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Abstract: Nonparametric combinations of permutation tests for pairwise comparison of scale param-
eters, based on deviances, are examined. Permutation tests for comparing two or more groups based
on the ratio of deviances have been investigated, and a procedure based on Higgins” RMD statistic
was found to perform well, but two other tests were sometimes more powerful. Thus, combinations
of these tests are investigated. A simulation study shows a combined test can be more powerful than
any single test.
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1. Introduction

Tests for homogeneity of scale are of interest in many areas of application, includ-
ing industrial quality assurance, agricultural production and education [1]. Parametric
tests for comparing scale (e.g., [2-4]) are generally not robust to nonnormality (see [5]).
Consequently, more robust alternatives are of interest.

An approximate test using the ANOVA F-test on the absolute deviations from the
mean was proposed [6]. Using absolute deviations from the median (referred to as de-
viances in the remainder of this paper), referred to as the W50 test, was later suggested [7].
However, no uniformly best test for scale has been demonstrated in the literature. In
fact, without more stringent distributional assumptions, the minimal sufficient statistic
would generally be the n-dimensional vector of order statistics. Thus, no single statistic
exists that summarizes the information contained in the data, and a uniformly best test
statistic does not generally exist. In spite of this, the W50 test has been recommended as
a computationally simple test showing good overall performance with respect to power
and robustness to nonnormality in several comparative studies ([8-10]). More recently,
a study [5] compared 25 omnibus tests for homogeneity of variance and recommended
the W50 test as “superior”. A modification of Levene’s test [6] (referred to as OB) was
proposed [11] which has been recommended over the W50 test for light-tailed distribu-
tions [12]. The W50 and OB tests, as well as permutation versions of these tests, were
evaluated [5] and it was found that the permutation versions tended to be more robust and
have higher power. The W50 test was recommended as a computationally simple robust
test, as was the permutation version of the OB test for symmetric and lighter-tailed skewed
distributions. Another test for scale utilizing deviances, based on the ratio of the mean
deviances, was also proposed [13]. This test will be referred to as the RMD test. The RMD
test was found [14] to be generally superior to W50 and OB, although there were still cases
where each of W50 and OB had higher power. Since no test has been found to be uniformly
superior, it is of interest to develop a test that combines these three tests. A combined test
of scale parameters based on the IQR was studied [15] and the combined test was found to
be more powerful than its constituent tests in some scenarios. Similarly, we will investigate
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nonparametric combinations of the RMD, W50 and OB tests to determine if combining the
tests can provide increased power compared to individual tests.

2. Methods for Comparing Scale Parameters

Consider a one-way layout with f treatments and r; observations per treatment. We
assume a location-scale model, Vij=pitoEgi=1..t j=1,...,n, where y; and o;
are the location and scale parameters, respectively, of treatment i, and ¢;; are independent
and identically distributed with median 0. It is desired to test Hy : 07 = 0 = --- = 0}
versus H, : 0; # 0 for some i and j.

2.1. Brown—Forsythe (W50) Test

First, compute the deviances, Zij =

Yij — ?i ’, where ; is the sample median. The

ANOVA F test is performed on these scores, and the p-value is based on the F distribution
with t — 1 and n — t degrees of freedom [7].

2.2. Higgins’ (RMD) Test

max (ZE] =
The statistic is defined as, RMD = ——==%-, where z; is the mean of the deviances,
min <zi,zj>
Ei]-, for treatment i. The deviances Ei]- = \yij — ;i are the same as those used by the W50

test. The permutation distribution of the RMD statistic was used to calculate a p-value [13].

2.3. O’Brien’s (OB) Test

[(w+ﬂi*2)”ij (yij*?i)szs,z(”z'*l)]

First, compute the scores r;;(w) = (= T=3) ,where 0 < w < 1.
—\2
At one extreme, when w = 0, the statistic reduces to rij(O) = 111(177_—1%), which is a slight
modification of Levene’s test, which uses lej = (yl-]- — yi)Q. At the other extreme, when
_\2 2
ni(Yij=Y;) —s; )
w=1ril) = qj = [(y]nlizz)] = n;s7 — (n; — 1)s?_;, which was referred to as a

“jackknife pseudovalue of s? [11]”. The ANOVA F test is performed on these scores and,
the p-value is based on the F distribution with ¢t — 1 and n — t degrees of freedom. Tests
based on Elzj have been shown to have inflated Type I error rates, while those based on g;;
tend to have low power. Since r(w) is a weighted average of the two tests, it provides a
way to balance the drawbacks of the two tests. A “utility” value of w = 0.5 was suggested

for most situations [11], and this is the value employed in this study.

