on the original biochar
was about 150 mg/g, and the adsorption amount increased to 166.8 mg/g after loading
bacteria, which might be attributed to the synergistic effect of biochar and bacteria. In
addition, the microbial surface contains a large number of adsorption sites, which improves
the adsorption effect of biochar on Pb [58]. However, considering that bacteria have strict
requirements on reaction conditions, the Pb removal efficiency of bacterium-modified
biochar would be affected during the treatment of industrial wastewater.

3.2. Physical Modification

Physical modification methods mainly aim to optimize the physical properties of
biochar (pore size, specific surface area, etc.). Common physical modification methods
include steam activation, air activation, and ball-milling. Steam activation is a relatively
common physical modification method, which will increase the specific surface area and
pore size of biochar after activation. For example, the steam-activated biochar had a higher
adsorption capacity for Pb due to the large surface area [59]. Air oxidation also has a
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good modification effect. For instance, the Pb adsorption capacity increased from 2.50
to 44.00 mg·g−1 after the air-oxidized operation [60]. Furthermore, the biochar modified
by ball milling has excellent heavy metal adsorption capacity, with the advantages of
environmental friendliness and wide adaptability [61]. The bone-derived biochar showed a
larger specific surface area and a better pore structure after ball-milling, which promoted the
adsorption of Pb [43]. However, the separation of ball-milled biochar after Pb adsorption
should be paid more attention during the practical application.

3.3. Chemical Modification

Chemical modification is mainly divided into the following categories: metal salt
modification, acid modification, alkali modification, metal oxide modification, and organic
matter modification.

3.3.1. Metal Salt Modification

The most used modifier is metal salt, which has an excellent modification effect on the
pore size, the specific surface area, and the metal ions on the biochar surface. In addition,
magnetic substances, such as iron, can enhance the magnetic properties of biochar, which
helps to separate the biochar after adsorption.

The co-pyrolysis of magnesium-containing compounds, such as MgCl2, with biomass
can increase the specific surface area, active sites, and surface charge of biochar [62]. For
example, the adsorption capacity of MgCl2-modified biochar was 20 times higher than
that of unmodified biochar [40]. The content of carboxyl, lactone, and phenol functional
groups of modified biochar increased by 0.50, 0.86, and 0.06 mmol/g compared with the
original biochar. The magnetization of biochar was a popular modification method. For
example, magnetic cane biochar contained 18.40% oxygen, which could swell in water and
allowed Pb to be adsorbed on the biochar [63]. Potassium permanganate (KMnO4) was
a kind of metal salt with good modification effect owing to its strong oxidation property.
KMnO4 modification promotes the formation of hierarchical structure, while increasing the
specific surface area of biochar and optimizing the pore structure [64]. The Pb adsorption
capacity of hickory wood biochar modified by KMnO4 was 153.10 mg·g−1, which was
significantly higher than the original biochar, because the modified biochar had more
surface oxygen-containing functional groups and larger surface area than the original
biochar [44].

3.3.2. Acid Modification

Acid-modification is mainly used to increase the content of oxygen-containing func-
tional groups to increase the adsorption ability of the biochar. Currently, phosphoric acid
(H3PO4) and sulfuric acid (H2SO4) are the main acids for biochar modification.

H3PO4 could activate biochar to form −P=O and −P=OOH functional groups [65].
For example, orange peel biochar modified by H3PO4 had successfully introduced oxygen
and phosphorus functional groups [52]. In addition, H3PO4 modification was beneficial
to improve the phenolic group content and alkalinity of biochar, and the Pb adsorption
capacity of the modified biochar was 5.41 times higher than unmodified biochar [66]. The
carboxyl content on the surface of modified biochar increased significantly, which improved
the adsorption capacity of biochar for heavy metals [67].

H2SO4 is corrosive and oxidizing, which contributes to the formation of pore- and
oxygen-containing functional groups on biochar. H2SO4 will sulfonate with the aromatic
hydrocarbons and introduce −SO3H on the biochar [68]. Li et al. found that the lignin
biochar modified by H2SO4 could introduce highly acidic oxygen-containing groups, and
the maximum Pb adsorption capacity reached 679.00 mg·g−1 [69]. Meanwhile, the biochar
modified by H2SO4 had strong complex ability and high electronegativity, and a large
amount of −OH and −COOH were generated on the surface of biochar during the sulfona-
tion process. In addition, the Pb adsorption capacity for biochar was up to 191.07 mg·g−1

within 5 min [70].
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3.3.3. Alkali Modification

Alkali modification facilitates the optimization of the pore structure and specific
surface area of biochar. The biochar surface has more adsorption sites by improving the
pore structure and increasing the specific surface area.

