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Abstract: The dominance of non- and semi-parametric methods in survival analysis is not without
criticism. Several studies have highlighted the decrease in efficiency compared to parametric meth-
ods. We revisit the problem of Asymptotic Relative Efficiency (ARE) of the Kaplan–Meier survival
estimator compared to parametric survival estimators. We begin by generalizing Miller’s approach
and presenting a formula that enables the estimation (numerical or exact) of ARE for various survival
distributions and types of censoring. We examine the effect of follow-up time and censoring on ARE.
The article concludes with a discussion about the reasons behind the lower and time-dependent ARE
of the Kaplan–Meier survival estimator.

Keywords: survival estimates; efficiency; parametric survival; censoring

1. Introduction

In medical statistics, survival analysis is often performed using the nonparametric
Kaplan–Meier estimator [1] together with the semiparametric Proportional Hazards Model
by Cox [2]. Although the theory of parametric estimators of survival is well-developed [3],
their application has been limited in biomedical research. Miller [4] was one of the first to
criticize this practice and highlight the loss of efficiency compared to parametric methods.
Miller’s work was continued by Klein and Moeschberger [5] and Aranda-Ordaz [6] and
was partly rebutted by Meier and collaborators [7] and recently touched upon by Jullum
and Hjort [8]. Cheng and Lin [9] proposed a new maximum likelihood estimator under
the competing risks model with proportional hazards and assessed its efficacy against the
Kaplan–Meier estimator.

In this paper, we revisit the problem of the Asymptotic Relative Efficiency (ARE) of
the Kaplan–Meier estimator compared to parametric estimators of survival. We begin
by extending Miller’s method for calculating the Asymptotic Relative Efficiency (ARE)
and present a formula that enables the estimation (numerical or exact) of ARE for various
survival and censoring distributions, as well as different censoring types. We examine
how censoring and the type of censoring affect ARE and discuss the reasons behind the
lower and time-dependent ARE of the Kaplan–Meier estimator compared to parametric
estimators of survival.

2. Notation and Estimators

We assume that the survival times for an event of interest, X1, . . . , Xn, are distributed
independently and identically according to the distribution function F(x) and the survival
function S(x) = 1− F(x). We do not always have complete information for all subjects
due to loss to follow-up or insufficient follow-up time. The times to censoring are denoted
by C1, . . . Cn, and are assumed to be independent and identical, and survival function
Ḡ(c) = 1 − G(c). Further censoring occurs when the study period ends at the pre-
determined time τ; all remaining subjects at risk are censored. Thus, the actual observed
time for the subject j is Tj = min

(
Xj, Cj ∧ τ

)
. We assume independence between failure
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and censoring time. We define δj = I
{

Xj ≤ Cj ∧ τ
}

as an event indicator, taking values
1 if an event is recorded prior to censoring, otherwise 0. We consider two competing
estimators for the survival function S(t), the nonparametric Kaplan–Meier estimator, and
the parametric maximum likelihood estimator, noted hereafter with the subscripts km
and ml . Their respective variances will be noted as vkm and vml . In addition, we define
N (t) = ∑n

j I(Tj ≤ t, δj = 1), the process that counts the number of events in (0, t] and
R(t) = ∑n

j I(Tj > t) the number at risk at time t. Although the index is not used to simplify
notation through the whole of the text, we generally deal with sequences of estimators
indexed by the sample size n.

2.1. The Kaplan–Meier Estimator

The naïve nonparametric survival function estimator S(t) = n−1N (t) is only feasible
when there is no censoring in the data, i.e., P(X ≤ C) = 1. In this case, the survival at ∀t is
a binomial probability with variance n−1S(t)(1− S(t)).

