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Abstract: An “energy evolution” is necessary to manifest an environmentally sustainable world
while meeting global energy requirements, with natural gas being the most suitable transition fuel.
Covering the ever-increasing demand requires exploiting lower value sour gas accumulations, which
involves an acid gas treatment issue due to the greenhouse gas nature and toxicity of its constituents.
Successful design of the process requires avoiding the formation of acid gas vapor which, in turn,
requires time-consuming and complex phase behavior calculations to be repeated over the whole
operating range. In this work, we propose classification models from the Machine Learning field, able
to rapidly identify the problematic vapor/liquid encounters, as a tool to accelerate phase behavior
calculations. To set up this model, a big number of acid gas instances are generated by perturbing
pressure, temperature, and acid gas composition and offline solving the stability problem. The
generated data are introduced to various classification models, selected based on their ability to
provide rapid answers when trained. Results show that by integrating the resulting trained model into
the gas reinjection process simulator, the simulation process is substantially accelerated, indicating
that the proposed methodology can be readily utilized in all kinds of acid gas flow simulations.
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1. Introduction

Undoubtedly, the ever-growing global energy demand in conjunction with the imma-
turity of carbon free energy sources has forwarded natural gas as the transition fuel [1,2]
until the net zero task [3] is accomplished. As a result, gas hydrocarbon reservoirs, which
have been traditionally ignored due to limited quality of their organic content, are now
considered as potential candidates. A typical example of such reservoirs is those containing
CO; and H5S rich fluids which, in turn, leads to the production of sour surface gas streams.
Primary to its transportation and market release, the sour gas must undergo a process
of selectively removing the acid components, i.e., HyS and CO;, due to the high toxicity
of the former [4] as well as the corrosive nature and direct impact on the increase of the
greenhouse effect [5,6] of the latter. This separation process, known as gas sweetening,
takes place in the amine unit (AU) and results in an acid-free sweet gas stream and a second
waste acid gas stream, which is extremely flammable and explosive, containing significant
amounts of H,S and CO,. In order to protect the environment from toxic and greenhouse
gases, the aforementioned waste stream must be handled properly.

Typically, the waste acid gas stream is driven into a Claus Sulfur Recovery (CSR)
unit, where elemental sulfur from gaseous H,S is recovered [7-10]. However, due to
declining global demand for elemental sulfur [11] as well as increasingly stringent emis-
sion standards [12], alternative ways of handling the acid gas are sought after, with the
most straightforward application being the stream injection into the reservoir [13]. This
process is illustrated in Figure 1 and can be described by the following steps. Firstly, the
fluids collected from all wellheads contributing to production are flowed to a separator
where complete liquid-gas separation occurs at predetermined pressure and temperature
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conditions [14]. The resulting sour gas stream is then led to a drying unit where most of
the water content is removed [15]. Subsequently, this dried sour gas is directed towards
the AU plant where, in contact with an amine solution, an absorption process enables the
sweet components to pass through, while maintaining the acid components in the water
phase [16,17]. Ultimately, conforming to pipeline and market specifications for low acid gas
content [18], the sweet gas is driven to the sales point. The remaining acid gas-saturated
amine solvent is regenerated by heating the aqueous solution and the water-saturated
acid gas stream exits the regenerator unit at 35 to 70 kPa to be subsequently cooled and
compressed at suitable pressure stages [19]. Finally, the acid gas stream is driven through
pipelines to the wellheads [13] where it is injected selectively back to the reservoir.
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Figure 1. Acid gas treatment and reinjection process.

The study and development of an acid gas injection scheme requires thorough estima-
tion of the fluid’s complex phase equilibria [13,20]. However, literature provides limited
experimental data as far as the phase behavior and the physical properties of acid gas
mixtures are concerned [21-24]. Therefore, the phase behavior and physical properties
must be evaluated using computational models with conditions varying in a very wide
range, from near-atmospheric ones, to those prevailing at the surface processing plant
and transportation network, and eventually to those encountered in the wellbore and the
reservoir. Additionally, the phases encountered at each stage of the reinjection process also
vary between those of gas, liquid, and supercritical at the AU outlet, the transportation
network, and the wellbore respectively. For the latter case, the acid gas must be injected at
a supercritical state to ensure high density and lack of gas bubbles, which could lead to
severe erosion and to the prevention of adverse permeability effects [20,23]. On top of the
above concerns, the compositional variability of the injected gas stream, as influenced by
the production planning of the field, must be further considered. This is due to the com-
mingling of fluids originating from different parts of the reservoir which contain diverse
fluids with respect to their acid components concentration [25].