Common alkaline modification reagents for biochar are potassium hydroxide (KOH)
and sodium hydroxide (NaOH). KOH modification method could increase the content of
functional groups containing O and N on the surface of biochar, and promote ion exchange
and surface complexation reaction [71]. For example, Herath et al. found that modified
biochar had a higher adsorption capacity than unmodified biochar, because the specific
surface area of KOH-activated biochar was doubled compared with the raw biochar [72].
Compared with the pristine biochar, NaOH-modified biochar has a better mesoporous
structure and higher adsorption capacity [73]. In addition, Ding et al. demonstrated that
the Pb adsorption capacity of NaOH modified biochar was 2.6–5.8 times higher than that of
the original biochar, because cation exchange capacity and the surface area of the modified
biochar were significantly improved [74].

3.3.4. Metal Oxide Modification

Metal oxides loaded on biochar can change the physicochemical properties of biochar,
such as the elemental composition. The Pb adsorption capacity of biochar modified by
metal oxide could be improved [75]. MgO-modified biochar or MgO-biochar composites
have certain application prospects in the field of heavy metal adsorption [53]. At the same
time, Zhang et al. found that the maximum Pb adsorption capacity of the MgO-coated
biochar was 558.00 mg·g−1 when the maximum Mg content in the biochar was 10.10% [53].
On the one hand, MgO modification increases the surface area of biochar, and the higher
surface area facilitates the adsorption/removal of Pb [76]. Additionally, the presence of the
MgO coating significantly enhances the buffering capacity of the solution [77].

3.3.5. Organic Matter Modification

Organic matters were used to optimize the functional groups on biochar. The impacts
of organic matter modification on the physicochemical properties of biochar are mainly
reflected in two aspects. Firstly, the organic matter had an influence on the content of
the functional groups. Chitosan is a surface modifier that can modify biochar to intro-
duce a large number of oxygen-containing functional groups [78]. For example, Deng
et al. proved that chitosan-pyromellitic dianhydride-modified biochar had more surface
functional groups than the original biochar, so it had better Pb adsorption capacity [79].
The adsorption capacity of modified biochar for Pb improved by 10% compared with
the original biochar, and the organic matter-modified biochar had a certain selectivity for
heavy metal adsorption in wastewater. Furthermore, the biochar modified by thiourea
could introduce C-O, C=O, and C=S, which could adsorb Pb through coordination and ion
exchange, thereby thiourea-modified biochar increased the adsorption capacity of Pb(II)
by 32% compared with the pristine biochar [80]. The second aspect is that organic matter
influenced the elemental composition of biochar. The ammonium polyphosphate-modified
biochar had more abundant N and P functional groups than unmodified biochar, so the
Pb removal performance of modified biochar (723.60 mg·g−1) was improved compared to
unmodified biochar (264.20 mg·g−1) [81].

3.4. Comparison of Different Modification Methods

Among these modification methods, metal oxide and metal salt modification achieved
the most significant improvement in the Pb adsorption capacity of biochar, and the rise
ranged from 42% to 600% [81–83]. The Pb adsorption capacity of Mg-modified coconut shell
biochar was 20 times higher than that of the pristine biochar [40], and the N-doped coupling
MgO-modified biochar derived from corncob-to-xylose residue exhibited a remarkable Pb
adsorption capacity of 1429 mg/g [42]. Besides the enhancement in the surface morphology
of biochar, the addition of metal oxide and metal salt could promote the ion exchange
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capacity of biochar, thus boosting the Pb adsorption capacity. However, the organic
modification method has limited effect on improving the Pb adsorption capacity of biochar.
The adsorption capacity of chitosan-modified biochar for Pb was only increased by 10%
compared with the pristine biochar. Notably, the physical modification (e.g., air activation
and ball-milling) has a good potential to optimize the Pb adsorption capacity of biochar by
modifying the physicochemical properties. The Pb adsorption capacity of the shredded
wood-derived biochar modified by mild air activation was 17 times higher than that
of the raw biochar, since the modified biochar had a higher specific surface area and
more abundant oxygen-containing functional groups on the surface [61]. The significant
improvement in the micropore area and external specific surface area of bone biochar were
also observed after ball-milling, and the Pb adsorption capacity of the ball-milled biochar
increased by 64.6% compared with the pristine biochar [43]. In contrast, the improvement
effect of bio-modified biochar on Pb adsorption is limited, even though the size distribution
of pores in biochar provides suitable habitats for many microorganisms.

Hence, the specific chemical modification techniques such as metal oxide and metal
salt modification show the greatest potential in terms of the improvement in Pb sorption
capacity, while the negative effects of chemical modification including the high cost and the
secondary pollution should be concerned during the practical application. Considering the
simple operation procedure, good economic feasibility, and environmental friendliness of
the physical modification, it could be an alternative technique to promote the Pb sorption
capacity of biochar, and the enhancement efficiency could be further improved. In compari-
son with the aforementioned modification techniques, the biological modification showed
a relatively poor potential in the practical application owing to the limited Pb adsorption
capacity and strict application conditions.

