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Abstract: We define and study the four-parameter logistic Burr XII distribution. It is obtained
by inserting the three-parameter Burr XII distribution as the baseline in the logistic-X family and
may be a useful alternative method to model income distribution and could be applied to other
areas. We illustrate that the new distribution can have decreasing and upside-down-bathtub hazard
functions and that its density function is an infinite linear combination of Burr XII densities. Some
mathematical properties of the proposed model are determined, such as the quantile function,
ordinary and incomplete moments, and generating function. We also obtain the maximum likelihood
estimators of the model parameters and perform a Monte Carlo simulation study. Further, we
present a parametric regression model based on the introduced distribution as an alternative to the
location-scale regression model. The potentiality of the new distribution is illustrated by means of
two applications to income data sets.

Keywords: Burr XII distribution; income distribution; logistic-X family; maximum likelihood estimation;
moments

1. Introduction

New distributions can often result from the introduction of one or more additional
shape parameters to an existing lifetime distribution (say, a baseline model). They are
the generalized (or generated) G-classes of distributions. According to [1], there are some
reasons why the G-classes attract researchers in several areas. One reason might be the
computational refinement of symbolic and numerical programming software. It becomes
easier to derive some important mathematical and statistical properties. In addition, the
structure of the new generators also allows for the exploration of the distribution’s tail
properties. Another reason is that the extra parameters obtained from the G baseline models
have been shown to improve the quality of fit. Ref. [2] also showed that the G-classes might
provide better fits than classical distributions for skewed data.

Several generators have been defined as special cases of the transformed-transformer
(T–X) method introduced by [3]. This technique allows for the derivation of families of
distributions by using any probability density function (pdf) as a generator.

Let r(t) be the pdf of a random variable T ∈ [a, b] for −∞ < a < b < ∞. Let G(x)
be the baseline cumulative distribution function (cdf) of a random variable X such that
W[G(x)] satisfies the following conditions:

• W[G(x)] ∈ [a, b];
• W[G(x)] is differentiable and monotonically non-decreasing;
• W[G(x)]→ a when x → −∞ and W[G(x)]→ b when x → +∞.
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Therefore, the T–X family cdf is defined by

F(x) =
∫ W[G(x)]

a
r(t)dt, (1)

and its corresponding pdf is given by

f (x) =
{

d
dx

W[G(x)]
}

r{W[G(x)]}.

The T–X family of distributions can be classified into subfamilies. One subfam-
ily has the same X distribution but different T distributions, and the other has the same
T distribution but different X distributions. Some functions W(·), such as
W(x) = − log(1− x), x/(1− x), log(x/1− x), log[− log(x)] for x ∈ (0, 1), will also de-
fine different subfamilies.

For example, consider W(x) = G(x). If T is a beta random variable, we have the
beta-generated family pioneered by [4]. The Kumaraswamy generalized family [5] follows
when T is a Kumaraswamy random variable. The exponentiated logarithmic generated [2]
is also an example of T-X special model.

We can also refer to [6] for a class of univariate distributions generated by extending
the logistic distribution, called the logistic-X class (“LX” for short). The LX family is a
special model of the T-X family defined by W(x) = log{− log[1− G(x)]} in Equation (1)
by taking a logistic random variable for T. The cdf and pdf of T are given by (for t ∈ R)
R(t) = (1 + e−λt)−1 and r(t) = λ e−λt(1 + e−λt)−2, respectively, where λ > 0. Thus, the
LX family cdf is defined by

F(x) =
[
1 + {− log[1− G(x)]}−λ

]−1
(2)

and its pdf is given by

f (x) =
λ g(x)

1− G(x)

[
1 + [− log(1− G(x)]−λ

]−(λ+1){
1 + [− log(1− G(x)]−λ

}−2
, (3)

where G(x) is any baseline cdf and g(x) = dG(x)/dx. The LX family has the same
parameter as the baseline distribution plus an additional shape parameter λ > 0. Note that
the baseline distribution is not a special case of the LX family. However, it can be interpreted
as a compounding model between the logistic and the baseline distributions. According
to [6], this family may allow the construction of symmetric, left-skewed, right-skewed,
and/or reverse J-shaped distributions; the definition of models with more types of hazard
rate function (hrf); and the provision of competitive models to other generated families
under the same baseline distribution, among other characterizations.

In this paper, we introduce a new four-parameter distribution called the logistic Burr
XII (LBXII) distribution. It is defined by inserting the three-parameter Burr XII (BXII)
distribution as the baseline in Equations (2) and (3). The BXII distribution has a cdf and
pdf (for x > 0) given by

G(x; s, d, c) = 1−
[
1 +

( x
s

)c]−d
(4)

and

g(x; s, d, c) = c d s−c xc−1
[
1 +

( x
s

)c]−d−1
,

respectively, where d > 0 and c > 0 are shape parameters and s > 0 is a scale parameter.
The BXII distribution was originally proposed by [7]. The utilization of the BXII

distribution is appealing for several reasons. Notably, it possesses the capacity to effectively
capture asymmetric behaviors and heavy-tailed distributions in positive outcomes [8].
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These characteristics have led to its adoption as a fundamental tool for the development of
generalized probability distributions. Table 1 provides a review of some BXII generaliza-
tions through different G families or transformation methods. The BXII distribution also
finds extensive application in diverse fields, such as remote sensing [9], econometrics [8],
and environmetrics [10].

Table 1. Some selected works on Burr XII generalizations.