To study the acid gas stream flow from the AU outlet to the reservoir, the differential
equations accounting for the conservation of mass, momentum and energy need to be
solved. Commonly, pipelines and wellbores are discretized into 1D elements within
which the conservation equations are converted to sets of algebraic equations and solved
iteratively. The number and properties of the flowing phases need to be determined at each
discretization block, for all iterations until convergence, and for every time step [26]. To
attack this problem in compositional simulation, the standard method to answer the phase
state question is running a phase stability test which determines the number of phases
present in the flowing fluid at the prevailing pressure and temperature conditions [27-29],
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i.e., whether it lies inside or outside the phase envelope, as shown in Figure 2. Although
the algorithm is straightforward, a highly non-linear optimization problem needs to be
solved to get the number of phases, which imposes a big CPU time burden on the total
simulation time cost. This is due to the iterative nature of the optimization problem as
well as the implemented EoS model, the cost of which may vary between as low as that
of a conventional cubic EoS model, to as high as that of much more complex models
such as the Cubic Plus Association (CPA) [30,31]. Since speed is a critical concern in
current compositional flow simulators, accelerating stability calculations without too much
compromise in accuracy and reliability is an active research topic in both academia and
industry [32-34].
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Figure 2. Phase envelopes for acid gas mixtures.

In the Machine Learning (ML) context, classification is a process that assigns a given
object (pattern) to a class (target, label, or category) [35]. In its simplest case, the classi-
fication problem is binary with the assigned class being on/off, high/low etc., although
multiclass problems can be handled as well. During its training against a dataset, the classi-
fier learns the classes decision boundary using ML algorithms, which aim at minimizing
the misclassification error [36]. This dataset is referred to as a training dataset and includes
several samples, as well as the desired class for each sample from which to learn, in what
is known as a supervised learning scheme. The decision boundary is often a parametric
expression of the input features, and the optimal values of the parameters are obtained
through the training process. The classifier’s efficiency to correctly map input data to a
specific category is evaluated based on its ability to classify previously “unseen” test data,
which have not been utilized throughout the training process. Special attention should be
paid to the classifier’s complexity as it must be adjusted to optimize model’s generalization
capability and to avoid obtaining overtrained complex models which may exhibit flawless
classification results on the training set, but not on new data (overfitting) [37]. Therefore,
the tradeoff between a highly complicated structure that is prone to overfitting and a
simplistic structure that produces poor classification results on novel observation samples
(underfitting) must be optimized.

Clearly, the phase stability problem can be mapped to a two-class classification—one
with the two classes corresponding to stable/unstable or equivalently to single/two-phase
flow. Therefore, ML classification techniques can be used to generate accurate and rapid
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predictions regarding the number of phases present of various acid gas instances. The input
features are the acid gas composition, z, pressure, p, and temperature, T [38]. The exact
phase boundaries in the p-T phase diagrams represent the decision boundaries that need
to be learned and accurately reproduced by the classifier (Figure 2). Once such a machine
has been trained, it can be directly incorporated to the flow simulator, fully replacing
the conventional, iterative, time-consuming stability algorithm, thus offering significant
acceleration of the flow simulation time cost.

Various applications of similar proxy modeling have appeared in the literature. Such
models have been developed by means of soft computing tools, varying from classic
statistical methods to high end ML approaches. Water-Alternating-Gas procedures and the
Box-Behnken design have been optimized by means of such methods to establish Enhanced
Recovery [39-41]. Moreover, full scale reservoir simulation of hydrocarbon recovery or
CO;, injection for storage purposes have also been drastically accelerated by means of
proxy modeling using neural networks [42,43]. Similarly, proxy modeling by means of ML
has been applied to accelerate turbulent multiphase flow simulations [44], whereas vast
acceleration of condensate gas reservoir simulation has been reported [45]. Fault detection
in complex NGL fractionation processes has also been treated [46].

In this paper, we investigate the applicability of ML techniques in handling the phase
behavior classification, with the purpose of dealing more efficiently with the complexity
and computational cost of phase equilibrium calculations in acid gas flow simulation.
Various classification models from the ML field have been tested to come up with the
optimal architecture, which combines optimal error rate and fast predictions on new data.

The paper is laid out as follows: Section 2 discusses all materials and methods uti-
lized in this work, including conventional stability algorithm and CPU time needs when
complex Equation of State (EoS) models are utilized, how phase stability can be mapped
to a classification problem, and sets forth the classification techniques used in the paper
consisting of Decision Trees (DTs), Support Vector Machines (SVMs), and Neural Network
(NN)-based classifiers as investigated candidates. Section 3 describes how the training data
were generated, explains all data treatment techniques employed, and discusses the results
obtained for each classification model, as well as the special techniques utilized to further
accelerate computations. Conclusions are presented in Section 4.