4. Adsorption Isotherm and Kinetics
4.1. Adsorption Isotherm

The exploration of adsorption isotherm is very important for understanding the interac-
tion between biochar and heavy metals. Freundlich (qe = KFCe

1
n ), Langmuir (qe =

qmaxCe

K−1
L +Ce

),

and Temkin (qe =
RT
b × ln(AT × Ce)) models are often used to analyze experimental data

and describe the adsorption equilibrium of Pb on biochar. According to the existing data of
Pb adsorption by biochar in Figure 4, approximately 71.29% of the papers are in line with
the Langmuir model [54,57,79,84–90], implying that the Pb adsorption on the surface of
biochar is more like the single layer adsorption. For example, Wongrod et al. found that the
adsorption isotherm of Pb by digestate biochar could be well described by the Langmuir
isotherm model [91].
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About 23.76% of the papers are in line with the Freundlich model [59,66,69,92–97].
The heterogeneity of the biochar surface made the adsorption process more complicated,
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and multi-layer adsorption might occur at sites with uneven energy distribution on the
biochar [98]. Gayathri et al. used various equilibrium models to analyze the adsorption
equilibrium data, and the results showed that the Freundlich isotherm was more suitable
for explaining the adsorption characteristics [93]. Similarly, the adsorption of Pb in aqueous
solution by nitrogen-doped magnesium oxide-modified biochar was best fitted to the
Freundlich model [42]. A very small proportion of reported data conformed to other related
adsorption models, such as Dubinin-Radushkevich model [75,99], Sips model [38,100],
Redlich Peterson model [44], and Tempkin model.

4.2. Adsorption Kinetics

Kinetics model was used to study the adsorption rate. Three most popular kinetic

models, pseudo-first-order kinetic model ( dqt
dt

= k1(qe − qt)), pseudo-second-order kinetic

model ( dqt
dt

= k2(qe − qt)
2) and Elovich model (qt = 1

B ln(ab) + 1
B lnt) have been used to study

the adsorption of Pb on biochar [33,101].
According to the existing data of Pb adsorption by biochar in Figure 5, approximately

87.5% of the paper conforms to the pseudo-second-order kinetics
model [48,54,57,59,66,69,79,84,86,88,90,100,102–111]. For example, Chen et al. applied
the pseudo-first-order model and pseudo-second-order model to study the adsorption
kinetics of Pb, and the results showed that the pseudo-second-order model had the best
fit, revealing related adsorption processes mainly due to chemical adsorption [112]. Only
6.25% of the paper showed that the adsorption of Pb in water by biochar is in line with
the pseudo-first-order kinetic model. Xue et al. found that the Pb adsorption by biochar
had the best fit on the pseudo-first-order model [113]. It was assumed that the inorganic
components in the biochar had low activity, and the chemical adsorption of Pb on the
biochar was not obvious.
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In addition, there are two papers showing that the adsorption process of biochar
conformed to both the pseudo-first-order kinetics and pseudo-second-order kinetic models.
On one hand, Wang et al. discovered that both the first-order and second-order kinetic
equations fitted well in describing the adsorption kinetics of Pb, which indicated that the
Pb adsorption on biochar might be controlled by multiple mechanisms [114]. On the other
hand, the adsorption kinetic was more in line with the pseudo-first-order model when the
Pb concentration was low, and it was more in line with the pseudo-second-order model
when the Pb concentration was high [115]. Thus, the Pb adsorption might be attributed to
the combined effect of physical and chemical adsorption processes [116].
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5. Pb Removal Mechanisms by Biochar

The Pb removal mechanisms by biochar are analyzed according to Table 1. The
removal mechanisms mainly include precipitation, complexation, ion exchange, electro-
static attraction, chemical bond adsorption, and physical adsorption. The corresponding
mechanisms are summarized in Figure 6.
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Table 1. Information about the adsorption of heavy metal Pb in water by biochar.

Feedstock Modifying Agent
Temperature
(◦C)/Residence
Time (h)

Concentration
Range (mg/L)

Contact
Time (h)

Isotherm
Model

Kinetic
Model

Adsorption
Capacity (mg/g) Adsorption Mechanism Ref.