2.4. Permutation Tests

While the permutation test using the RMD statistic was suggested [13], the W50 and OB
tests described previously were proposed as approximate tests based on the F distribution.
However, p-values for W50 and OB can also be calculated using permutation distributions.
A simulation study [1] found for the two-treatment case that the permutation versions
tended to be more robust and have greater power than the approximate tests. Thus, we
will consider only the permutation versions of these combined tests. Test statistics will be
computed for a large number of random reassignments of observations to treatments, and
the p-value will be calculated as the proportion of values of the permutation distribution
that is at least as extreme as the observed test statistic value.

3. Combined Tests

A two-step approach to create a nonparametric combination of dependent tests was
proposed [16] and described as follows:

Step 1. Analyze the data using the tests of interest, referred to as partial tests;
Step 2. Combine the partial tests to assess the global hypothesis.
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Several different combining functions have been developed that satisfy the properties
required for a suitable combining function [16]. Since the relative power of different com-
bining functions can vary across conditions, we consider combined tests using three of the
best-known combining functions: the Fisher, Liptak and Tippett combining functions [15].

Let A; be the p-value associated with the ith test to be combined. Then, the test statistics
for the Fisher, Liptak and Tippett functions are

1. The Fisher combining function is Tr = —); In(A;);
2. The Liptak combining functionis T = Y; ® (1 — A;);
3. The Tippett combining function is Tr = max(1 — A;).

1

The Tippett function tends to have the highest power when one or a few, but not all, of
the constituent tests reject the null hypothesis; the Liptak function tends to have the highest
power when all tests reject the null hypothesis; the power of the Fisher function will tend
to lie between the other two, making it the more general option and thus probably the most
popular [16]. The combined tests are carried out as follows [16].

1.  Compute the observed test statistic value (Tr, T, TT) according to the above defini-
tions, using the permutation p-values of RMD, W50 and OB.
2. To compute the permutation test p-value associated with each combined statistic:

i For the ith statistic in the permutation distributions constructed for RMD, W50
and OB, compute the ith partial p-value as the proportion of test statistic values
at least as large as the ith statistic value.

ii ~ Using the partial p-values for RMD, W50 and OB, use the respective combining
function to compute a test statistic value (Tr, Ty, Tt) for each permutation. This
results in a permutation distribution for each of the combined statistics.

iii ~ For each combined test, the permutation p-value is then the proportion of values
in the permutation distribution at least as large as the observed statistic value.

Note that all tests are based on the same set of randomly generated permutations.

Since the RMD, W50 and OB tests were each most powerful for at least some scenarios
in past simulations (e.g., [5]), combinations of these three tests will be examined. In addition,
since RMD and W50 were usually more powerful than OB, a combination of only RMD
and W50 will also be considered. The p-values for each of the constituent tests in each
combination will be estimated using the permutation distribution of the statistic. The
powers Type I error rates of the Fisher, Liptak and Tippett combining functions will be
estimated and compared, and these will also be compared to those of the individual tests.

4. Strong Familywise Error Rate Control for Pairwise Comparisons

The familywise error rate (FWER) will be controlled using the technique of Richter
and McCann [17]. Richter and McCann [17] proposed a restricted permutation method
to provide strong control of the familywise error rate (FWER) for pairwise comparison
of location parameters. This method will be extended to the present case of comparing
scale parameters as follows. First, the two-sample test statistic for a given method will
be calculated for each of the possible ¢(t — 1) /2 pairs of treatments. Then, the maximum
value of the test statistic across all pairs will be calculated. Next, observations will be
reassigned at random to treatments within each pair of treatments, a test statistic calculated
for each pair of treatments, and the maximum value determined. This will be repeated
many times to build the permutation distribution, and the p-value for comparing each pair
of treatments will be calculated as the proportion of values in the permutation distribution
that is at least as extreme as the observed value.

5. Simulation Study
5.1. Procedures Studied
A simulation study estimated and compared the familywise Type I error rate and

“any-pair” power (probability of detecting at least one true difference) of the methods
described in Section 2:
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RMD: Higgins RMD procedure.

W50: Brown and Forsyth’s W50 test.

OB: O’Brien’s method using means.

F3 : Fisher’s combination test of RMD, W50 and OB.
F, : Fisher’s combination test of RMD and W50.