Distribution Author(s)

Exponentiated BXII Al-Hussaini and Hussein [11]
Beta BXII Paranaíba et al. [12]
Kumaraswamy BXII Paranaíba et al. [13]
Marshal–Olkin extended Burr XII Al-Saiari et al. [14]
Beta exponentiated BXII Mead [15]
McDonald BXII Gomes et al. [16]
BXII negative binomial Ramos et al. [17]
Transmuted BXII Al-Khazaleh [18]
Kumaraswamy exponentiated BXII Mead and Afify [19]
Gamma BXII Guerra et al. [20]
Weibull BXII Afify et al. [21] and Guerra et al. [22]
Flexible Weibull BXII Elbiely and Yousof [23]
BXII-BXII Gad et al. [24]
BXII-moment exponential Bhatti et al. [25]
Unit BXII Korkmaz and Chesneau [26] and Ribeiro et al. [27]
Reflected unit BXII Ribeiro et al. [28]
Type II Topp–Leone BXII Ogunde and Adeniji [29]
New modified BXII Bhatti et al. [30]
Odd-log-logistic BXII Santos and Pescim [31]

The cdf of the LBXII distribution is given by (for x > 0)

F(x) =
{

1 +
[
d log

{
1 +

( x
s

)c}]−λ
}−1

, (5)

where λ > 0, d > 0, and c > 0 are shape parameters and s > 0 is a scale parameter. The
corresponding pdf has the form

f (x) =
λ c d−λ s−cxc−1

1 + (x/s)c

[
log
{

1 +
( x

s

)c}]−(λ+1)
{

1 +
[
d log

{
1 +

( x
s

)c}]−λ
}−2

. (6)

Henceforth , if X is a random variable with density function (6), we write X ∼
LBXII(c, d, s, λ). Figure 1 displays plots of the LBXII density function for selected parameter
values. It can take various forms, and has as special models some well-known distributions.
For d = 1 and s = m−1, we have the logistic-log-logistic (LLL) distribution. For c = 1 it
becomes the logistic-Lomax (LLo) model. The hrf of X can be expressed as

h(x) =
λ c s−cxc−1

log[1 + (x/s)c]

[
1 +

( x
s

)c ]−1
{

1 +
[
d log

{
1 +

( x
s

)c}]−λ
}−1

.

Figure 2 provides plots of the hrf for some parameter values. It reveals that the
LBXII distribution can have decreasing and upside-down-bathtub hazard functions. The
proposed distribution is quite flexible regarding the pdf and hrf and may be a useful
alternative to the BXII model and its generalizations. Therefore, it can be considered for
modeling income distribution and also in actuarial science, bioscience, and lifetime data,
among other areas.
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Figure 1. Plots of the LBXII density for s = 1. (a) c = 1.5 and d = 3.0; (b) λ = 3.5 and d = 1.2;
(c) λ = 0.8 and c = 2.5; (d) λ = 3.0 and c = 2.5.
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Figure 2. Plots of the LBXII hrf for s = 1.

The rest of the paper is organized as follows: We derive useful expansions for the cdf
and pdf of the new distribution in Section 2. In Section 3, some mathematical properties of
the LBXII distribution are investigated. In Section 4, the maximum likelihood method is
presented to estimate the model parameters. A simulation study is performed in Section 5.
In Section 6, we illustrate the flexibility of the new model using two real data sets. Some
concluding remarks are offered in Section 7.
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2. Useful Expansions

Tahir et al. [6] demonstrated that the LX pdf can be written as an infinite linear
combination of exponentiated-G (exp-G) densities; see [32] for the definition of the exp-
G distribution. In this section, we derive useful expansions for the LBXII pdf not from
exponentiated models but based on our baseline model. Inserting (4) into Equation (2), the
LBXII cdf can be rewritten as

F(x) =
1

1 +
[
− log

(
1−

{
1−

[
1 + (x/s)c]−d

})]−λ
. (7)

Using the Mathematica software, version 12.0, we obtain a power series for
w = 1 + [− log(1− y)]a as

w =1 +
[

1 +
a
2

y +
1
24

(3a2 + 5a) y2 +
1

48
(a3 + 5a2 + 6a) y3

+
1

5760
(15a4 + 150a3 + 485a2 + 502a) y4

]
ya + O(ya+5).

Applying this power series for y = 1−
[
1 + (x/s)c]−d in (7) and after some algebraic

manipulation, we obtain

F(x) =

{
1−

[
1 + (x/s)c]−d

}λ

{
1−

[
1 + (x/s)c]−d

}λ
+ ∑∞

k=0 pk

{
1−

[
1 + (x/s)c]−d

}k , (8)

where the pk’s are p0 = 1, p1 = λ/2, p2 = λ (3λ + 5)/24, p3 = λ (λ2 + 5λ + 6)/48,
p4 = λ (15λ3 + 150λ2 + 485λ + 502)/5760, etc. For any λ > 0 real non-integer, the
following expansion holds since the left-hand-side expression is a cdf

{1−
[
1 + (x/s)c]}λ =

∞

∑
k=0

qk {1−
[
1 + (x/s)c]}k,

where

qk =
∞

∑
j=k

(−1)k+j
(

λ

j

)(
j
k

)
.