Douglas fir KOH 900–1000, 10 s 25–1000 1 Langmuir Second 140.00 — [72]

Sludge Persulfate-zvi 600/1.5 0–100 8 Langmuir Second 180.00 Electrostatic attraction, electrostatic outer sphere
complexation, ion exchange, reduction [112]

Raw sewage sludge Potassium hydroxide 350/15 min 10–1000 80 min — Second 106.00 Precipitation [91]

Quercus robur FeCl3 and FeCl2 250/4 25–150 4 Langmuir Second 63.60 Electrostatic interactions [117]

Pine wood MnCl2·4H2O 600/1 1–300 24 Langmuir and
Freundlich

First and
second 47.05 Precipitation [114]

Rice straw — 550/2 0–1 mmol·L−1 72 Langmuir — 0.85
176.12 Chemical complexation [118]

Cow bone — 600/2 0–120 24 Langmuir Second 558.88
Surface complexation, cation exchange, chemical
precipitation, electrostatic interaction, and
cation-π bonding

[43]

Rice husk β-cyclodextrin 300/2 10–300 2 Langmuir Second 240.13 Electrostatic attraction and complexation [119]

Palm oil sludge — 500/0.5 0–150 4 Freundlich First, second- 21.76 Boundary layer diffusion [115]

Sewage sludge — 500/0.5 0–320 6 Langmuir First 41.20 — [113]

Fallen leaf Fe2+/Fe3+ 450/1 0–1000 2 Langmuir Second 146.84 — [120]

Water hyacinth — 433/2.65 0–1000 6 Freundlich Second 251.39
Precipitation, electrostatic adsorption, surface
physical adsorption, ion exchange, and complexation
of functional groups.

[121]

Cinnamomum
camphor

Ultrasound-assisted
alkali 450/1 50–1000 6 Langmuir Second 98.33 Electrostatic attraction and surface complexation [122]

Bean-worm skin
waste — 500/4 20–300 200 Langmuir Second 62.00 Chemisorption and precipitation [123]

Corn stalks Nanoscale zero-valent
iron, KOH 800/2 10–200 8 Langmuir Second 480.90 Reduction reaction, complexation,

and co-precipitation [124]

Rice husk Manganese oxide 800/3 15–250 1.5 Langmuir Second 86.50 Electron density reduction in π-bond aromatic
moieties due to the addition of -COOH [125]

Corncob-to-xylose
residue

Nitrogen doped
magnesium oxide 400/2 0–500 24 Freundlich Second 1429.00 Ion exchange, precipitation and complexation [42]

Date seed HCl 550/3 — — Sips model — 188.55 — [38]
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Table 1. Cont.

Feedstock Modifying Agent
Temperature
(◦C)/Residence
Time (h)

Concentration
Range (mg/L)

Contact
Time (h)

Isotherm
Model

Kinetic
Model

Adsorption
Capacity (mg/g) Adsorption Mechanism Ref.

Long-root
Eichhornia crassipes — 350/20 min 1.0 mmol·L−1 50 min Langmuir Second 118.10 Complexation [126]

Eucalypts leaf
residue

ZnCl2, FeCl3
and FeSO4

700/2 0–100 48 — — 52.40 — [127]

Sludge — 550/2 200–1000 4 Freundlich Second 30.88 Co-precipitation, complexation [128]

Microcrystalline
cellulose Iron nanoparticles 1000 0–1500 24 Tempkin Second 17.30 Reduction [129]

Banana peels — 600/2 0–600 48 Freundlich Second 247.10 Electrostatic attraction [50]

Rice husk — 700/1 0–600 48 Freundlich Second 26.70 Precipitation [130]

Hickory wood NaOH 600/2 2–100 24 Langmuir — 53.60 — [74]

Orange peel — 500 6–223 6 Langmuir Second 86.96 Ion exchange and surface precipitation [49]

Rice straw KMnO4 420/4 1.0 mmol·L−1 8 Langmuir Second 305.25 Complexation [131]

Hickory wood KMnO4 600/1 0–100 24 Redlich
Peterson

Richie
n-th-order 153.10 Surface adsorption mechanisms [44]

Swine sludge Thiourea 300/0.5 0–100 48 Langmuir Second 145.00 Ion exchange [80]

Hickory — 350/5 5–250 24 Dubinin — 16.30 Cation exchange [99]

Shell FeCl3·6H2O, EDTA 200/8 50–500 12 Langmuir Second 129.31 Electrostatic interaction and chemical complexation [110]

Bamboo — 450/3 2–500 48 Langmuir First 261.10 — [132]

Tobacco stem — 700/2 0–1000 12 Langmuir — 2047.00 Precipitation [47]

Bagasse — 300/2 — 24 Freundlich Intraparticle
diffusion — Ion exchange, precipitation [95]

Sludge Potassium acetate 700/1 5–300 24 Langmuir Second 49.47 Complexation, surface precipitation [133]

Watermelon rind MgO 600/1 50 mmol·L−1 24 — — 742.00 — [53]

Palm fiber FeSO4·7H2O and
FeCl3·6H2O 400/2 25–300 24 Sips model Second 188.18 Electrostatic interaction, ion exchange, and

complexation [100]

Celery — 500/3 60–400 24 — — 304.00 Precipitation, cation exchange, and
surface complexation [134]

Coagulation sludge MgCl2·6H2O,
MgFe3·6H2O 500/4 0–140 24 Langmuir Second 488.78 Ion exchange, electrostatic interaction [48]



Clean Technol. 2022, 4 640

Table 1. Cont.