The nonparametric product limit or Kaplan–Meier estimator [1] that can incorporate
censored data is given by

Skm(t) = ∏
Ti≤t

[
1− δi
R(Ti)

]
, (1)

where Ti is the ordered sequence of observed event times and t is the absolute time. The
Kaplan–Meier is asymptotically unbiased and has as a limiting distribution

√
n
{

Ŝkm(t)− S(t)
} D−→ N(0, vkm), (2)

with asymptotic variance

vkm(t) =
1
n
{1− F(t)}2

∫ t

0

f (u)

{1− F(u)}2{1− G(u)}
dt. (3)

This requires knowledge of the survival and censoring distribution, thus is not ap-
plicable in real-life situations and its nonparametric variant, the Greenwood estimator, is
used:

vkm(t) = S2
km(t) ∑

Ti≤t

δi
R(Ti)[R(Ti)− δi]

. (4)

There are alternatives to the Greenwood variance estimator, but as Klein [10] con-
cluded, the variance-bias trade-off favours the Greenwood estimator.

The Parametric Survival Estimator

Next, we establish the notation for the maximum likelihood estimators. The para-
metric survival function is given by Ŝml(t, θ̂), where θ̂ = arg maxθ ln(θ) with ln(θ) =

∑n
i=1 log f (Xi, θ) being the log-likelihood function of the data

l(θ | Ti, δi) =
n

∏
i=1

{
f (Ti)Ḡ(Ti)

}δi{(1− F(Ti))g(Ti)}1−δi . (5)

As the censoring distribution G does not depend on θ, censoring does not contribute
to the estimation of θml and it is factored out during maximization of the likelihood. On the
other hand, the variance and Fisher information of θml does account for censoring [11,12], with

JT(θ) =
∫ ∞

0

{
∂

∂θ
log f

}2
f Ḡ dx = JX(θ)P(X < C), (6)
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with the superscript T indicating that calculation refers to the observed follow-up time,
while the superscript X is the possibly unobserved survival times. Here, P(X < C) =∫ ∞

0 F(u)g(u) du [13]. In addition we define the score function U(t, θ) as the first derivative
of log f (Xi, θ) with regard to θ.

Under mild regularity conditions, the maximum likelihood estimator is consistent and

converges in probability θ̂ml
P−→ θ as the sample size n→ ∞ and is asymptotically normally

distributed,

√
n
{

Ŝml(θ̂; t)− S(θ0; t)
} D−→ N(0, vml), (7)

with variance vml

vml(t) =
1
n

{
∂Sml(t, θ)

∂θ

}t
J−1
{

∂Sml(t, θ)

∂θ

}
, (8)

where J is the Fisher information matrix.

3. Asymptotic Relative Efficiency

For the statistic of interest S(t) and for consistent estimators Skm(t) and Sml(t), the
Asymptotic Relative Efficiency is given by

ARE(Skm(t), Sml(t), F) =
vml(t)
vkm(t)

. (9)

From the Cramér–Rao theorem, we know that ARE(SkmSml , F) ≤ 1, and ARE are
the needed factor change in the sample size so that the competing estimators perform
equally [14].

Theorem 1. Under the assumption that Skm(t) −→ S(t) and Sml(t) −→ S(t) as n −→ ∞,
Equation (9) with censoring considered can be defined as

ARE(Skm(t), Sml(t), F) ={
∂Sml(t, θ)

∂θ

}t{
JX(θ)P(X < C)S(t)(1− S(t))ϕ(t)

}−1
{

∂Sml(t, θ)

∂θ

}
.

Proof. The naïve nonparametric survival function estimator Ŝ(t) = n−1N (t) it is feasible
only when there is no censoring in the data , i.e., P(X ≤ C) = 1. In this case, the survival at
∀t is a binomial probability with variance n−1S(t)(1− S(t)). As information is lost due to
censoring of the binomial variance being inflated by factor ϕ(t) [15], where

ϕ(t) =
S(t)

1− S(t)

∫ t

0

α(u)
S(u)Ḡ(u)

du (10)

and n−1Ŝ(t)
(
1− Ŝ(t)

)
ϕ(t) is estimated by the Greenwood variance estimator. Censoring

causes a loss of information with JT(θ) = JX(θ)P(X < C) [11,12], where P(X < C) =∫ ∞
0 F(u)g(u) du [13]. The Delta-method variance of the maximum likelihood survival

estimate, considering the proportion of censoring, is

1
nJX(θ)P(X < C)

{
∂Sml(t, θ)

∂θ

}2

, (11)



Stats 2023, 6 1150

while the variance of the nonparametric Kaplan–Meier estimate with variance inflation due
censoring is given by

1
n

Skm(t)(1− Skm(t))ϕ(t). (12)

By plugging these two estimators into Equation for ARE, we conclude the proof.