Thus, Equation (8) can be rewritten as

F(x) =
∑∞

k=0 qk {1−
[
1 + (x/s)c]}k

∑∞
k=0 υk {1−

[
1 + (x/s)c]}k , (9)

where υk = qk + pk. The coefficients of the quotient of the two power series in (9) can be
determined from the recurrence equation (for k ≥ 0)

ωk =
1
υ0

(
qk −

1
υ0

k

∑
l=0

υr ωk−l

)

and then, Equation (9) reduces to

F(x) =
∞

∑
k=0

ωk Hk(x), (10)
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where Hk(x) =
{

1−
[
1 +

( x
s
)c
]−d
}k

. By differentiating (10), we obtain

f (x) =
∞

∑
k=0

ωk+1 hk+1(x)

= ω1 g(x; s, d, c)

+
∞

∑
k=1

ωk+1 (k + 1) c d s−c xc−1
[
1 +

( x
s

)c]−d−1
{

1−
[
1 +

( x
s

)c]−d}k

, (11)

where hk+1(x) is the exp-BXII pdf with power parameter k + 1. Using the binomial theorem
(for k ≥ 1), we can write

{
1−

[
1 + (x/s)c]−d}k

=
k

∑
r=0

(−1)r
(

k
r

)[
1 + (x/s)c]−r d. (12)

Inserting (12) into Equation (11) and after some algebra, we obtain

f (x) =
∞

∑
k=0

k

∑
r=0

(−1)r (k + 1)ωk+1
r + 1

(
k
r

)
g(x; s, (r + 1)d, c),

where g(x; s, (r + 1)d, c) is the BXII density function with scale parameter s and shape
parameters c and (r + 1)d. Since the sums in the above expressions vary in equal sets
of indices, we can exchange ∑∞

k=0 ∑k
r=0 for ∑∞

r=0 ∑∞
k=r. Therefore, the LBXII pdf can be

reduced to

f (x) =
∞

∑
r=0

ρr g(x; s, (r + 1)d, c), (13)

where

ρr =
∞

∑
k=r

(−1)r (k + 1)ωk+1
r + 1

(
k
r

)
.

Equation (13) is the main result of this section. So, the LBXII pdf is an infinite linear
combination of BXII densities. Thus, some mathematical properties of X can be derived
from those BXII properties.

3. Mathematical Properties

In this section, we obtain some structural properties of the LBXII distribution by
establishing algebraic expansions. This might be better than computing those directly
by numerical integration of the density function of X. We obtain the quantile function,
ordinary and incomplete moments, mean deviations, Bonferroni and Lorenz curves, and
moment-generating function (mgf).

3.1. Quantile Function

The quantile function (qf) of X is determined by inverting (5). We have

Q(u) = s

[
exp

{
1
d

(
1
u
− 1
)− 1

λ

}
− 1

] 1
c

. (14)

If U has the uniform distribution in (0, 1), the random variable X = Q(U) has the
LBXII distribution. Thus, simulating the random variable X is straightforward by using the
inverse transform method. We can also have any quantiles of interest by setting appropriate
values of u. For example, u = 1/2 in (14) gives the median M of X.
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Further, we have alternative expressions for the skewness and kurtosis coefficients
based on quantile measures that can be obtained from (14). The Bowley’s skewness [33] is
given by

B =
Q(3/4)− 2Q(1/2) + Q(1/4)

Q(3/4)−Q(1/4)
.

The Moors’ kurtosis [34] is defined by

M =
Q(7/8)−Q(5/8) + Q(3/8)−Q(1/8)

Q(6/8)−Q(2/8)
.

Some plots of B and M are displayed in Figure 3. They reveal the variation in these
measures for different shape parameters.
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Figure 3. Skewness and kurtosis of X for some parameter values.

3.2. Ordinary Moments

A result from [35] gives the hth ordinary moment of the BXII distribution (for h < c d) as

µ′h = sh d B(d− h c−1, 1 + h c−1),

where B(a, b) =
∫ 1

0 ta−1 (1− t)b−1dt is the beta function. Thus, the hth ordinary moment of
X can be expressed directly from (13) as (for h < c d)

µ′h = sh d
∞

∑
r=0

(r + 1)ρr B((r + 1)d− h c−1, 1 + h c−1). (15)
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By setting h = 1, we obtain the mean of X. The moments are most commonly taken about
the mean. These so-called central moments (µs) follow recursively from (15) as

µs =
s

∑
i=0

(
s
i

)
(−1)i µ′s1 µ′s−i.

The central cumulants (κs) of X can also be determined recursively as

κs = µ′s −
s−1

∑
i=1

(
s− 1
i− 1

)
κi µ′s−i,

where κ1 = µ′1. Thus, κ2 = µ′2 − µ′21 , κ3 = µ′3 − 3µ′2µ′1 + 2µ′31 , κ4 = µ′4 − 4µ′3µ′1 − 3µ′22 +
12µ′2µ′21 − 6µ′41 , etc.

3.3. Incomplete Moments

Let Th(y) =
∫ y

0 xh f (x)dx be the hth incomplete moment of X. It can be derived using
the linear representation (13) as

Th(y) = c d
∞

∑
r=0

(r + 1)ρr

∫ y

0
xh−1

( x
s

)c [
1 +

( x
s

)c]−(r+1)d−1
dx. (16)

Setting t =
[
1 +

( x
s
)c
]−1

in the last equation, we have

Th(y) = d sh
∞

∑
r=0

(r + 1)ρr

∫ 1

sc/(sc+yc)
t(r+1)d− h

c−1 (1− t)
h
c dt.

Hence, the hth incomplete moment of X reduces to

Th(y) = d sh
∞

∑
r=0

(r + 1)ρr Bsc/sc+yc

(
(r + 1)d− h c−1, 1 + h c−1

)
,

where Bz(a, b) =
∫ 1

z ta−1 (1− t)b−1dt is the upper incomplete beta function. By setting
h = 1, we obtain the first incomplete moment of X. Alternatively, taking u = (x/s)c in
Equation (16), we can write

Th(y) = d sh−1
∞

∑
r=0

(r + 1)ρr

∫ ( y
s )

c

0
uh/c(1 + u)−(r+1)d−1du.