Feedstock Modifying Agent
Temperature
(◦C)/Residence
Time (h)

Concentration
Range (mg/L)

Contact
Time (h)

Isotherm
Model

Kinetic
Model

Adsorption
Capacity (mg/g) Adsorption Mechanism Ref.

Pinewood
sawdust

Al(NO3)3·9H2O,
MgSO4·7H2O 350/1 10–500 24 Langmuir Second 591.20 Complexation and electrostatic interaction [135]

C. Oleifera shells Polyammonium
phosphate 550/1 100–2000 6 Langmuir Second 723.60 Surface complexation [81]

Rice straws β–cyclodextrin 500/4 50–5000 4 Langmuir Second 131.24 Ion exchange and complexation [136]

Soybean cake — 700/2 60 2.5 Second 133.60 Cation exchange, precipitation [137]

Shredded wood Mild air 475/0.25 0–500 — — — 44.00 Precipitation [60]

Pomelo peel H3PO4 250/2 10–2000 24 Langmuir Second 88.70 Surface complexation and electrostatic interactions [52]

Date seed HCl 550/3 — — Sips — 188.55 — [38]

Peanut shell Hydrated manganese
oxide 400/1 0–30 24 Freundlich Second 330.00 Complexation [96]

Corn stalks FeSO4·7H2O,
L-cysteine 120/12 10–150 10 Freundlich Second 103.04 Electrostatic attraction [97]

Axonopus
compressus Sulfuric acid 180/0.5 0–200 15 min Langmuir Second 191.07 Complexation and ion exchange [70]

Corn stover ZnO/ZnS 600/1 5–100 48 Freundlich Second 135.80 Ion exchange, inner sphere complexation [138]

Eucalyptus globules
bark Zero valent iron 750 0–200 2 Langmuir Second 60.80 — [139]

Grape pomace — 700/2 50–300 24 Langmuir Second 134.00 Electrostatic attraction, cation exchange, complexation [51]

Wheat straw Natural hematite 800/2 5–1500 24 Freundlich Second 196.91 Precipitation and the surface complexation [83]

Pine sawdust Magnetic ferrite 200/8 5–100 6 Langmuir Second 99.50 Chemical binding adsorption, electrostatic attraction,
and ion exchange [140]

Medulla
tetrapanacis — 700/1 50–400 24 Langmuir Second 1031.23 Complexation, precipitation, π-π interactions,

ion exchange [46]

Raw sawdust Magnesium 600/1 20–600 1.5 — — 202.20 Ion exchange [141]

Douglas fir KOH 900–1000/
10 s 25–1000 1 Langmuir Second 140.00 — [72]

Sludge Persulfate-zvi 600/1.5 0–100 8 Langmuir Second 180.00 Electrostatic attraction, electrostatic outer sphere
complexation, ion exchange, reduction [112]

Raw sewage sludge Potassium hydroxide 350/15
min 10–1000 80 min — Second 106.00 Precipitation [91]
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Table 1. Cont.

Feedstock Modifying Agent
Temperature
(◦C)/Residence
Time (h)

Concentration
Range (mg/L)

Contact
Time (h)

Isotherm
Model

Kinetic
Model

Adsorption
Capacity (mg/g) Adsorption Mechanism Ref.

Quercus robur FeCl3 and FeCl2 250/4 25–150 4 Langmuir Second 63.60 Electrostatic interactions [117]

Pine wood MnCl2·4H2O 600/1 1–300 24 Langmuir and
Freundlich

First and
second 47.05 Precipitation [101]

Rice straw — 550/2 0–1 mmol·L−1 72 Langmuir — 0.85
176.12 Chemical complexation [118]

Rice husk β-cyclodextrin 300/2 10–300 2 Langmuir Second 240.13 Electrostatic attraction and complexation [119]

Water hyacinth — 433/2.65 0–1000 6 Freundlich Second 251.39
Precipitation, electrostatic adsorption, surface
physical adsorption, ion exchange, and complexation
of functional groups.