4. ARE as Correlation between Estimates

Crámer [16] showed that ARE equals the square of the correlation between the com-
peting estimates, ρ2, with

ρ̂(Skm(t), Sml(t)) =
vc(t)√

vkm(t)vml(t)
, (13)

where vc = Cov(Skm(t), Sml(t)). A necessary and sufficient condition for Crámer’s ARE
to equal ARE as defined in Equation (9) is that vc equals the variance of the most efficient
estimator. As both Skm(t) and Sml(t) are consistent estimates of S(t), then for any constant
α, a linear combination of the two in the form of αSkm(t)(1− α)Sml(t) is also unbiased and
has variance

{1− α}2vkm(t) + 2α{1− α}vc(t) + α2vml(t). (14)

This variance is minimum at α = 0 and the derivative at α = 0, thus vc(t) = vml(t).
This of course does not imply that vc(t) and vml(t) will return equal estimates in finite
samples but they have the same limit as n → ∞. The estimator for vc(t) is presented in
the Appendix.

5. ARE for Exponential Survival and Exponential Censoring

In this section, we provide closed form solutions based on Theorem 1 for exponential
survival and censoring times. Besides the existence of a closed form solution for ARE,
the ARE of the exponential distribution can be considered as a lower bound to many
distributions used in survival analysis such as Weibull, Gamma, or Generalized Gamma,
or any other parametric extension of the exponential distribution. The addition of extra
parameters to the model results in the diagonal elements of the inverse of the information
matrix being always greater than the corresponding elements of the simpler model. In the
following, we assume exponential survival times with hazard λ and exponential censoring
times with hazard γ. The survival function for exponential survival times is Sλ(t) = e−tλ

with variance Var(Sλ(t)) = t2(e−tλ)2λ2n−1. Moreover, as F is known to be an exponential
distribution, the event probability for the binomial distribution is p(t) = e−λt. In this case,
we have a closed form solution for Theorem 1,

ARE(t) =
(tλ)2

(eλt − 1)P(X < C)ϕ(t)
. (15)

We will now consider four scenarios: (1) no censoring, (2) random censoring, (3) type
I censoring with fixed censoring times, and (4) hybrid, type I, and random censoring times.
For the sake of simplicity, we will denote ARE with subscripts 1, 2, 3, and 4 for each
scenario.

5.1. No-Censoring

If the survival time is recorded for every study participant, then ϕ(t) = P(x < Y) = 1
giving

ARE1(t) =
(tλ)2

(eλt − 1)
. (16)
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In this case, the maximum efficacy of the nonparametric estimator is 64.76% and happens
at t = 1.593λ−1, i.e., 1.6 times the mean survival time.

5.1.1. Random Censoring Times

In this scenario, the observed time for subject j is Tj = min
(
Xj, Cj

)
and δj = I

{
Xj ≤ Cj

}
.

Additionally, we have

P(X < C) =
λ

λ + γ
and ϕ(t) =

λ

λ + γ

(
et(λ+γ) − 1

)
(
etλ − 1

) . (17)

Combing the above with Equation (15), the asymptotic relative efficiency is

ARE2(t) =
{t(λ + γ)}2

(et(λ+γ) − 1)
. (18)

The maximum efficacy of the nonparametric estimator is observed at t = 1.593(λ +
γ)−1, and as for the non-censored case, it equals 64.76%. As 1.593(λ + γ)−1 ≤ 1.593(λ)−1,
this maximum is reached earlier, and in the beginning of the follow-up period, censoring
increases the efficiency of the Kaplan–Meier estimator (Figure 1).
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Figure 1. Numeric illustration of the Asymptotic Relative Efficiency (ARE) of the Kaplan–Meier
estimator relative to the maximum likelihood estimator with a known exponential distribution with
a rate of 1/365; ARE as a function of time (a) and as a function of survival probabilities (b).