The following integral (for y > −1 and a > −1) is calculated using Mathematica

J(y, a, b) =
∫ y

0
za(z + 1)−bdz

=
ya+1

2F1(a + 1, b; a + 2;−y)
a + 1

,

where 2F1 is the hypergeometric function defined by

2F1(a, b; c; x) =
∞

∑
k=0

(a)k(b)k
(c)k

xk

k!
,
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where |x| < 1, c = 0,−1,−2, . . . and (z)n is the Pochhammer polynomial. Thus, the hth
incomplete moment of X can also be written as (for h < c d)

Th(y) = d sh−1
∞

∑
r=0

(r + 1)ρr J
(

y,
h
c

, (r + 1)d + 1
)

.

One important application of the first incomplete moment refers to the mean deviations
on the mean and the median of X. They are given by δ1 = 2µ′1F(µ′1) − 2 T1(µ

′
1) and

δ2 = µ′1 − 2 T1(M), respectively. The quantity F(µ′1) is easily obtained from (5), T1(µ
′
1)

is the first incomplete moment of X at the mean µ′1 and T1(M) at the median M. Other
useful applications are the Bonferroni and Lorenz curves. For a given probability π, they
are defined by B(π) = T1(q)/(πµ′1) and L(π) = T1(q)/µ′1, respectively. The quantity
q = Q(π) is obtained from (14). These curves are useful in economics for studying income
and poverty but can be applied in several other fields.

3.4. Generating Function

Let Md(t) be the mgf of the BXII(c, d, s) distribution. Here, we provide a formula for
the mgf M(t) =

∫ ∞
−∞ et x f (x)dx of X. Clearly, it can be obtained from (13) as

M(t) =
∞

∑
r=0

(r + 1)ρr M(r+1)d(t), (17)

where M(r+1)d(t) is the mgf of the BXII(c, (r + 1)d, s) distribution.
Guerra et al. [36] presented the following expansion for the BXII mgf (for t < 0)

Md(t) = c d
∞

∑
j=0

(
−d− 1

j

)[
(−st)−(j+1)c γ((j + 1)c,−st)

+ (−st)(d+j)c Γ(−(d + j)c,−st)
]
, (18)

where γ(a, z) =
∫ z

0 ta−1 e−tdt and Γ(a, z) =
∫ ∞

z ta−1 e−tdt are the lower and upper incom-
plete gamma functions, respectively. Therefore, for t < 0, we combine Equations (17) and (18)
to express the mgf of X as

M(t) = c d
∞

∑
i=0

(r + 1)ρr

∞

∑
j=0

(
−(r + 1)d− 1

j

)[
(−st)−(j+1)c γ((j + 1)c,−st)

+ (−st)c[(b+r)d+j] Γ(−c[(r + 1)d + j],−st)
]
.

4. Parameter Estimation

Various parameter estimation methods are available in the literature, with maximum
likelihood and Bayesian techniques standing out. The maximum likelihood method is
known for its desirable properties, including the ability to construct confidence inter-
vals. On the other hand, Bayesian methods allow for the integration of prior information,
making them valuable for situations with limited data or complex models. This section
focuses on estimating the LBXII parameter vector using both maximum likelihood and
Bayesian approaches.

4.1. Maximum Likelihood Estimation

In this section, we determine the maximum likelihood estimators (MLEs) of the model
parameters for the proposed distribution. Let θ = (λ, s, d, c)T be the vector of the model
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parameters of the LBXII(λ, s, d, c) distribution and let x1, . . . , xn be a random sample of size
n from this distribution. The log-likelihood function for θ is given by

`(θ) = n log(λ c s−1)− n λ log d−
n

∑
i=1

log ui + (c− 1)c−1
n

∑
i=1

log(ui − 1) (19)

− (λ + 1)
n

∑
i=1

log log ui − 2
n

∑
i=1

log
[
1 + (d log ui)

−λ
]
,

where ui = 1 +
( xi

s
)c. The MLE of θ can be evaluated numerically by maximizing (19)

using the R (optim function), SAS (PROC NLMIXED), or Ox (sub-routine MaxBFGS) programs.
The components of U(θ) are given by

Uλ(θ) = n λ−1 − n log d−
n

∑
i=1

log log ui + 2
n

∑
i=1

log[d log ui]

1 + (d log ui)
λ

,

Uc(θ) = n c−1 +

[
c3 + 2c− 1

c2 − 1
] n

∑
i=1

log(ui − 1) + c−1
n

∑
i=1

(ui − 1) log(ui − 1)u−1
i

− (λ + 1) c−1
n

∑
i=1

(ui − 1) log(ui − 1)
ui log ui

+ 2 λ c−1
n

∑
i=1

(ui − 1) log(ui − 1)

ui + ui(d log ui)
λ

,

Ud(θ) = 2 λ d−1
n

∑
i=1

1
1 + (d log ui)λ

− λ n d−1,

and

Us(θ) = c s−1
n

∑
i=1

(ui − 1)u−1
i

[
1 + (λ + 1)

n

∑
i=1

1
log ui

− 2 d λ
n

∑
i=1

1

1 + (d log ui)
λ

]
− (n + c− 1)s−1.