2. Materials and Methods
2.1. Conventional Stability Calculations

Phase stability testing is an integral part of the phase behavior calculations required
in all multiphase flow simulations. The conventional approach is based on the work of
Michelsen [28], who developed the Tangent Plane Distance (TPD) criterion [29]. According
to Michelsen’s criterion, a mixture will split into two or more phases if a composition y can
be found, which leads to a reduction of the mixture’s Gibbs energy when an infinitesimal
quantity of that composition forms a second phase (a bubble or a drop). The Gibbs energy
of a c-component mixture of composition z, at given temperature and pressure (T, Fy), is
computed by [32,47]

Go=Y :zin, 1

where 1) the chemical potential of component i at current conditions. If an infinitesimal
amount of a new phase, ¢, forms a second phase with composition y, then the change in
Gibbs energy will be

AG = e Y, yi(mily) — ), @
the sign of which equals that of the TPD function:
TPD(y) =}, ¥i (Vi(Y) - #?), ®)

If a composition y can be found which reduces the system’s Gibbs energy, the system
will switch to a two-phase system and acid gas vapor will coexist with liquid. To avoid
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searching the full compositional space, only composition y, ;, that minimizes AG can
alternatively be considered. On the other hand, if AG > 0,i.e.,, TPD > 0, the system will
remain in the single phase. Therefore, Michelsen’s criterion states that [32]

unstable if TPDyin <0
. . stable if TPDyin >0
MIXRUTeIs \ *Syaple  if TPDyin = 0,7, = 2 @)

unstable if TPD,;, =0,y,,:, #

where
TPDyin = TPD(Y,i), 5)

Stability analysis is formulated as a nonlinear, unconstrained minimization problem
that aims at locating the stationary points of the TPD function where its derivative van-
ishes. To avoid convergence to trivial solutions, at least two different initial estimates of
composition y need to be tried [32]. Minimization is run using any conventional algorithm
from simple Successive Substitution Iteration to the highly sophisticated Newton method.
Global minimization of the TPD might also be sought, depending on the complexity of
the TPD function, as is done in the work by McDonald and Floudas [48], Harding and
Floudas [49], and Hua et al. [50,51]. Although global minimization methods are reliable
and guaranteed to arrive at the global minimum of the TPD function for a suitable initial
guess, they are also costly and limited to systems with a small number of components.

Computational speed is a severe issue when dealing with multiple stability calculations
as is the case for flow simulation. The problem stems from the fact that the EoS which
governs acid gas thermodynamics needs to be solved repeatedly for each trial composition
y to get the system’s Gibbs energy reduction AG, hence TPD and its gradient. A large
number of studies have been presented which aim at accelerating such computations,
including lumping of the reservoir fluid composition into a smaller number of pseudo-
components [52] while preserving the EoS model’s accuracy as much as possible. Reduction
methods were initiated by Michelsen [53], who was the first to link the number of non-
linear equations that need to be solved in phase-split calculations to the rank of the binary
interaction coefficients matrix (BIC). He showed that in the extreme case of zero BIC, the
system equations are only three, on the condition that the Van der Waals mixing rules
are utilized. Hendricks and Van Bergen [54], Firoozabadi and Pan [55], and Pan and
Firoozabadi [56] extended this idea to phase stability calculations and to fluids with non-
zero BIC. By applying singular value decomposition to the BIC matrix and by maintaining
only its dominant directions, the n original variables are replaced by a set of m new ones
with m < n, thus significantly reducing the dimensionality of both problems.

2.2. Stability Calculations in the Classification Framework

Classification aims at assigning a label to an object judging from its description by
a set of measured features. In its simplest version, the labeling is binary as each object
is assigned to one of two classes, say true and false or high and low [35]. To build the
classifier, a training dataset is required, comprising of a set of instances, usually obtained
by an experimental procedure, for which a set of features x is available for each instance
together with the required label. The classifier training procedure aims at generating an
expression, which mathematically combines the features values to arrive at the correct
label output.

If a classifier is trained to predict the probability of each class to be the correct one, e.g.,
p(x € Cyqlx) and p(x € Cp|x) then datapoint x is assigned to class A if
p(x € Calx) > p(x € Cp|x). Alternatively, classifiers can be trained to generate an appro-
priate discriminating function d(x) for which x € C4 — d(x) > 0 and x € Cp — d(x) < 0.
Therefore, to label a new point x, the discriminating function d(x) is evaluated and the
appropriate class is assigned according to its sign.
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Gaganis and Varotsis [32,57,58] utilized the classification framework to allow the
rapid run of batch stability computations. They proposed the use of data-driven classifiers
which would directly assign a stable/unstable label to any operating conditions. More
specifically, they developed discriminating functions of the form d(z, p, T) exhibiting same
sign with TPD,,;, over the full operating range. Such a function will provide same stability
predictions as the conventional criterion; hence the stability state of a mixture would be
determined by [32]

stable ifd(z,p,T) >0
Mixture is § unstable if d(z,p,T) <0 (6)
unstable if d(z,p,T) =0

where the third branch corresponds to the phase boundary.