5.1.2. Type I or Fixed Censoring

Here, the observed time for subject j is Tj = min
(
Xj, τ

)
and δj = I

{
Xj ≤ τ

}
. In this

case, ∀t < τ ϕ(t) = 1 and P(X < τ) = (1− e−λτ), resulting in

ARE3(t) =
(tλ)2

(etλ − 1)(1− e−λτ)
. (19)

As (1− e−λτ) ≤ 1, the ARE of the nonparametric variance estimator exceeds the ARE
of the nonparametric variance estimator when there is no censoring and limτ→∞ ARE2(t) =
ARE1(t).

5.1.3. Hybrid Type I and Random Censoring

Here, just as for Type I censoring, follow-up is stopped at a pre-assigned time point
τ, but in addition participants might leave the study prior to τ for reasons unrelated to
the studied disease. Thus, Tj = min

(
Xj, Cj ∧ τ

)
. The minimum of two exponentially dis-
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tributed variables with parameters λ and γ is also exponentially distributed with parameter
λ + γ, thus

ARE4(t) =
(t(λ + γ))2

(et(λ+γ) − 1)(1− e−(λ+γ)τ)
. (20)

Type I (or fixed) censoring has no impact on the Greenwood variance estimator, but
it does reduce the information available in the data for the estimation of the parametric
variance with P(X < C ∧ τ) and improves the ARE of the Kaplan–Meier estimator up
τ by P(X < C ∧ τ)−1. At relatively short follow-up times (i.e., less than the average
survival time) and high survival rates, the point-wise ARE of the Kaplan–Meier estimator
at τ and close to τ can exceed 64% (Figure 2). Of course, if there is additional random
censoring, the heavier the censoring the greater the asymptotic relative efficiency of the
parametric survival estimator (see Appendix B). For the effect of additional dimensions to
the parametric estimators, see Appendix C.
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Figure 2. (a) Numeric illustration of the Asymptotic Relative Efficiency (ARE) of the Kaplan–Meier
estimator relative to the maximum likelihood estimator with known exponential distribution with
rate of 1/365 at time of the Type I censoring; ARE as a function of time (a) and as a function of
survival probabilities (b).

5.2. Efficiency in Finite Samples

While comparing the asymptotic variances of different estimates is essentially com-
paring confidence intervals and is invariant under nonlinear transformation of the target
parameter, Cox [17] highlighted that such stability of interpretation does not always hold
true for small-sample comparisons. Serfling [14] noted that asymptotic relative efficiencies
pertain to large sample comparisons and need not reliably indicate small sample perfor-
mance, and exemplified with the relative efficiency of median vs mean as an estimator of
location for normal distribution. Identical trends can be seen in the survival analysis as
well. For the closely related Nelson–Allen estimator, Peña and Rohatgi [18] concluded that,
for sample sizes under 30 asymptotic approximations can be misleading, specially at the
extremes of the follow-up times. With the use of a simulation study, we looked at the ratio
of variances’ small sample characteristics. We assumed survival times are exponential with
a rate of 1/365 and with sample sizes ranging from 25 to 1000. We have fitted a parametric
and the non-parametric Kaplan–Meier estimator to the data and survival times of 50, 180,
and 365. Table 1 summarises the results of 1000 such simulations. The findings imply
that the Kaplan–Meier estimator’s small sample relative effectiveness depends on both
the sample size and the survival time. In finite samples, the ratio of variances typically
surpasses ARE, and this is particularly clear at the start of the follow-up when ARE is low.
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This can be somewhat explained by how reliable the estimation is. Outliers in small samples
can inflate variances and skew parametric survival estimates [6]. The finite sample bias of
the maximum likelihood parameter [19,20] and the Kaplan–Meier estimator complicates
comparisons, and the likely comparison of Mean Squared Errors should be preferred over
a comparison of variances [21].