Setting the score vector U(θ) equal to zero and solving the equations simultaneously
yields the MLEs of the four parameters. These equations cannot be solved analytically but
there are routines for numerical maximization that may be used. In this paper, we adopt
the AdequacyModel package in the R statistical computing environment [37]. For interval
estimation and testing of hypotheses, we require the asymptotic normality of the MLEs.
Under standard regularity conditions, the distribution of

√
n(λ̂− λ, ŝ− s, d̂− d, ĉ− c) can

be approximated by a multivariate normal N4(0, J(θ̂)
−1

) distribution. Here, J(θ) is the
observed information matrix given by

J(θ) = −∂2 `(θ)

∂θ ∂θT =


Jλλ Jλc Jλd Jλs

. Jcc Jcd Jcs

. . Jdd Jds

. . . Jss

,

whose elements can be obtained from the authors upon request.

4.2. Bayesian Estimation

To address the complexity of the joint likelihood function, we derive Bayesian esti-
mators for the LBXII parameters using a Markov chain Monte Carlo (MCMC) method.
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When working with an observed random sample x = (x1, . . . , xn)
> drawn from the

LBXII(λ, s, d, c) distribution, the likelihood function is

L(θ|x) ∝
(

λ c s−c

dλ

)n n

∏
i=1

xc−1
i

1 + (xi/s)c

n

∏
i=1

[
log
{

1 +
( xi

s

)c}]−(λ+1)

×
n

∏
i=1

{
1 +

[
d log

{
1 +

( xi
s

)c}]−λ
}−2

.

Therefore, we can perform Bayesian estimation by assuming that the unknown pa-
rameters are independent and each follows a gamma distribution, which is denoted as
θi ∼ Gamma(pi, qi), with θi being part of the parameter vector θ and i ranging from 1
to 4. Here, the hyperparameters (pi, qi) are known and positive values. Then, the joint
prior distribution of λ, s, d, and c is p(λ, s, d, c) ∝ λp1−1sp2−1dp3−1cp4−1e−(q1λ+q2s+q3d+q4c).
Hence, the joint posterior pdf can be obtained using Bayes’ theorem and it is given by

π(θ|x) ∝ λn+p1−1s−c n+p2−1d−λ n+p3−1cn+p4−1 exp{−(q1λ + q2s + q3d + q4c)}

×
n

∏
i=1

xc−1
i

1 + (xi/s)c

n

∏
i=1

[
log
{

1 +
( xi

s

)c}]−(λ+1) n

∏
i=1

{
1 +

[
d log

{
1 +

( xi
s

)c}]−λ
}−2

. (20)

To derive the marginal posterior distribution for each element in θ, we must integrate
Equation (20). To this aim, we employ the MCMC method to draw posterior samples and
infer the marginal distributions. To generate these samples, we first derive the conditional
posterior distributions for the unknown parameters of the LBXII distribution, which are
given by the equations below:

π(λ|s, d, c, x) ∝λn d−λn
n

∏
i=1

[
log
{

1 +
( xi

s

)c}]−λ n

∏
i=1

{
1 +

[
d log

{
1 +

( xi
s

)c}]−λ
}−2

(21)

π(s|λ, d, c, x) ∝ s−c n
n

∏
i=1

[
log
{

1 +
( xi

s

)c}]−(λ+1) n

∏
i=1

{
1 +

[
d log

{
1 +

( xi
s

)c}]−λ
}−2

×
n

∏
i=1

xc−1
i

1 + (xi/s)c , (22)

π(d|λ, s, c, x) ∝d−λ n
n

∏
i=1

{
1 +

[
d log

{
1 +

( xi
s

)c}]−λ
}−2

, (23)

and

π(c|λ, s, d, x) ∝ s−c ncn
n

∏
i=1

[
log
{

1 +
( xi

s

)c}]−(λ+1) n

∏
i=1

{
1 +

[
d log

{
1 +

( xi
s

)c}]−λ
}−2

×
n

∏
i=1

xc−1
i

1 + (xi/s)c . (24)

From Equations (21)–(24) one can note that the full conditional distributions of λ, s, d,
and c cannot be expressed as any recognizable density function. Consequently, directly gen-
erating θ from p(λ|·), p(s|·), p(d|·), and p(c|·) using standard methods is unfeasible. To de-
rive Bayesian estimates for the unknown parameters, we employ the Metropolis–Hastings
(M-H) algorithm [38,39], and following the MCMC sampling procedure outlined below:

1. Initialize the parameter vector θ = (λ, s, d, c) with starting values, denoted as
θ(0) = (λ(0), s(0), d(0), c(0)), and set the iteration counter j = 1.

2. Propose new values for θ as θ∗ = (λ∗, s∗, d∗, c∗)> by sampling from the proposal
distribution: θ∗i ∼ N(θ̂i, Ĵi,i), where θ∗i ∈ θ∗, and i = 1, . . . , 4. Here, Ĵi,i represents the
i-th element of the main diagonal of the observed Fisher information matrix J(θ̂).
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3. Calculate

h
(

θ
(j−1)
i , θ∗i

)
= min

1,
π
(

θ∗i |θ
(j−1)
−i , x

)
π
(

θ
(j−1)
i |θ(j−1)

−i , x
)
, i = 1, . . . , 4,

which is the acceptance probability, where θ
(·)
−i denotes the vector θ(·) with its i-th

element removed, and π(·) is as given in Equations (21)–(24).
4. Generate ui (i = 1, . . . , 4) from the standard uniform distribution. If ui < h

(
θ
(j−1)
i , θ∗i

)
,

set θ
(j)
i = θ∗i ; otherwise, set θ

(j)
i = θ

(j−1)
i .