L3 : Liptak’s combination test of RMD, W50 and OB.
L, : Liptak’s combination test of RMD and W50.

T3 : Tippett’s combination test of RMD, W50 and OB.
T; : Tippett’s combination test of RMD and W50.

W XRNG N

5.2. Sample Sizes and Differences in Scale Parameters

Both equal and unequal sample size settings were examined for five treatments. For
equal sample size cases, n1; = 10 and n; = 30 were used. Unequal sample size cases, settings
ofngy =5,n =5 n3 =10, ng =15 n5 = 15and n; = 10, np = 10, ng = 20, ny =

30, ns = 30 were utilized. Maximum scale parameter ratios, %, ranging from 1 to 5

were examined, with different patterns of smaller ratios present. Settings of (¢,1,1,1,1)
and (o, (c+1)/2,1,1,1) were used. The first setting we refer to as the “single extreme
scale parameter” setting, while the second setting has an intermediate scale value midway
between the minimum (1) and maximum (¢). The specific settings used for (0, 02, 03, 04, 05)
were as follows:

1. 1.(1,1,1,1,1)2.(3,1,1,1,1) 3.(3,2,1,1,1) 4.(5,1,1,1,1) 5.(5,3,1,1,1).

5.3. Distributions

Several different ¢ and & distributions [18] were used to simulate data from distri-
butions with different characteristics. g and & distributions are monotonic functions of
normal distributions and allow investigation of nonnormal distributions with specific char-

acteristics. The g-and-h random variable is defined as Y, ,(Z) = (%)exp(%),

where Z ~ N(0,1). When g =h =0, Yy ,(Z) ~ N(0,1). Nonzero values of g increase the
skewness and positive values of & increase the elongation (tail heaviness) of the distribution.
Changing the values of g and / does not affect the location of the distribution. The following
cases were considered, and representative plots shown in Figure 1:

g =0, h = 0—Normally distributed (symmetric, light tails);

g =0, h = 0.4—Symmetric, moderately heavy tails;

g =0, h = 0.8—Symmetric, very heavy tails;

g = 0.4, h = 0—Moderately skewed, light tails;

g =0.8, h = 0—Heavily skewed, light tails;

g =0.4, h = 0.4—Moderately skewed, moderately heavy tails;
g = 0.8, h = 0.4—Heavily skewed, moderately heavy tails.

N U@

Type I error rate and power were estimated based on 1000 randomly selected data
sets from each distribution, for each setting of sample sizes and scale parameter patterns.
It has been suggested [19] that only 253 random permutations are necessary with 1000
random data sets if the goal of the simulation is to estimate the power of a test and only a
“rough” estimate of the permutation p-value is required, while a random sample of at least
1600 permutations was recommended [20] to estimate the exact p-value for a permutation
test. Since precise estimation of the permutation test p-values was considered important, a
conservative sample of 1999 random permutations was utilized, and thus the permutation
distribution for each test was based on 2000 values: the observed test statistic value plus
1999 values based on random permutations of the observed data.
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Figure 1. Example boxplots of the simulated distributions. Note that the “Value” axis has been
truncated to omit extreme values from distributions 3 and 7.

6. Simulation Results
6.1. Familywise Type I Error

All tests were robust in the sense that estimated rates of Type I error were close to the
nominal level of 0.05 (See Tables 1-6) with only one exceeding 0.075 (0.084 for RMD in the
equal sample n; = 30 case, g = 0.8, = 0.4). Note that in the tables, the first row of each
distribution represents the equal scale case, and thus the value given is the estimated Type
I error rate.

6.2. Any-Pair Power

When sample sizes were equal (Tables 1 and 2), RMD tended to have the highest
power, although in some cases the Fisher or Liptak combined test was most powerful.

When sample sizes were small and unequal and the larger scales were associated with
the smaller samples (Table 3), the F» and L, combined tests were most powerful for all scale
configurations, with L, usually having the higher power. The lone exception was when the
distribution was symmetric with very heavy tails (g = 0, # = 0.8) where the RMD had similar
power to F, and Ly. When the sample sizes increased to n; = 10, 10, 20, 30, 30, however,
the power advantage of the combined tests over RMD tended to diminish, except for the
skewed, light-tailed distributions, where the combined tests were still more powerful (See
Table 4).

Neither of the Tippett combined tests was as powerful as the Liptak and Fisher
versions.