Table 1. Ratio of variances for Kaplan–Meier and parametric survival estimates for exponential
survival times with a median survival time of 365 as a function of sample size and the procentual
deviation for ARE in parenthesis.

N t = 50 t = 180 t = 365

ARE 12.78 38.15 58.20
25 16.35 (27.92%) 40.63 (19.4%) 59.15 (7.45%)
50 14.89 (16.49%) 39.32 (9.15%) 58.67 (3.70%)
75 14.03 (9.77%) 39.09 (7.35%) 58.48 (2.21%)

100 13.65 (6.79%) 38.65 (3.91%) 58.31 (0.88%)
125 13.57 (6.17%) 38.69 (4.22%) 58.51 (2.44%)
150 13.35 (4.45%) 38.61 (3.59%) 58.41 (1.66%)
200 13.22 (3.43%) 38.44 (2.26%) 58.34 (1.11%)
250 13.11 (2.57%) 38.27 (0.93%) 58.30 (0.37%)

1000 12.89 (0.85%) 38.23 (0.62%) 58.23 (0.25%)

6. Discussion

With a focus on the impact of censoring and different forms of censoring on ARE, we
compared the asymptotic relative efficiency of the Kaplan–Meier survival estimator vs.
parametric survival estimators in this work. Due to the existence of closed-form solutions as
well as historical considerations, we have used the exponential distribution as an example.
Previous papers on the subject noted that the maximum ARE of the Kaplan–Meier estimator
in the case of exponential survival times is 64% [4,8,22]. However, the maximum ARE can
be close to 1, as we have demonstrated in studies using type I censoring. This is particularly
clear when the average survival time is longer than the follow-up time. Heuristically, the
amount of information available for estimation and the way in which this information is
used are the two main factors that account for the Kaplan–Meier estimator’s relatively
low ARE in comparison to parametric estimators. The Kaplan–Meier survival and the
Greenwood variance estimator only use data up to time t and censor anything after that
for any given time-point t. All available data are utilized by parametric estimators. The
way in which these data are used is the second factor that needs to be taken into account.
The parameter vector of the assumed distribution is estimated by parametric models. Since
the parameters of the distribution and time are mapped one-to-one to parametric survival
probabilities, the correlation between survival estimates at any given two time points is
1. Naturally, knowledge of the survival probabilities at t1 also provides knowledge of the
Kaplan–Meier estimates at t2. If t1 < t2, then the two survival probabilities are correlated
and, by definition, S(t1) > S(t2). However, as the time interval between t1 and t2 increases
and as the percentage of censored observations increases, the correlation between S(t1) and
S(t2) decreases (see Appendix D). Asymptotic Relative Efficiency was long associated with
significance testing, and the alternative formulation as the limiting correlation coefficient
between estimators was first applied in [23,24]. With the help of simulation, we have
illustrated that the realizations, on average, are equal between the ratio of variances and
the Crámer correlation estimate of ARE. From the perspective of correlation, we can look
at ARE as the amount of (linear) information that the Kaplan–Meier estimate contains
about the form of the parametric model. Near zero ARE or correlation at the beginning of
the follow-up likely suggests that the Kaplan–Meier estimate confers limited knowledge
about possible parametric estimators, which might complicate the data driven choice of
parametric estimators [8,25,26]. While theoretically this is a problem at follow-up times
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where the survival probability approaches zero, in practice, at that time, survival estimates
are rarely meaningful from an interpretation point of view [27].