[121]

Palm oil sludge — 500/0.5 0–150 4 Freundlich First, second- 21.76 Boundary layer diffusion [115]

Cinnamomum
camphor

Ultrasound-assisted
alkali 450/1 50–1000 6 Langmuir Second 98.33 Electrostatic attraction and surface complexation [122]

Fallen leaf Fe2+/Fe3+ 450/1 0–1000 2 Langmuir Second 146.84 — [120]

Bean-worm skin
waste — 500/4 20–300 200 Langmuir Second 62.00 Chemisorption and precipitation [123]

Corn stalks Nanoscale zero-valent
iron, KOH 800/2 10–200 8 Langmuir Second 480.90 Reduction reaction, complexation,

and co-precipitation [124]

Rice husk Manganese oxide 800/3 15–250 1.5 Langmuir Second 86.50 Electron density reduction in π-bond aromatic
moieties due to the addition of -COOH [125]

Corncob-to-xylose
residue

Nitrogen doped
magnesium oxide 400/2 0–500 24 Freundlich Second 1429.00 Ion exchange, precipitation and complexation [42]

Ragweed — 450/2 1000 ppm 24 Langmuir Second 358.70 Precipitation, ion exchange, complexation [142]

Sewage sludge — 500/0.5 0–320 6 Langmuir First 41.20 — [113]

Sludge — 550/2 200–1000 4 Freundlich Second 30.88 Co-precipitation, complexation [128]

Long-root
Eichhornia crassipes — 350/20 min 1.0 mmol·L−1 50min Langmuir Second 118.10 Complexation [126]

Eucalypts leaf
residue

ZnCl2, FeCl3
and FeSO4

700/2 0–100 48 — — 52.40 — [127]

Microcrystalline
cellulose Iron nanoparticles 1000 0–1500 24 Tempkin Second 17.30 Reduction [129]

Banana peels — 600/2 0–600 48 Freundlich Second 247.10 Electrostatic attraction [50]
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Table 1. Cont.

Feedstock Modifying Agent
Temperature
(◦C)/Residence
Time (h)

Concentration
Range (mg/L)

Contact
Time (h)

Isotherm
Model

Kinetic
Model

Adsorption
Capacity (mg/g) Adsorption Mechanism Ref.

Rice husk — 700/1 0–600 48 Freundlich Second 26.70 Precipitation [130]

Hickory wood NaOH 600/2 2–100 24 Langmuir — 53.60 — [74]

Orange peel — 500 6–223 6 Langmuir Second 86.96 Ion exchange and surface precipitation [49]

Rice straw KMnO4 420/4 1.0 mmol·L−1 8 Langmuir Second 305.25 Complexation [131]

Hickory wood KMnO4 600/1 0–100 24 Redlich
Peterson

Richie
n-th-order 153.10 Surface adsorption mechanisms [44]

Swine sludge Thiourea 300/0.5 0–100 48 Langmuir Second 145.00 Ion exchange [80]

Hickory — 350/5 5–250 24 Dubinin–
Radushkevich — 16.30 Cation exchange [99]

Maple wood H2O2 550/ 5–550 24 Langmuir — 43.30 — [143]

Coconut fiber — 500/4 50–500 24 Langmuir Second 175.40 Cation exchange, complexation with functional
group, precipitation [144]

British broadleaf
hardwood — 600 — 24 Langmuir Second 47.66 Cation exchange [76]

Raw bagasse KMnO4 600/8 5–200 48 Langmuir Second 37.45 Precipitation, ion exchange [145]

Ganoderma lucidum
substrate — 650/2 0–300 24 Freundlich Second 262.76 Precipitation [146]

Aerobic granular
sludge

FeCl3·6H2O,
FeSO4·7H2O 200/8 5–150 12 Langmuir Second 127.00 Surface complexation, electrostatic attraction,

and precipitation [147]

Camellia seed husk — 700/1 0–300 48 Langmuir Second 109.67 Ion exchange, complexation, Pb–π interaction,
and precipitation [148]

Mulberry wood — 650/4 —— — Freundlich — 250.00 Ion exchange and chemical precipitation,
Pb2+-p-electrons interaction [149]

Biogas residue FeCl3, FeSO4·7H2O 700/2 25–300 4 Langmuir Second 181.82 Surface complexation and precipitation,
electrostatic attraction [150]

Printing leaflets — 600/2 20–400 24 Langmuir Second 1555.00 Electrostatic interactions, and pi-pi interactions [151]

Note: — means no relevant data.
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5.1. Precipitation

Chemical precipitation is widely used for heavy metal removal in industry, and it can be
used effectively in a large temperature range with low operating costs. A large number of studies
have shown that precipitation is one of the main Pb removal mechanisms [92,115,122,131]. For
example, the surface of biochar had abundant Pb particles, which proved that precipitation
was the removal mechanism [114]. The high removal capacity was mainly due to the
formation of carbonate mineral precipitation [146]. The peak of CO3

2- shifted after the
adsorption of Pb, and the production of the mineral PbCO3 indicated that Pb(II) was
precipitated together with carbonate [152,153]. Besides, phosphates on the surface of
biochar also played an important role in promoting the precipitation of Pb. Precipitation
of Pb phosphate was an important mechanism for biochar to adsorb Pb(II) [81]. For
instance, Pb5(PO4)3Cl [86], Pb5(PO4)3OH, and Pb3(PO4)2 [66] on the biochar proved that
Pb phosphate precipitation was an important mechanism.