When the sample sizes were small and unequal but the larger scales were associated
with the larger samples (Tables 5 and 6), L, and F; had the highest power for normal and
moderately skewed-only distributions. Meanwhile, RMD had the highest power for all
distributions with heavy tails (7 = 0.4, 0.8). As before, as sample sizes increased, the power
advantages of the combined tests diminished while RMD maintained power advantages
for heavier-tailed distributions.
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Table 1. Proportion of at least one rejection at & = 0.05, five treatments, equal samples of size n; = 10.

o Scale Method
Distribution
(0’10’20’30’40’5) W50 OB RMD F3 FZ L3 Lz T3 TZ

g=0,h=0 11111 0.040 0.016 0.039 0.039 0.042 0.041 0.043 0.025 0.034

31111 0.669 0.620 0.742 0.708 0.726 0.708 0.727 0.689 0.710

32111 0.609 0.466 0.689 0.648 0.692 0.655 0.697 0.604 0.632

51111 0.911 0.850 0.965 0.935 0.954 0.933 0.950 0.944 0.957

53111 0.889 0.697 0.970 0.925 0.956 0.924 0.957 0.929 0.944

g=0h=04 11111 0.010 0.000 0.065 0.020 0.034 0.014 0.031 0.030 0.043

31111 0.099 0.028 0.244 0.155 0.205 0.126 0.204 0.191 0.202

32111 0.084 0.016 0.274 0.141 0.212 0.112 0.205 0.197 0.225

51111 0.285 0.090 0.476 0.378 0.445 0.331 0.446 0411 0.433

53111 0.192 0.046 0.495 0.332 0.434 0.247 0.421 0.409 0.433

g=0,h=038 11111 0.004 0.000 0.071 0.014 0.031 0.005 0.024 0.036 0.051

31111 0.017 0.003 0.140 0.057 0.098 0.032 0.084 0.092 0.110

32111 0.011 0.001 0.182 0.060 0.110 0.034 0.088 0.108 0.133

51111 0.053 0.011 0.237 0.130 0.192 0.079 0.174 0.189 0.208

53111 0.034 0.007 0.286 0.129 0.208 0.070 0.182 0.214 0.240

g=04,h=0 11111 0.042 0.020 0.049 0.037 0.053 0.036 0.056 0.031 0.037

31111 0.620 0.552 0.656 0.660 0.681 0.665 0.686 0.627 0.630

32111 0.549 0.402 0.637 0.597 0.630 0.599 0.638 0.553 0.585

51111 0.891 0.816 0.942 0.933 0.943 0.928 0.942 0.931 0.935

53111 0.842 0.614 0.931 0.900 0.928 0.889 0.928 0.889 0.906

g=04,h=04 11111 0.007 0.001 0.062 0.015 0.029 0.011 0.028 0.023 0..030

31111 0.090 0.028 0.240 0.146 0.204 0.118 0.200 0.184 0.200

32111 0.081 0.014 0.272 0.130 0.216 0.099 0.201 0.195 0.222

51111 0.251 0.090 0.442 0.343 0.418 0.301 0.415 0.384 0.406

53111 0.182 0.040 0.477 0.310 0.406 0.248 0.390 0.374 0.406

g=08h=0 11111 0.034 0.014 0.058 0.042 0.047 0.036 0.052 0.033 0.042

31111 0.426 0.359 0.472 0.514 0.490 0.513 0.497 0.465 0.458

32111 0.346 0.236 0.468 0.432 0.451 0.430 0.459 0413 0.413

51111 0.765 0.658 0.800 0.835 0.826 0.826 0.828 0.813 0.802

53111 0.640 0.426 0.801 0.780 0.791 0.754 0.799 0.755 0.762

g=08,h=04 11111 0.011 0.002 0.063 0.015 0.030 0.009 0.027 0.028 0.038

31111 0.074 0.025 0.195 0.138 0.168 0.104 0.164 0.154 0.171

32111 0.064 0.014 0.231 0.131 0.179 0.089 0.167 0.156 0.185

51111 0.186 0.065 0.384 0.294 0.348 0.242 0.346 0.313 0.338

53111 0.138 0.032 0.430 0.272 0.356 0.204 0.346 0.333 0.364

Table 2. Proportion of at least one rejection at & = 0.05, five treatments, equal samples of size n; = 30.
Cases that were uninformative for comparing methods were omitted.
o Scale Method
Distribution
(0'10'20’30'40’5) W50 OB RMD F3 Fz L3 Lz T3 Tz