In this paper, we offered a more nuanced view of the question raised by Miller [4],
the price (i.e., loss of efficiency) of the routine use of the Kaplan–Meier estimator. We
looked into the different censoring types and their effect of the ARE. Contrary to previous
studies, we suggest that the price of the Kaplan–Meier estimator is acceptable. As we
have shown, studies with Type I censoring have relatively high efficiency. We have also
seen that adding extra dimensions to parametric estimators increases the efficiency of the
Kaplan–Meier estimator. While the exponential distribution is widely used in theoretical
works and research planning phases, its relatively rigid form makes it an unlikely candidate
for a parametric model. Looking at ARE from the perspective of correlation suggests that
applying the framework of Jullum and Hjort [8,25] to select parametric models for studies
with follow-up times shorter than the mean survival time could be difficult. It is likely
that, for the foreseeable future, the Kaplan–Meier estimator will be the method of choice in
survival analysis.
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Appendix A. Covariance and Correlation between Estimators of Survival

Approximation by Averages theorem [28] states that for Wi that are iid the statistic
T (W1, ..., Wn) has the following approximation

T − T∞ =
1
n

n

∑
j=1

h(Xj) + Rn (A1)

where
√

nRn
P→ 0 as n→ ∞. For finding h we define the survival function as a functional

statistic T represented in terms of the empirical distribution function Fn, indexed by the
sample size n. For functional statistics h is represented by influence curve (or function)

hT (w) = lim
ε→0

{T [(1− ε)F + ε∆w]− T (F)}
ε

. (A2)

where ∆w is a a distribution function that puts all probability mass in the point w.
Further, for afunctional T (F) =

∫
R a(x)dF(x) we denote the influence components

hF(wj) = a(wj)− T (F), (A3)

a measure the effects of individual data point j on the estimand. Using the functional Tay-
lor’s theorem (von Mises expansion) we can expand the statistical functional of interest as

T (F̂) = T (F) +
1
n ∑

j
hF(xj) + op(1). (A4)

which leads to

E{hF(x)} = 0 and Var(T (F)) =
E{h2

F(x)}
n

. (A5)

This is true irrespective if we consider the nonparametric (hkm) or parametric (hml)
influence components.
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Reid [29] derived the influence function for censored data and showed that variance
based on h is equivalent to the Greenwood estimator.

For a parametric family with parameter θ Equation (A1) can be rewritten as

θml − θ∞ =
1
n

n

∑
j=1

J−1(θ)

{
∂

∂θ
log f (xj, θ)

}
+ Rn (A6)

thus influence function and the score function of the likelihood function are scalar multiples
of each other, with Fisher information as multiplication factor [3]. With all this in place, by
using the characteristics of the covariance

Cov{Ŝkm(t)− S(t), Ŝml(t)− S(t)} = Cov{Ŝkm(t), Ŝkm(t)} (A7)

and noting that the

E{Ŝkm(t)− S(t)} = E{hkm} = 0 (A8)

and

E{Ŝml(t)− S(t)} = E{hml} = 0 (A9)

we have

vc =
1
n

{
∂Sml(t, θ)

∂θ

}
∑

j
Uθ(xj)hkm(xj) (A10)

With the help of a simulation study we compare the long-run properties of the two
competing estimators: the ratio of variances and Crámer correlation estimate of ARE.
We assumed exponential survival and censoring times, both with rate parameters of
1/365, i.e., a 50% censoring rate. The sample size was set to 1000, to assure that we
could obtain nonparametric estimates of survival and associated variability up to twice
the mean survival time. We run 1000 simulations and used as reference the analytically
derived ARE (Equation (18)). As Figure A1 illustrates the the choice of estimator between
the ratio and Crámer correlation estimate of ARE it is a choice of convenience, and no
appreciable differences between the two were observed. True, simulation studies falls short
of analytical proof of equivalence. However, changing the parameters of the simulation led
to similar results.
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Figure A1. (a) The ratio of variances and Crámer correlation estimate of ARE of the Kaplan–Meier
estimator relative to the maximum likelihood estimator for exponential survival and censoring times
(rate of 1/365) and (b) the Mean Squared Error of the tow estimators as function of follow-up time.
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Appendix B. ARE under Hybrid Censoring

As we noted in the main text, Type I fixed censoring increases the ARE of the Kaplan
–Meier survival estimator with factor P(X < C ∧ τ). As Figure A2 illustrates at relatively
short Type I censoring times the ARE of the Kaplan–Meier estimator increases and at any
time point up to τ, and this increase {P(X < C ∧ τ)}−1. As τ → ∞ this effect diminishes.
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Type I censoring.