Furthermore, pH was an important factor affecting the precipitation of Pb ions.
Pb(OH)2 precipitation formed at pH > 6.0, because there were local sites with high alkalinity
on the surface of biochar [63,130]. The role of mineral precipitation increased significantly
with the increase in pyrolysis temperature [154]. Precipitation of Pb2+ and carbonate min-
erals has been proved to be the main interaction of Pb removal [155]. Some quantitative
analyses had also confirmed the predominant role of the precipitation mechanism. For
instance, Wu et al. and Cheng et al. found that the contribution of precipitation accounted
for more than 50% of the Pb adsorption capacity, because Pb could react with anions (e.g.,
CO3

2−, PO4
3−, and OH−) released from biochar to form mineral precipitates [40,156].

5.2. Surface Complexation

Complexation is a process in which electrons interact with donors and acceptors to
form various complexes. Complexation plays an important role in the Pb adsorption by
biochar. The peak areas of C-O decreased from 31.29% to 21.95% after the adsorption
of Pb, which represented that the C-O group combined with a large amount of Pb in
solution through surface complexation during the adsorption process [156]. For example,
the contribution of surface complexation in the removal mechanism accounted for 55.1%
when Gao et al. studied the sorption mechanisms of Pb by rape straw biochar [157]. The
content and types of oxygen-containing functional groups on the surface of biochar have a
great relationship with the adsorption capacity. Characterization analyses such as X-ray
photoelectron spectroscopy and X-ray diffraction showed that the removal mechanism of
Pb by biochar was mainly the chemical complexation between Pb and oxygen-containing
functional groups. The single bond O functional group might play a dominant role, because
the single bond was observed to have a significant decrease in the strength of the −OH/C-
O functional group after the Pb adsorption [23]. Compared with the carboxyl group, the
hydroxyl group had smaller binding energy and stronger metal complexing ability [118].
Furthermore, the PbFe12O19 species might be attributed to the complexation between Pb2+

and −OH group on the biochar [158].
Related characterization proved that hydrated manganese oxide nanoparticles could

combine with Pb ions through specific inner sphere complexation, and the negatively
charged oxygen-containing groups on biochar were beneficial to adsorb Pb [96]. Some
studies have shown similar results [126]. Besides, complexation is greatly affected by
the preparation temperature of biochar, and the role of surface complexation decreases
significantly with the increase in pyrolysis temperature [154].

5.3. Ion Exchange

Ion exchange is the effect or phenomenon of the exchange of ions in a solution with
ions on a certain ion exchanger. It uses the exchange of ions in a solid ion exchanger
with ions in a dilute solution to remove certain ions in the solution. Ion exchange is also
one of the main mechanisms, mainly through ion exchange between the cations on the
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oxygen-containing functional groups and the Pb ions. The cation exchange capacity is a
vital indicator of the Pb removal effect when the ion exchange is dominant [159].

The oxygen-containing functional group on the surface of biochar is an influencing
factor of ion exchange. Besides, the ion exchange mechanism is often influenced by the
number of acid sites on the biochar surface [160]. Zhou et al. found that Pb-O/Pb-O=C
existed on the surface of banana peels biochar, which proved that the dominant mechanism
might be ion exchange [54]. According to the isoelectric point of the carboxyl group and
the phenolic hydroxyl group, it was speculated that the main removal mechanism was ion
exchange through the carboxyl group [69]. In addition, the adsorption capacity of biochar
did not change with the change of specific surface area after desorption, which also proved
that the main mechanism was ion exchange [161]. Metal ions such as K+ and Mg2+, which
were equivalent to 10.00% to 38.50% of the total adsorption capacity, were released into the
solution, indicating that ion exchange was an important removal mechanism [154].

At the same time, quantitative analysis of some mechanisms also shows that ion
exchange plays a major role. Wu et al. found that the contribution of ion exchange
accounted for more than 53.31% [40]. The amount of Pb adsorbed by magnesium-modified
biochar through mineral precipitation increased by 214.4 mg/g, and the ion exchange
adsorption amount of modified biochar was 49 times that of the pristine biochar [40]. Ion
exchange is greatly affected by the preparation temperature of biochar, and the role of
ion exchange improved significantly with the increase in pyrolysis temperature [154]. In
addition, the change of mineral ion exchange sites with pyrolysis temperature is the main
factor affecting the adsorption of heavy metal ions [162].