g=0,h=0 11111 0.044 0.023 0.045 0.041 0.047 0.042 0.047 0.038 0.041

g=0,h=04 11111 0.007 0.001 0.060 0.014 0.030 0.012 0.028 0.030 0.034

31111 0.276 0.076 0.419 0.318 0.392 0.272 0.395 0.372 0.389

32111 0.225 0.050 0.450 0.309 0.402 0.242 0.399 0.384 0.401

51111 0.619 0.224 0.702 0.643 0.716 0.585 0.715 0.681 0.692

53111 0.461 0.134 0.730 0.601 0.706 0.512 0.704 0.684 0.698
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Table 2. Cont.
e Scale Method
Distribution
(0’10’20’30’40’5) W50 OB RMD F3 FZ L3 Lz T3 TZ
g=0,h=038 11111 0.002 0.000 0.075 0.013 0.029 0.009 0.019 0.033 0.043
31111 0.026 0.007 0.155 0.074 0.112 0.053 0.097 0.116 0.132
32111 0.023 0.003 0.199 0.070 0.124 0.042 0.103 0.143 0.167
51111 0.078 0.015 0.278 0.183 0.241 0.124 0.228 0.241 0.252
53111 0.059 0.008 0.339 0.187 0.274 0.110 0.245 0.289 0.299
g=04,h=0 11111 0.029 0.020 0.049 0.037 0.044 0.034 0.044 0.033 0.040
g=04,h=04 11111 0.004 0.001 0.073 0.014 0.030 0.011 0.022 0.035 0.045
31111 0.222 0.068 0.380 0.280 0.349 0.228 0.346 0.332 0.352
32111 0.168 0.041 0.409 0.264 0.349 0.199 0.340 0.338 0.360
51111 0.533 0.174 0.635 0.561 0.660 0.506 0.664 0.613 0.628
53111 0.394 0.099 0.671 0.546 0.642 0.448 0.636 0.613 0.634
g=08h=0 11111 0.026 0.016 0.053 0.034 0.038 0.034 0.039 0.039 0.043
31111 0.935 0.793 0.921 0.917 0.942 0.903 0.943 0.913 0.923
32111 0.861 0.584 0.912 0.865 0.919 0.852 0.923 0.862 0.892
g=08h=04 11111 0.005 0.001 0.084 0.012 0.035 0.009 0.031 0.036 0.050
31111 0.138 0.046 0.303 0.215 0.265 0.170 0.263 0.256 0.276
32111 0.103 0.024 0.336 0.200 0.274 0.154 0.262 0.267 0.296
51111 0.371 0.118 0.526 0.456 0.514 0.392 0.517 0.490 0.507
53111 0.264 0.067 0.573 0.436 0.533 0.325 0.528 0.510 0.531
Table 3. Proportion of at least one rejection at « = 0.05, five treatments, unequal samples of size
n; =5, 5, 10, 15, 15, larger scale associated with smaller sample size. Cases that were uninformative
for comparing methods were omitted.
e Scales Method
Distribution
(0’10’20’30’40’5) W50 OB RMD F3 FZ L3 Lz T3 TZ
g=0,h=0 11111 0.046 0.006 0.022 0.025 0.038 0.027 0.038 0.017 0.024
31111 0.331 0.288 0.128 0.322 0.294 0.336 0.301 0.268 0.258
32111 0.320 0.222 0.048 0.302 0.275 0.317 0.297 0.235 0.232
51111 0.502 0.451 0.348 0.543 0.525 0.557 0.546 0.470 0.460
53111 0.507 0.330 0.244 0.512 0.541 0.546 0.575 0413 0.416
g=0h=04 11111 0.006 0.004 0.047 0.007 0.026 0.005 0.023 0.022 0.029
31111 0.053 0.024 0.060 0.052 0.075 0.056 0.077 0.048 0.053
32111 0.050 0.023 0.056 0.051 0.069 0.051 0.083 0.030 0.039
51111 0.120 0.053 0.132 0.144 0.186 0.140 0.195 0.109 0.124
53111 0.120 0.046 0.114 0.137 0.184 0.141 0.196 0.093 0.122
g=0,h=038 11111 0.003 0.003 0.068 0.006 0.023 0.006 0.017 0.026 0.037
g=08h=0 11111 0.027 0.005 0.032 0.019 0.039 0.018 0.042 0.020 0.032
31111 0.217 0.181 0.090 0.220 0.210 0.222 0.217 0.181 0.177
32111 0.224 0.141 0.040 0.221 0.205 0.227 0.223 0.174 0.165
51111 0.409 0.318 0.216 0.431 0.415 0.430 0.433 0.365 0.370
53111 0.421 0.251 0.143 0.402 0.428 0.415 0.453 0.327 0.344
g=04,h=0 11111 0.036 0.009 0.024 0.026 0.042 0.027 0.044 0.018 0.028
31111 0.306 0.257 0.114 0.286 0.280 0.304 0.282 0.232 0.234
32111 0.304 0.196 0.044 0.274 0.270 0.291 0.287 0.220 0.221
51111 0.483 0.415 0.306 0.523 0.501 0.532 0.519 0.434 0.436
53111 0.421 0.277 0.180 0.423 0.427 0.440 0.461 0.345 0.353