5. Increment the counter from j to j + 1.
6. Return to step 2 if j < M, where M is a sufficiently large number indicating conver-

gence; otherwise, exclude the initial N < M samples as burn-in and calculate the
Bayesian estimates as

θ̃i =
1

M− N

M

∑
j=N+1

θ
(j)
i .

5. Simulation Study

In this section, we conduct a Monte Carlo experiment to investigate some asymptotic
properties of the MLEs for the parameters of the LBXII distribution. Based on the LBXII qf,
we use the inverse transform method to generate five different combinations of parameters
λ, c, d, and s for the LBXII model. Four sample sizes are considered (n = 50, 100, 250, 500)
and the number of replications is 10, 000. We use the R programming language to maximize
the log-likelihood (19) and the code for the maximum likelihood estimation is provided
in the Appendix A. Table 2 presents the mean estimates of the MLEs and their root mean
squared errors (RMSEs). As expected, the MLEs tend to be closer to the true parameters
and the RMSEs decrease when the sample size n increases.

Table 2. Monte Carlo simulation results for the LBXII mean estimates and RMSEs.

θ n
Mean RMSE

λ̂ ĉ d̂ ŝ λ̂ ĉ d̂ ŝ

(3, 0.2, 2.5, 5)>
50 3.270 0.243 3.029 5.259 1.616 0.142 2.130 3.507

100 3.278 0.224 2.791 5.172 1.443 0.104 1.428 3.040
250 3.192 0.212 2.638 5.080 1.135 0.073 0.839 2.437
500 3.155 0.206 2.566 5.048 0.918 0.056 0.561 1.984

(6, 4, 5, 0.5)>
50 6.656 4.094 5.534 0.535 2.069 1.305 2.458 0.157

100 6.423 4.080 5.280 0.518 1.670 1.088 1.984 0.109
250 6.244 4.044 5.198 0.510 1.265 0.844 1.539 0.073
500 6.137 4.044 5.119 0.505 1.013 0.693 1.227 0.055

(9, 1.7, 5, 0.1)>
50 9.162 1.774 5.326 0.108 1.527 0.396 1.598 0.044

100 9.054 1.752 5.210 0.104 1.224 0.300 1.270 0.028
250 9.027 1.725 5.093 0.102 0.901 0.203 0.911 0.018
500 8.993 1.716 5.067 0.100 0.668 0.148 0.699 0.013

(10.5, 4.2, 6.5, 0.2)>
50 10.602 4.295 6.580 0.201 1.106 0.620 1.157 0.017

100 10.539 4.263 6.540 0.200 0.881 0.474 0.955 0.012
250 10.517 4.231 6.528 0.200 0.694 0.343 0.747 0.010
500 10.511 4.217 6.517 0.200 0.557 0.266 0.597 0.007
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Table 2. Cont.

θ n
Mean RMSE

λ̂ ĉ d̂ ŝ λ̂ ĉ d̂ ŝ

(14.1, 0.5, 0.1, 5.4)>
50 14.539 0.545 0.175 5.544 1.282 0.481 0.157 1.401

100 14.438 0.540 0.164 5.487 0.995 0.445 0.138 1.194
250 14.325 0.526 0.152 5.470 0.714 0.395 0.115 0.943
500 14.255 0.522 0.143 5.466 0.551 0.352 0.100 0.798

6. Applications

In this section, we present two examples to illustrate the potentiality of the LBXII
distribution for modeling income data. The first data set consists of the annual salaries of
professional hockey players for the season 2012–2013. It has 714 observations in American
dollars and is available for download at https://www.usatoday.com/sports/nhl/ (accessed
on 17 September 2016).

The second example represents the individual payroll income of 5024 Italian house-
holds with positive income. These data are obtained from the Survey of Household Income
and Wealth (SHIW) of the Bank of Italy for 2014. The observations are measured in euros.

We fit the LBXII model for both data sets and compare them with six other compet-
itive models. The distributions covered in this comparison include five-parameter BXII
generalizations and some special models of our proposal. In what follows, we present the
mathematical expressions of the density functions under consideration. These expressions
are essential to provide a clear and concise reference for readers to understand the potential
competitors of the proposed model. Therefore, they are defined below (for x > 0):

• The KwBXII density is given by

f (x) = a b c d s−cxc−1
[
1 +

( x
s

)c]−d−1
{

1−
[
1 +

( x
s

)c]−d}a−1

×[
1−

{
1−

[
1 +

( x
s

)c]−d}a]b−1

,

where a > 0 and b > 0 are shape parameters.
• The BBXII density is given by

f (x) =
c d xc−1

scB(a, b)

{
1− [1 + (x/s)c]

−d
}a−1

[1 + (x/s)c]
−(d b+1),

where a > 0 and b > 0 are shape parameters.
• The BXII density is given in (6).
• The exponentiated Weibull (EW) density [32] is given by

g(t) = α β λ xα−1 exp(−λ xα)[1− exp(−λ xα)]β−1,

where α > 0 and β > 0 are shape parameters and λ > 0 is a scale parameter.
• The Weibull (W) density, which arises from the EW density when β = 1.
• The LL density obtained from the BXII density with s = m−1 and d = 1.

The statistics considered for these models are the following: the Akaike information
criterion (AIC), consistent Akaike information criterion (CAIC), Bayesian information
criterion (BIC), Bayesian information criteria Hannan–Quinn information criterion (HQIC),
and Kolmogorov–Smirnov (KS). The lower the goodness-of-fit statistics, the better the
distribution adjustment to the data. We use the R programming language to obtain the
MLEs and goodness-of-fit statistics of the LBXII and all its competitor models.

https://www.usatoday.com/sports/nhl/
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6.1. Hockey Players’ Salaries

Table 3 provides a descriptive summary of the hockey players’ data. We have a higher
value for the standard deviation (SD) and an amplitude of 13,475,000. This indicates that
the current data have great variability. The skewness is positive, and the kurtosis is large.
Further, the mean and median are not so close. These statistics suggest that hockey players’
salaries follow a power law distribution, which is very common in income data sets.