In this work, we utilize datapoints describing the acid gas thermodynamic behavior
to generate an explicit expression of the d(.) function. Let a set of data points {x;,t;},
where x; denotes combinations of composition, pressure, and temperature {z;, p;, T; } and
t; takes values in {0, 1} with 0 corresponding to a stable and 1 corresponding to an un-
stable mixture respectively. Such a set can be constructed beforehand by utilizing any
reliable stability algorithm for an arbitrarily large random set of inputs x; fully covering
the required simulation z, p, and T space. The discriminating function is generated to
satisfy f; =0 — d(x;) > 0 and t; =1 — d(x;) < 0 for all data points, that is, providing
positive or negative values for stable and unstable points, respectively. If d(x) satisfies
that constraint for all datapoints contained in the sampled dataset, it will also correctly
interpolate the discriminating function sign (0 or 1) for any other possible combination
of composition, pressure, and temperature, thus providing a correct stability answer in
the entire required operating range. Once d(x) has been developed, the stability state for
any acid gas mixture can be declared rapidly by means of Equation (6). By generating
d(x) against data obtained from thermodynamically consistent methods, Equation (6) can
be thought of as an equivalent non-iterative, closed form solution of the formal stability
problem in Equations (3)—(5).

The explicitness of Equation (6) allows for the computation of the stability state directly,
in a non-iterative mode and in a fraction of the CPU time required by the conventional,
iterative approaches. Therefore, during a flow simulation run, Equation (6) can fully
replace the conventional stability test at any iteration of the non-linear solver for each grid
block and at any time step. Furthermore, the proposed method can be utilized with an
EoS model of any complexity and with any set of mixing rules. By completely avoiding
time-consuming iterations and the requirement for suitable initial estimates, the number of
operations required for any test case is constant even in the vicinity of the critical point, the
stability test limit locus [59], and the supercritical region [32].

2.3. Classification Models Considered

The classification problem studied in this work exhibits certain peculiarities compared
to the vast majority of similar problems appearing in the data science field. Firstly, an
arbitrarily large amount of training data can be readily generated off-line as a closed form
method to get the class of any composition, i.e., conventional stability calculation, available.
Therefore, overfitting can be avoided as the ratio between the training population size and
the classification model parameters space can be controlled. Secondly, it is important to
keep the model size and the computational load as low as possible to guarantee rapid
answers to the stability problem at any point along the fluids path and at any operating
conditions. As a result, various classification models available in the literature which may
exhibit remarkable accuracy levels may not be applicable to the problem studied here.

The selection of suitable classification models is initially approached by setting up the
problem on a rigid mathematical basis. More specifically, let Xy, be the training data
matrix which contains the input of N datapoints, each consisting of # features, also known
as response variables. In the present case, each row corresponds to a single datapoint
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with columns for fluid composition, pressure, and temperature, i.e., x; = [z(lxc), P, T] ,

where ¢ stands for the number of acid gas components. The corresponding labels for each
case are stored in a vector Y(y,q) which comprises unities and zeros, representative of
each state, i.e., stable or unstable, respectively. The classifier generates a discriminating
function y; = f(x;) where y; € {0,1} and its training aims at modifying f(.) to minimize
the discrepancy between exact and predicted labels, usually defined by means of negative
likelihood, piecewise linear cost, cross entropy, and the negative Gini index [37].

Based on the features of the problem under study, three classification models were
investigated: DTs, SVMs, and classification NNs. DTs build classification models in the
form of a tree by applying continuous division of the input space into halfplanes according
to response variables and threshold values which define the division point. The training
algorithm repeatedly selects the response variable and the threshold value which, when
applied to the training population, leads to its optimal split. Optimality can be determined
by means of various criteria, with the most pronounced one being the Gini index [37],
which accounts for the similarity of the points assigned to each split. The Gini index
exhibits maximum value when all cases belonging to a single split exhibit same class labels
which in turn implies that further splitting and growing of the tree is not required and that
the particular node is a terminating one. The training CPU time cost of this category of
classifier is very low and so is the prediction time on future datapoints, as decisions are
obtained by applying simple and uncostly if commands. Additionally, a low number of
split levels adds to the bias of the model while reducing its variance, thus improving the
bias/variance tradeoff and preventing overfitting [60].