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Table 3. Cont.
Distributi Scales Method
istribution
(0’10’20’30’40’5) W50 OB RMD F3 FZ L3 Lz T3 TZ
§=04,h=04 11111 0.007 0.001 0.056 0.005 0.023 0.007 0.023 0.027 0.032
31111 0.046 0.022 0.061 0.058 0.065 0.051 0.074 0.047 0.051
32111 0.054 0.019 0.054 0.050 0.073 0.053 0.082 0.046 0.050
51111 0.116 0.054 0.127 0.132 0.169 0.123 0.180 0.108 0.124
53111 0.084 0.040 0.070 0.089 0.114 0.094 0.127 0.069 0.077
g=08h=04 11111 0.006 0.003 0.064 0.004 0.027 0.004 0.020 0.033 0.035
31111 0.037 0.017 0.052 0.047 0.058 0.045 0.063 0.039 0.041
32111 0.045 0.020 0.053 0.051 0.073 0.049 0.074 0.045 0.057
51111 0.104 0.044 0.126 0.116 0.147 0.108 0.159 0.097 0.119
53111 0.097 0.040 0.104 0.113 0.146 0.118 0.156 0.097 0.107
Table 4. Proportion of at least one rejection at « = 0.05, five treatments, unequal samples of size
n; = 10, 10, 20, 30, 30, larger scale associated with smaller sample size.
Distributi Scales Method
1stribution (0102030405) W50 OB RMD F; F, Ls L, T3 T,
g§=0,h=0 11111 0.039 0.014 0.029 0.034 0.036 0.034 0.038 0.024 0.030
31111 0.813 0.777 0.771 0.830 0.816 0.834 0.823 0.770 0.769
32111 0.735 0.591 0.746 0.792 0.789 0.800 0.806 0.667 0.687
51111 0.965 0.920 0.977 0.974 0.984 0.975 0.984 0.963 0.967
53111 0.948 0.769 0.990 0.975 0.987 0.975 0.989 0.960 0.972
g=0h=04 11111 0.005 0.002 0.049 0.010 0.019 0.008 0.017 0.022 0.030
31111 0.105 0.033 0.176 0.134 0.179 0.124 0.181 0.129 0.145
32111 0.063 0.026 0.181 0.106 0.158 0.092 0.176 0.113 0.142
51111 0.296 0.110 0.412 0.336 0.417 0.322 0.422 0.350 0.374
53111 0.184 0.062 0.410 0.289 0.399 0.263 0.412 0.316 0.346
g=0h=08 11111 0.003 0.001 0.062 0.009 0.022 0.005 0.013 0.028 0.034
31111 0.016 0.008 0.064 0.029 0.055 0.023 0.054 0.036 0.044
32111 0.011 0.007 0.074 0.021 0.050 0.019 0.046 0.040 0.049
51111 0.041 0.012 0.122 0.080 0.114 0.069 0.117 0.089 0.106
53111 0.026 0.008 0.122 0.063 0.100 0.060 0.104 0.086 0.096
g=08h=0 11111 0.030 0.009 0.035 0.030 0.039 0.031 0.041 0.025 0.030
31111 0.489 0.391 0.443 0.525 0.525 0.529 0.536 0.479 0.449
32111 0.378 0.258 0.389 0.445 0.451 0.446 0.472 0.371 0.366
51111 0.843 0.710 0.827 0.863 0.860 0.862 0.865 0.832 0.826
53111 0.680 0.477 0.803 0.795 0.833 0.786 0.840 0.726 0.758
§=04,h=0 11111 0.007 0.001 0.055 0.012 0.027 0.013 0.020 0.026 0.032
31111 0.732 0.687 0.682 0.763 0.742 0.769 0.753 0.714 0.686
32111 0.633 0.484 0.630 0.679 0.699 0.690 0.719 0.584 0.590
51111 0.948 0.887 0.955 0.961 0.959 0.963 0.965 0.942 0.946
53111 0.886 0.686 0.956 0.936 0.960 0.936 0.965 0.918 0.928
g=04,h=04 11111 0.019 0.007 0.045 0.021 0.035 0.020 0.038 0.023 0.026
31111 0.080 0.039 0.161 0.117 0.159 0.111 0.161 0.120 0.137
32111 0.056 0.023 0.166 0.099 0.146 0.089 0.155 0.101 0.130
51111 0.265 0.097 0.375 0.316 0.383 0.293 0.384 0.307 0.339
53111 0.169 0.059 0.382 0.277 0.371 0.259 0.375 0.285 0.315
g=08h=04 11111 0.006 0.001 0.064 0.011 0.027 0.010 0.024 0.029 0.031
31111 0.060 0.025 0.128 0.095 0.116 0.087 0.120 0.091 0.103
32111 0.043 0.022 0.140 0.075 0.118 0.075 0.122 0.084 0.097
51111 0.189 0.063 0.287 0.242 0.296 0.232 0.300 0.238 0.255
53111 0.113 0.045 0.299 0.213 0.274 0.195 0.280 0.221 0.248
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Table 5. Proportion of at least one rejection at « = 0.05, five treatments, unequal samples of size