5.4. Electrostatic Interaction

Electrostatic interaction occurs between positively charged Pb ions and negatively
charged groups on biochar, especially oxygen-containing functional groups. The density
of charges on the surface of biochar attracts ions with opposite charges and drives away
ions with the same charge. For example, banana peel biochar had high electronegativity,
and electrostatic attraction was the dominant force for the adsorption of Pb on biochar [50].
Besides, Mohubedu et al. found that the electrostatic interaction was the main removal
mechanism [117]. Besides, Pb could combine with −COOH and −OH [52], amide oxygen
atom, and amino N [163] on biochar by electrostatic interaction. Zeta potential value
is an important indicator to explore the removal mechanism of electrostatic attraction.
The high electronegativity of the surface of biochar led to the migration of Pb ions to the
biochar [50]. Zeta potential was affected by pH, and the adsorption capacity of biochar
was poor when pH < 5.3. The increase in charge neutralization activity improved the
electrostatic interaction when 5.5 < pH < 7. The adsorption capacity decreased due to the
formation of Pb(OH)2 precipitation when pH > 7.0. Furthermore, electrostatic interaction
of deprotonated functional groups enhanced Pb adsorption [100].

5.5. Chemical Bond

The elements on the biochar can form chemical bonds with the Pb in the aqueous
solution to achieve the purpose of removing Pb. The main Pb removal mechanism on
biochar involves chemical binding adsorption [140]. The main types of chemical bonds
are Pb(II)–π interaction [148] and π-π interactions. π-π interaction played a role in the
Pb adsorption by biochar. The π-π interaction promoted the combination of Pb ions and
C=C [164]. The shift of C=C and the change of the band after the adsorption of Pb ions
indicated that the π-π effect played an important role [46]. Therefore, the deepening of the
graphitization degree of biochar favored the adsorption of heavy metal Pb [46]. Besides,
the adsorption capacity is consistent with the graphitization degree of biochar, because
highly graphitized biochar can provide a large number of π donors [165].
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5.6. Physical Adsorption

Physical adsorption also contributes to the adsorption of Pb by biochar. Physical
adsorption was a major removal mechanism [46]. In addition, physical adsorption is
mainly determined by the specific pore structure and surface area, and physical adsorption
is a reversible process [166]. Interaction between biochar and Pb can be achieved through
weak van der Waals forces [165]. Gayathri et al. prepared crop waste biochar to adsorb
Pb in water [93]. Internal and external diffusion were the main separation mechanism for
biochar to adsorb Pb. Besides, pore-filling played an important role in removing Pb [167].
In addition, Lee et al. found that boundary layer diffusion played a major role in the Pb
adsorption by biochar [115]. SEM-EDX images showed that the surface of biochar contained
Pb element crystal particles, so biochar could adsorb Pb through physical adsorption [121].

6. Problems and Future Perspectives

1. The current studies on the reusability of biochar and the interference of other ions
in solution should be strengthened. Meanwhile, the effects of other heavy metals,
such as copper and cadmium, on Pb adsorption need to be studied more carefully to
facilitate the simultaneous removal of multiple heavy metals.

2. The current research on the Pb adsorption by biochar in wastewater has a large gap
with the real Pb polluted water. Thus, the experimental research consistent with the
actual polluted water should be promoted.

3. The research content of Pb removal mechanism by biochar remains basically un-
changed. The main removal mechanisms include ion exchange, surface complexation,
electrostatic adsorption, etc. There is a lack of feedback and improvement processes.
Besides, the establishment of analytical models between the preparation conditions
and the adsorption capacity might help design experiments more rationally.

4. The morphology and stability of Pb on the biochar surface need to be explored after
adsorption, and the Pb leaching in the solution also needs to be studied in detail.

7. Conclusions

1. The results show that different raw materials had different physical and chemical
properties. The most popular raw material of biochar for wastewater treatment was
agricultural waste, accounting for about 50%.

2. The modification methods of biochar were mainly divided into physical and chemical
modification. Among them, the chemical modification was the most widely used and
had better effect. At the same time, there were many kinds of modifiers, and the most
widely used modifier was metal salt.

3. According to the study of removal mechanism, the results show that the Pb adsorption
by biochar mostly conforms to the Langmuir model, and most of the studies on
adsorption kinetics are in line with the pseudo-second-order model.

4. Although there were many types of Pb removal mechanisms by biochar in wastewater,
precipitation, complexation, ion exchange, and electrostatic attraction are the four
main removal mechanisms.

Biochar is a suitable adsorbent for Pb removal in water, and it will be industrially
applied widely in the future.
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