SVMs [61,62] aim at generating a discriminating function of the form d(x) = f(z,p, T)
which exhibits opposite signed values on points belonging to the two classes. The discrimi-
nating function equals to zero exactly at the boundary between the two classes and SVMs
aim at positioning the boundary to maximize its distance between the closest datapoints
of the two classes, known as margin. For any input x;, the discriminating function is a
linear combination of regressors which are non-linear on the response variables, usually by
means of kernel functions k(.) between the input and the training datapoints collected in
matrix X. As a result, a SVM is driven by a model of the form

d(x;) = wik(x;, X) + b, 7)

SVM training aims at adjusting model’s unknown parameters w and b to maximize
the margin, that is, the distance between the boundary and its adjacent datapoints [63].
Mathematically, this corresponds to a constrained quadratic optimization problem which is
convex, thus guaranteeing a single global minimum, but still requires iterative calculations
due to the linear constraints which are as many as the training datapoints. Matrix X in
Equation (7) only needs to contain those training datapoints with a non-zero weight w,
known as Support Vectors (SVs). As obtaining new predictions costs as much as the
evaluation of d(x;), to ensure rapid predictions, simple kernel functions k(x, X) need to be
utilized in conjunction to as few as possible SVs obtained by the training procedure.

Classification NNs [64] are conventional back propagation neural networks, equipped
with a softmax function at the output node. They can be thought of as machines which firstly
combine the input features to a non-linear mapping at the hidden layer and subsequently
combine linearly the latter to arrive at the model output. For the present case of a binary
output, the softmax function simplifies to the classic logistic function. Therefore, any
network output below 0.5 corresponds to the first class, whereas values above that threshold
imply that the datapoint corresponds to the second class. For a model of n inputs and m
hidden neurons, the model output is given by

7= S<Wg(1xm)s(wf(mxn)x(nX1) + by (mxl)) + bz), (8)
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and the classification label c is given by

R 0 7<05
y= y ©)
1 §>05

To minimize the impact on a quadratic least-squares cost function of those points lying
away from the discriminating function, the negative likelihood cost function is preferred,
defined by

J(8) = =) (yilog(9;) + (1 — y;) log(1 — §;)), (10)

which needs to be minimized in terms of the variables vector 6 that contains all models
tunable parameters W1, Wy, by, bp. Clearly, minimizing J(6) needs to be run iteratively
which leads to a time-consuming training procedure, sensitive to the initial estimates of 6.

3. Results and Discussion
3.1. Generation of the Training Data

The training dataset utilized in this work consists of a large number of pairs {x;, t;},
where x; = {z;, p;, T;} and composition vector z contains the concentration of all four
components typically found in acid gas mixtures, that is CO,, H,S, Cy, and C;. The input
vectors were randomly drawn from a uniform distribution so that they densely cover the
anticipated range of reservoir and surface conditions of the acid gas re-injection system. The
requirement that valid composition mole fractions sum up to unity implies that z should be
sampled from the ¢ — 1 dimension simplex to avoid linear dependence of the inputs, thus
reducing the input vector size to 5. The corresponding stable /unstable assighments t; are
obtained by utilizing any conventional stability algorithm. The generated dataset can be
arbitrarily large and the data are noise-free, as they are generated by a thermodynamically
consistent method such as Michelsen’s algorithm [32].

As the most important components involved in acid gas re-injection operations are
H,S and CO,, with C; and C; being light hydrocarbon impurities, compositions were
randomly drawn from the uniform distribution shown in Table 1. The lower pressure limit
was dictated by the acid gas output pressure from the AU, which is close to the atmospheric
one. Although the upper limit can be arbitrarily high, it was set at 1500 psi since acid gas is
always in single state, liquid or supercritical, for any given composition and temperature
above that pressure [65]. Similarly, the temperature lower limit was set to 39.2° F (4 °C) to
account for the minimum possible subsea temperature and the upper limit was set at 220°
F, which is the maximum at which two phase equilibrium may appear [65].

Table 1. Range of acid gas mixture components concentration.

Component Range (mol%)
CO, 1-99%
H,S 1-99%

G 0-5%
G 0-3%

As the acid gas phase envelopes only occupy a limited part of the p-T range, uniformly
drawn data points lying close to the phase boundary, which are critical to the generation of
the discriminating function, are significantly less that those spread around in the operating
space. To enhance their population, each randomly generated point was assigned to the
suitable pool depending on its location. Subsequently, datapoints were drawn from both
pools at user-controlled ratios to form the training population. To determine whether
a random datapoint lies close to the phase envelope or not, four additional points were
generated enclosing the point under investigation, as shown in Figure 3, exhibiting pressure
or temperature difference of 50 psi or 5 °F, respectively. If all five neighboring points exhibit
the same stability result (either stable or unstable), then the point lies away from the
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boundary, whereas if the stability results of any pair of neighboring points differ then the
datapoint under investigation lies near to the phase boundary.
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Figure 3. Procedure to pick points close to the phase boundary.