n; =15, 15, 10, 5, 5, larger scale associated with larger sample size.

Distribution Scales Method
(0’10’20’30’40’5) W50 OB RMD F3 F2 L3 Lz T3 T2
g=0h=0 11111 0.046 0.006 0.022 0.025 0.038 0.027 0.038 0.017 0.024
31111 0.539 0.008 0.493 0.518 0.614 0.544 0.655 0.413 0.469
32111 0.511 0.003 0.461 0.468 0.589 0.504 0.614 0.383 0.445
51111 0.781 0.016 0.915 0.854 0.929 0.861 0.940 0.815 0.850
53111 0.764 0.011 0.888 0.818 0.901 0.822 0.916 0.780 0.819
g=0,h=04 11111 0.006 0.004 0.047 0.007 0.026 0.005 0.023 0.022 0.029
31111 0.014 0.000 0.215 0.049 0.131 0.029 0.116 0.130 0.147
32111 0.008 0.000 0.255 0.032 0.128 0.022 0.097 0.145 0.167
51111 0.038 0.000 0.455 0.153 0.333 0.091 0.284 0.327 0.357
53111 0.019 0.000 0.490 0.127 0.316 0.054 0.240 0.343 0.374
g=0,h=038 11111 0.003 0.003 0.068 0.006 0.023 0.006 0.017 0.026 0.037
31111 0.000 0.000 0.127 0.110 0.058 0.003 0.025 0.079 0.092
32111 0.000 0.002 0.172 0.012 0.012 0.070 0.002 0.027 0.105
51111 0.002 0.000 0.238 0.052 0.148 0.009 0.078 0.170 0.190
53111 0.000 0.001 0.314 0.045 0.163 0.004 0.058 0.212 0.241
g=08h=0 11111 0.027 0.005 0.032 0.019 0.039 0.018 0.042 0.020 0.032
31111 0.213 0.004 0.364 0.250 0.382 0.231 0.403 0.269 0.313
32111 0.161 0.000 0.375 0.217 0.361 0.188 0.366 0.269 0.306
51111 0.370 0.013 0.690 0.563 0.728 0.505 0.739 0.616 0.664
53111 0.281 0.004 0.691 0.486 0.682 0.392 0.684 0.582 0.627
g=04,h=0 11111 0.036 0.009 0.024 0.026 0.042 0.027 0.044 0.018 0.028
31111 0.442 0.006 0.450 0.440 0.566 0.442 0.595 0.395 0.449
32111 0.380 0.004 0.436 0.378 0.521 0.373 0.544 0.352 0.409
51111 0.652 0.015 0.853 0.774 0.899 0.757 0.909 0.755 0.796
53111 0.605 0.006 0.832 0.714 0.856 0.680 0.867 0.714 0.759
g=04,h=04 11111 0.007 0.001 0.056 0.005 0.023 0.007 0.023 0.027 0.032
31111 0.007 0.000 0.214 0.050 0.134 0.031 0.101 0.138 0.156
32111 0.007 0.001 0.249 0.035 0.136 0.019 0.098 0.148 0.180
51111 0.030 0.000 0.430 0.158 0.314 0.090 0.275 0.315 0.337
53111 0.014 0.000 0.479 0.133 0.303 0.056 0.231 0.331 0.366
g=08h=04 11111 0.006 0.003 0.064 0.004 0.027 0.004 0.020 0.033 0.035
31111 0.006 0.000 0.211 0.036 0.125 0.018 0.089 0.133 0.149
32111 0.003 0.001 0.246 0.031 0.131 0.016 0.074 0.156 0.179
51111 0.017 0.000 0.377 0.137 0.283 0.057 0.236 0.301 0.302
53111 0.010 0.001 0.437 0.119 0.288 0.035 0.197 0.330 0.362
Table 6. Proportion of at least one rejection at « = 0.05, five treatments, unequal samples of size
n; = 30, 30, 20, 10, 10, larger scale associated with larger sample size. Cases that were uninformative
for comparing methods were omitted.
Distributi Scales Method
istribution
(0’10’20’30’40’5) W50 OB RMD F3 Fz L3 Lz T3 Tz
g=0,h=0 11111 0.039 0.014 0.029 0.034 0.036 0.034 0.038 0.024 0.030
31111 0.959 0.361 0.977 0.968 0.983 0.971 0.983 0.946 0.961
32111 0.936 0.319 0.960 0.944 0.970 0.949 0.971 0.912 0.934
g=0,h=04 11111 0.005 0.002 0.049 0.010 0.019 0.008 0.017 0.022 0.030
31111 0.019 0.000 0.332 0.123 0.239 0.066 0.204 0.243 0.268
32111 0.011 0.000 0.355 0.107 0.231 0.048 0.175 0.256 0.285
51111 0.057 0.000 0.620 0.381 0.569 0.205 0.515 0.560 0.570
53111 0.023 0.000 0.65 0.305 0.539 0.122 0.424 0.577 0.602
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Table 6. Cont.