Table 3. Descriptive statistics for hockey players’ data.

Mean Median SD Skewness Kurtosis Min. Max.

2,450,815.39 1.675× 106 2,112,878 1.61 3.35 5.25× 105 1.4× 107

The MLEs and their standard errors for all fitted distributions are listed in Table 4.
The Bayes estimates, following the procedure described in Section 4.2, are also included.
We note that the parameter estimates are significant for all considered models. Table 5
presents the goodness-of-fit statistics and reveals that the LBXII distribution yields a good
adjustment for the hockey players’ data. It has the lowest values for all statistics, thus
indicating it as a competitive alternative to the classical W, EW, and other BXII genera-
lizations and special models.

Table 4. The MLEs and Bayesian estimates of the model parameters and their standard errors for
hockey players’ data.

c d s a b

BBXII 0.6639 0.1238 6.1887 12.3249 7.0895
(0.0459) (0.0087) (0.9562) (0.7336) (0.5711)

KwBXII 5.3659 0.0240 2.9941 8.1383 3.5522
(0.4790) (0.0021) (0.4481) (0.4410) (0.2546)

c d s λ
LBXII 0.4665 0.1676 5.0797 13.8981

(0.0183) (0.0069) (1.5760) (0.4894)
LBXII * 0.4834 0.1723, 10.33954 17.6727

(0.0132) (0.0046) (1.2755) (0.3634)
BXII 7.7501 0.0093 3.2532

(0.8155) (0.0010) (0.4724)
λ α β

EW 1.5782 0.0411 8.5690
(0.2285) (0.0059) (1.1925)

W 10.4164 0.0683
(1.3816) (0.0018)

c m
LL 0.1296 12.6759

(0.0040) (1.7147)
* Bayesian estimates.

Table 5. Goodness-of-fit statistics for the models fitted to the hockey players’ data. The best results
are in boldface.

AIC CAIC BIC HQIC KS

BBXII 23,764.9605 23,765.0452 23,787.8149 23,773.7870 0.3836
KwBXII 23,954.2392 23,954.3239 23,977.0936 23,963.0656 0.4249
LBXII 22,660.5691 22,660.6256 22,678.8527 22,667.6303 0.1957
BXII 25,640.6040 25,640.6378 25,654.3166 25,645.8999 0.5767
EW 25,032.8320 25,032.8658 25,046.5446 25,038.1279 0.6477
W 26,436.5128 26,436.5297 26,445.6546 26,440.0434 0.8768
LL 26,192.7199 26,192.7368 26,201.8617 26,196.2505 0.7987
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The three estimated densities with lower values for the goodness-of-fit statistics and
the histogram of the data are given in Figure 4. They agree with what was discussed in the
descriptive summary and the results in Table 5. Thus, the LBXII model is very competitive
with the other fitted distributions and provides a better adjustment for the current data.
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Figure 4. Histogram and estimated densities of the LBXII, BBXII, and KwBXII models for hockey
players’ data.

6.2. Individual Payroll Income

Table 6 provides a descriptive summary of the individual payroll income data. For
these data, the mean and median are close and the SD is higher. We also note large values
for the skewness and kurtosis coefficients. The amplitude is 134,900 for these data. Just like
for the first data set, the descriptive statistics indicate that the payroll income may follow a
power law distribution with a right-skew tail.

Table 6. Descriptive statistics for payroll income data.

Mean Median SD Skewness Kurtosis Min. Max.

16,714.67 16,200.00 9218.184 2.62 19.29 100.00 135,000.00

Tables 7 and 8 present the MLEs with their standard errors and the goodness-of-
fit statistics, respectively, for seven fitted models. The Bayes estimates, following the
procedure described in Section 4.2, are also included. These results are obtained for the
LBXII distribution and six competitive models. The parameter estimates are significant for
all fitted models, and the LBXII distribution exhibits the lowest values for all goodness-
of-fit statistics. Similarly to the first empirical example, the LBXII model shows up as a
competitive alternative to the other fitted models.

Figure 5 displays a histogram and some plots of the estimated densities for the three
most competitive models according to the goodness-of-fit statistics of the payroll income
data. These plots are in agreement with the results in Table 8. Similarly to the first data set,
the LBXII distribution can be used effectively to provide better fits than other considered
income distributions for these data and it is a very competitive alternative to the W and
EW models.
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Table 7. The MLEs and Bayesian estimates of the model parameters and their standard errors for
payroll income data.

c d s a b

BBXII 1.8301 0.0876 8.4148 18.3223 8.3320
(0.0614) (0.0029) (0.3872) (0.4026) 0.283278

KwBXII 5.3594 0.0354 3.8626 8.828 5.4490
(0.0987) (0.0007) (0.2147) (0.2225) (0.1341)

c d s λ
LBXII 1.1934 0.1057 5.3612 14.1480

(0.0310) (0.0027) (0.3478) (0.1928)
LBXII * 1.2242 0.1084 7.9545 14.4076

(0.0215) (0.0018) 0.2933 0.1501
BXII 1.8585 0.0812 20.4626

(0.1622) (0.0071) (0.8067)
λ α β

EW 2.7063 0.0408 11.2836
(0.1329) (0.0020) (0.4695)

W 16.8256 0.1169
(0.6817) (0.0013)

c m
LL 0.2512 32.2073

(0.0032) (1.2346)
* Bayesian estimates.