To further accelerate computations, the operating space that needs to be checked for
two-phase equilibrium was significantly reduced by applying simple p-T bounds, defined
to optimally enclose the instability area, given by simple quadratic functions of temperature.
Those functions allow the rapid determination of acid gas stability state for the vast majority
of the conditions under question. As can be seen in Figure 4, if the prevailing p-T conditions
lie above the black or below the grey limiting lines, they explicitly correspond to a single-
phase mixture, thus relieving the need to utilize the trained classifier. This way, a rapid
response can be obtained for about two-thirds of all possible p-T conditions. Summarizing,
the selection procedure is based on the following rules:

e  Acid gas is explicitly stable at temperatures above the highest cricodentherm and at
pressures above the highest cricodenbar, 1500 psi and 220 °F, respectively;
Acid gas is explicitly stable if current conditions lie above the upper boundary line;
Acid gas is explicitly stable if current conditions lie below the lower boundary line;
Otherwise, the classifier needs to be invoked to identify the number of phases present
at current operating conditions.

The commercial software used in this work is MATLAB, and all codes were setup
using commands offered by the Statistics and Machine Learning Toolbox.
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Figure 4. Simple boundaries.

3.2. Classifiers Training
3.2.1. Decision Trees

In this work, DTs based on node splitting by means of the Gini index were selected as a
classifier model on the basis of the limited dimensionality of the input vector. To reduce the
risk of building overfitted models, the training population size was increased to 5 million
datapoints, with two-thirds of them accounting for points lying close to the boundary.
Similarly, the maximum number of splits was allowed to vary between a very modest value
of only 100 splits up to as high as 20,000. Note that even for such high numbers of splits,
the CPU time cost to obtain predictions can be quite low, as the number of if commands
required to realize the tree scales with the logarithm of the number of the splits.

The resulting model exhibited remarkable accuracy against the training data implying
that the multidimensional step function developed by the DT successfully discriminates
stable from unstable points. This is demonstrated by the confusion matrix shown in
Table 2, with the model performance resulting in 1.93% false stable and 1.19% false unstable
predictions, respectively, out of the total population. Correspondingly, false stable and
false unstable predictions account for 8.59% and 1.54% of all stable and unstable points,
respectively. To evaluate the model performance on new unseen points, 5000 testing
datapoints of various p-T conditions, sharing a fixed sample composition of an H,S rich
mixture, were generated (10%, 86%, 2%, 2% of CO,, HyS, Cy, and C;). This time, the
confusion matrix of the testing dataset indicates wrong answers for 2.46% and 1.40% of
the total population, which implies uniform model accuracy against both training and
testing data.

However, a more thorough examination of the results reveals severe issues, suggesting
high variance of the trained model. As shown in Figure 5, correctly labeled points are
shown in green, whereas red and blue indicates misclassified points lying either inside or
outside the true phase envelope. Clearly, the plot shows many misclassified points, stable
or unstable ones, thus imposing the danger of severe errors in the flow simulation. In fact,
as long as the erroneous predictions lie close to the phase boundary, the error introduced to
the flow simulation is minor. Indeed, if an unstable mixture close to the phase boundary is
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erroneously predicted to be stable, the flow simulator will only miss a very small amount
of gas (or liquid), which will only have a minor effect on the simulation. If a stable acid gas
mixture is predicted to be unstable this poses no problem to the solution accuracy, except for
the CPU cost of an unnecessary extra phase split algorithm, which will prove that a second
phase does not really exist. In the present case, although most of the misclassifications lie
close to the phase boundary, others still lie either deep inside the phase envelope or far
away from it, corresponding to cases of severe classification error. Such errors indicate poor
bias—variance tradeoff and poor generalization properties of the trained DT [60].

Table 2. DT confusion matrices on training and testing data.

Training Data Testing Data
True labels True labels
Stable Unstable Stable Unstable
Classifier Stable 20.52% 1.19% Classifier Stable 28.90% 1.40%
labels Unstable 1.93% 76.36% labels Unstable 2.46% 67.24%
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Figure 5. Visualization of the decision tree model results on testing datapoints.