Appendix C. Multi-Dimensional Parametric Models

A set of simulations was run to illustrate the effect of adding additional parameters to
the parametric models. As previously, we have simulated 1000 observation with exponen-
tial survival times (rate of 1/365) and exponential censoring times (rate of 1/365 leading to
50% and 1/1460 leading to 20% cenoring). In addition to the Exponential distribution, we
have used the Weibull, Gamma and Generalized Gamma distributions for estimation of sur-
vival probabilities and associated variances. These later three distributions are extensions of
the Exponential distribution with the addition of a power parameter (Weibull), convolution
parameter (Gamma) or both (Generalized Gamma) [30], and if these additional parameters
equal 1 then they simplify to the Exponential distribution. Thus, all three are consistent
estimators of the survival probability. Figure A3 summarises the results of 1000 simulations.
As expected the ARE for Kaplan–Meier estimator increases as additional parameters added
to the parametric models. While ARE against the Exponential model followed what Equa-
tion (18) showed, the Kaplan–Meier estimator had better efficiency when compared against
the Gamma, Weibull, and especially the three-parameter generalized Gamma distribution.
This results are expected and the loss in efficacy generally becomes small as the number of
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parameters in the parametric model increases [31]. In addition one can see that increase in
censoring reduced the ARE of the Kaplan–Meier estimator.
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Figure A3. Asymptotic Relative Efficiency of the Kaplan–Meier estimator against parametric models
with moderate (a) and high censoring precentage (b).

In addition to the three above mentioned distributions related to the Exponential
distribution, we have tested the Log-logistic distribution. The log-logistic distribution is
frequently used for events whose rate increases initially and decreases later, as, for example,
mortality rate from cancer following diagnosis or treatment. The survival function is given
by S(t) =

{
1 + (t/α)β

}−1, β is the shape parameter and α is the scale. Both parameters
are strictly positive and α is the median of the survival times and with increasing β the
probability distribution of the survival a times are increasingly concentrated around α. In a
simulation study we have set α = 365 and β = 1, 2, 3, & 4.

As it can be seen on Figure A4 a with increasing β the events are concentrated more
and more around the median survival time. In addition with accelerated event rate the
ARE of the Kaplan–Meier estimator rapidly approaches zero at the extremes of the survival
time. At β = 1 the ARE of the Kaplan–Meier estimator stays in the vicinity of the maximum
ARE of 75%.
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logistic survival times (b).
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Appendix D. Correlation between Kaplan–Meier Survival Estimates at Different
Time Points

Derivation of the correlation coefficient for Kaplan–Meier survival estimates at differ-
ent time points largely follows Kaplan and Meier [1] (see Section 6.2 and Equations (2h)
and (2g)), however with the notation updated according to Meier [22].

For survival times t1 ≤ t2 the correlation (ρ) between the Kaplan–Meier survival
estimates is

ρ{Skm(t1), Skm(t2)} =

√
1− Skm(t1)

Skm(t1)

Skm(t2)

1− Skm(t2)

ϕ(t1)

ϕ(t2)
(A11)

where ϕ(t) is the variance inflation factor of the binomial variance due to censoring. For
any given t1 the correlation between Skm(t1) and Skm(t2) decreasing with distance between
t1 and t2. This is easy to see, as with t2 increasing Skm(t2) decreasing and Skm(t2){1−
Skm(t2)}−1 is getting smaller. For survival times t1 ≤ t2 we have that ϕ(t2) ≤ ϕ(t2) so its
easy to see that censoring further reduces correlation.
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