Table 8. Goodness-of-fit statistics for the models fitted to the payroll income data. The best results
are in boldface.

AIC CAIC BIC HQIC KS

BBXII 112,144.5514 112,144.5634 112,177.1613 112,155.9779 0.2825
KwBXII 114,423.2534 114,423.2654 114,455.8633 114,434.6799 0.3159
LBXII 107,006.6913 107,006.6992 107,032.7792 107,015.8325 0.2010
BXII 125,013.2791 125,013.2839 125,032.8450 125,020.1350 0.5063
EW 122,416.3162 122,416.3210 122,435.8822 122,423.1721 0.5575
W 131,889.9303 131,889.9327 131,902.9743 131,894.5009 0.8148
LL 129,319.9984 129,320.0008 129,333.0424 129,324.5690 0.7323
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Figure 5. Histogram and estimated densities of the LBXII, BBXII, and KwBXII models for payroll
income data.
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7. Concluding Remarks

We introduce the four-parameter logistic Burr XII (LBXII) distribution. It can have
decreasing and upside-down-bathtub hazard functions and can be considered for modeling
income distributions, among other applications. We demonstrate that the LBXII density
function is an infinite linear combination of BXII densities. Thus, some mathematical
properties of the new distribution are obtained using this result, such as the ordinary and
incomplete moments and generating function. We also determine the quantile function
for the LBXII distribution, which is useful to obtain any quantiles of interest, simulate
LBXII random variables, and provide some alternative expressions for the skewness and
kurtosis. We estimate the model parameters using the maximum likelihood method, and a
simulation study is provided using a Monte Carlo experiment. In our simulation study, we
note that the efficiency of the maximum likelihood estimators improves for larger sample
sizes, which is an important aspect to consider when applying the LBXII distribution to
real-world data. We present two applications to illustrate the potentiality of the LBXII
distribution for modeling income data. Both data sets exhibit characteristics of a power law
distribution, which is very common in income data sets. We note that the LBXII distribution
has a good adjustment in both cases, thus being a competitive model against the classical
Weibull distribution, exponentiated Weibull model, other BXII generalizations, and special
models. Finally, the LBXII model may provide an attractive alternative to describe and
understand income distribution behavior.
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Appendix A. Code for Maximum Likelihood Estimation

This appendix presents the code for the maximum likelihood and Bayesian estima-
tions applied to the proposed distribution. The provided code is designed using the R
programming language.

# log-likelihood function
fr <- function(par){
c <- par[1]
k <- par[2]
s <- par[3]
l <- par[4]
x=t_i
-(n*(log(l*c*k*s^(-1)))+(c-1)*c^(-1)*
sum(log(1+(x/s)^c-1))-sum(log(1+(x/s)^c))
-(l+1)*(n*log(k)+sum(log(log(1+(x/s)^c))))-2*
sum(log(1+(k*log(1+(x/s)^c))^(-l))))
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}
# setting one scenario
c=3;k=.2;s=2.5;l=5
# setting the sample size
n=500
# generating one sample
set.seed(2023)
u = runif(n=n,min=0,max=1)
t_i=s*(exp(1/k*((1-u)/u)^(-1/l))-1)^(1/c)
##looking for initial values
fit.sa <- function(y,fr) {
minusllike <- function(y) fr(c(y[1],y[2],y[3],y[4]))
lower <- c(0.1,0.1,0.1,0.1) #may need some changes here
upper <- c(10,10,10,10)
out <- GenSA::GenSA(lower = lower, upper = upper,
fn = minusllike, control=list(verbose=F,max.time=2))
return(out[c("value","par","counts")])
}

initial<-fit.sa(y,fr)$par

# maximizing the log-likelihood
res <- optim(initial, fr, method = "L", lower = 0)
# Maximum likelihood estimators
res$par

#bayesian estimation
library(rstan)
seet<-123
set.seed(seet)
App<-2 #Or 1
est1<-matrix(c( mle1, sd1),2,4,byrow = T)
est2<-matrix(c( mle2, sd2),2,4,byrow = T)
#Data
x1 <- Salary
x2 <- Payroll
if(App==1){
x=x1
meanes=est1[1,]
sdes=est1[2,]
} else if(App==2) {
x=x2
meanes=est2[1,]
sdes=est2[2,]
} else {
print("The value in App is not valid.")
}
#Model
model_code <- ’
data {
int n;
real x[n];
vector[4] meanes;
vector[4] sdes;
}
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parameters {
real<lower=0> c;
real<lower=0> k;
real<lower=0> s;
real<lower=0> l;
}
model {
c ~ normal(meanes[1], sdes[1]);
k ~ normal(meanes[2], sdes[2]);
s ~ normal(meanes[3], sdes[3]);
l ~ normal(meanes[4], sdes[4]);
for(i in 1:n){
target += log((l*c*k*s^(-c)*x[i]^(c-1)*(k*log((1+(x[i]/s)^c)))^(-l-1)*
(1+(k*log((1+(x[i]/s)^c)))^(-l))^(-2))*(1+(x[i]/s)^c)^(-1));
}
}’
#Data for Stan
data_list <- list(n = length(x),
x = x)
#Fit Model Stan
fit <- stan(model_code = model_code, data = data_list,
chains = 1, iter = 10000, warmup = 2000,
control = list(adapt_delta = 0.95))
#Result
summary(fit, pars = c("c", "k","s", "l" ))
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