As far as the number of nodes is concerned, developing as many as 20,000 nodes
sounds like a huge tree which may need a long CPU time to provide predictions on new
data. Given the number of if commands required to arrive at a terminating node scale
with the base-2 logarithm due to the binary nature of each node, that number of nodes
corresponds to a maximum of 15 decisions before arriving to a concrete decision. To further
evaluate the prediction time cost, the number of if commands required for all training data
points was computed, and its cumulative histogram is shown in Figure 6. It can be readily
seen that predictions for 56% of the data points can be obtained at a cost of 8 if commands,
92% of them can be labeled in 11 commands at most, and 98% with 12 commands, with
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each if command utilizing the original features rather than some complex transformation
of them.
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Figure 6. Cumulative number of “if” commands required to arrive to a definite answer.

The high DTs variance is a well-known problem in the field which has traditionally
been treated by means of bagging or boosting [35]. In the case studied in this work, tree
bagging was tested to generate random forests, and the results obtained were significantly
enhanced, with the misclassification error been reduced down to less than 0.2% and all
erroneous answers lying very close to the phase boundary. However, the price to be paid
was a large number of trees being grown to a moderate depth. A random forest comprising
of 100 trees, each 200 nodes deep, was found to exhibit excellent performance, but the total
CPU cost became unaffordable, thus leading to dropping random forests as an option for
the acid gas mixtures’ stability problem.

3.2.2. Support Vector Machines

SVMs equipped with a suitable kernel function were also tested. As the training data
is noiseless, the machine is guaranteed to correctly classify all training data, provided that
it is equipped with a kernel function of sufficient complexity, potentially at the cost of a
big number of SVs. However, bearing in mind that developing models which respond
rapidly to new data during flow calculations are of utmost importance, the introduction
of slack, also known as box constraint, was required. This way, the model was allowed to
misclassify a few points lying close to the decision boundary to keep the number of SVs
low. The SV population can also be indirectly controlled by keeping the size low of the
training population at the potential cost of increased misclassification rate. For the kernel
function, the pronounced choice is that of a polynomial kernel as the phase envelope of all
acid gas mixtures on the p-T plane correspond to closed curves, as shown in Figure 2.

Various combinations of training dataset size, kernel function selection, and slack
values were tried to identify the model that exhibits maximum accuracy while using
minimum number of SVs, hence exhibiting minimum complexity. Our trials indicated
that introducing approximately 5000 labeled training datapoints with a polynomial kernel

function of the 4th degree, i.e., k;(x,x;) = (xTxi + 1)4 and moderate slack values of the order
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of 10, provide optimal results with the number of SV’s arriving to 713 and misclassifications
only appearing very close to the phase boundary. The number of SVs, and consequently,
the complexity of the SVM implementing formula, can be further reduced by applying a
model reducing procedure like the one originally presented by Burges et al. [66].

The model performance on the training data resulted in only 1.72% and to 0.92%
false stable and false unstable predictions, respectively according to Table 3. Those figures
correspond to significantly better rates compared to the DT solution, although they were
generated on a much smaller, yet representative, training set. For another 5000 testing
datapoints drawn uniformly in the p-T space and combined constantly to the acid gas
composition described in the previous section, the rates obtained were only 0.56% and
0.96%, thus demonstrating the improved generalization capability of the SVMs.

Table 3. SVM confusion matrices on training and testing data.

Training Data Testing Data
True labels True labels
Stable Unstable Stable Unstable
Classifier Stable 31.16% 0.92% Classifier Stable 30.32% 0.96%
labels Unstable 1.72% 66.20% labels Unstable 0.56% 68.16%

The misclassifications obtained on the testing dataset are shown in Figure 7, with red
color indicating false unstable and blue color indicating false stable answers. The results
verify that wrong answers only lie close to the phase boundary, where the effect of such
mistakes to the flow simulation is negligible.
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Figure 7. Visualization of the SVM model results on testing datapoints.

3.2.3. Neural Networks

As discussed in Section 2.3, the NN classifiers utilized in this work are simple feed-
forward models with a single hidden layer and a logistic function applied at the single
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output node. Therefore, model complexity is controlled by the number of hidden neurons.
The transformation of the input vector to a new feature vector at the hidden layer offered
great flexibility to the model and allowed it to adapt to the true underlying discriminating
function that successfully separates points in the training dataset. However, as it contributes
to the non-linearity of the cost function and to the danger that the training procedure gets
trapped to a poor local optimum, the model training had to be repeated a great number
of times.

The simplest ANN model that produced solely minor misclassifications was comprised
of 16 hidden neurons, thus implying that the Wy and W, weight matrices were of size
16 x 5and 1 x 16, respectively. Therefore, a very modest cost of 17 exponential calls (each
in a single sigmoid function evaluation) is needed to arrive at a label prediction for any
new datapoint. Despite its reduced size, the ANN performed far better than any other
machine tried, as the misclassification rate for false stable and unstable points arrived at
0.85% for both sets (Table 4). Moreover, by examining the results obtained on the fixed acid
gas mixture composition, each and every misclassified point was verified to lie very close
to the phase boundary, as shown in Figure 8. The error rate for composition was 0.12% and
0.22% for the false stable and unstable points, leading to a total misclassification rate of
0.34%. Similar performance was observed for a CO; rich composition, namely 80%, 15%,
3%, 2% of CO,, H,S, C4, and C, as far as both the misclassification locations are concerned,
as shown in Figure 9, as well as their rate, which was only 0.36%.

Table 4. ANN confusion matrices on training and testing data.

Training Data Testing Data
True labels True labels
Stable Unstable Stable Unstable
Classifier Stable 28.090/0 0.850/0 Classifier Stable 14.620/0 0.220/0
labels Unstable 0.85% 70.21% labels Unstable 0.12% 85.04%
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Figure 8. Visualization of the neural network model results on testing datapoints (86% H,S).
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Figure 9. Visualization of the neural network model results on testing datapoints (80% CO;).

3.3. Further Calculations Speed-Up

To further speed up predictions on new mixtures, a divide-and-conquer approach was
attempted by splitting the operating domain into smaller, distinct regions and building
a separate model for each region [67]. The reduced size of each model’s operating space
also drastically reduces the size and the training time of the model itself. In this work, the
overall operating space was split along the p and T axes into 3 x 3 non-overlapping regions
of equal size, and a separate classifier was developed for each region (Figure 10).

To obtain the phase state on any new point, one needs to determine the suitable
classifier according to the prevailing p and T values and run it to get a prediction. The
additional cost required to identify the proper prediction model is negligible, as the regions
are equally spaced, and the formulae to define the suitable split for a random (p, T) pair
are given by

: T — Tiin . P — Pmin

=13 Timax — Tnin ] thi= |:3X Pmax — Pmin b )
where the [.] operator denotes the integer part. Interestingly, all points in the highest
temperature and lowest pressure region (i.e., [i, j] = [3,1]) were proved to be stable, thus
relieving the need to train a model for that particular region. The number of hidden neurons
required to achieve descent accuracy for each submodel was significantly reduced and
eventually was found to vary between 6 and 7, as opposed to the dimensionality of the
unique ANN model which needed 16 neurons, thus reducing the CPU time cost to get an

answer to almost half of that of the big model. The exact size of each model is shown in
Table 5.
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Figure 10. Visualization of the 3 x 3 split neural network model results on testing datapoints
(86% H,S).

Table 5. Number of hidden neurons in each submodel.

P
Low (1) Medium (2) High (3)
Low (1) 6 7 6
T Medium (2) 7 7 6
High (3) - 6 6

The size of the training and testing datasets for each classification model are summa-
rized in Table 6. Please note that testing points utilized during training to avoid overfitting
have only been used during the development of the neural networks. On the other hand,
the reported validation datasets were used to optimize the models” hyper-parameters (such
as number of splits and number of hidden nodes).

Table 6. Training, testing, and validation datasets.

Classification Model Training Datapoints Validation Datapoints
Decision trees 5,000,000 1,000,000
Support Vector Machines 5000 5000
Neural networks 5000 5000
3 x 3 split neural networks 5000 5000

4. Conclusions

New solutions are required in humanity’s endeavor to handle the current climate
change crisis while ensuring sufficient global energy supply. Although natural gas is part
of the solution due to the limited competence of the renewable energy sources, acid gas
often appears as a byproduct which needs to be treated due to its environmental and health
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impact. For that purpose, operation of acid gas reservoirs involves gas reinjection, a flow
procedure which is commonly simulated by means of extremely time-consuming phase
equilibria calculations, among them binary stability calculations. In this work, classification
models from the ML field such as DTs, SVMs, and classification NNs were introduced in an
attempt to drastically reduce calculation time at minor or even no loss of accuracy.

It was shown that the generated dataset covering the pressure, temperature, and
composition ranges encountered in an acid gas reservoir and surface facilities is noiseless
and well defined, thus allowing for good training results. Among the classification models
examined, NNs exhibited by far the best performance with the lowest total misclassification
rate of the testing data, and misclassifications practically located on the phase boundary,
thus having an insubstantial effect on the flow simulation. The CPU time cost to get a
stability prediction using the developed classifiers was shown to be orders of magnitude
less than that of a conventional, iterative stability calculation. Finally, it was shown that
calculations can be further accelerated by limiting the operating space between the p-
T boundaries, which optimally enclose the instability area, and by further splitting the
operating range in subdomains with a separate, low size model built for each region.

Concluding, ML was shown to act as the perfect method to generate proxy models
to accelerate stability calculations in acid gas flow simulations. This way, the process
engineers will be able to run more complex scenarios and offer a more detailed, more
versatile, and less expensive system design.
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