Distribution Scales Method
(0’10’20’30’40’5) W50 OB RMD F3 FZ L3 Lz T3 TZ
g=0,h=038 11111 0.003 0.001 0.062 0.009 0.022 0.005 0.013 0.028 0.034
31111 0.000 0.000 0.156 0.024 0.089 0.004 0.042 0.113 0.122
32111 0.000 0.000 0.210 0.029 0.104 0.006 0.038 0.143 0.163
51111 0.000 0.000 0.290 0.095 0.199 0.013 0.119 0.232 0.257
53111 0.000 0.000 0.369 0.092 0.230 0.009 0.116 0.287 0.314
g=08h=0 11111 0.030 0.009 0.035 0.030 0.039 0.031 0.041 0.025 0.030
31111 0.372 0.034 0.662 0.550 0.677 0.496 0.695 0.566 0.617
32111 0.271 0.007 0.651 0.458 0.610 0.382 0.622 0.512 0.558
51111 0.607 0.065 0.952 0.917 0.970 0.820 0.970 0.924 0.936
53111 0.484 0.020 0.944 0.857 0.941 0.716 0.946 0.905 0.921
g=04,h=0 11111 0.007 0.001 0.055 0.012 0.027 0.013 0.020 0.026 0.032
31111 0.807 0.170 0.921 0.889 0.942 0.876 0.951 0.864 0.889
32111 0.748 0.111 0.892 0.825 0.903 0.805 0.911 0.811 0.844
51111 0.947 0.242 0.999 0.997 0.999 0.989 0.999 0.996 0.998
53111 0.936 0.189 0.998 0.991 0.999 0.975 0.999 0.993 0.993
g=04,h=04 11111 0.019 0.007 0.045 0.021 0.035 0.020 0.038 0.023 0.026
31111 0.009 0.000 0.316 0.098 0.216 0.040 0.180 0.228 0.252
32111 0.005 0.000 0.349 0.086 0.217 0.030 0.171 0.240 0.266
51111 0.043 0.000 0.582 0.346 0.528 0.180 0.461 0.507 0.529
53111 0.015 0.000 0.627 0.299 0.511 0.106 0.396 0.550 0.575
g=08h=04 11111 0.006 0.001 0.064 0.011 0.027 0.010 0.024 0.029 0.031
31111 0.002 0.000 0.259 0.071 0.164 0.023 0.128 0.188 0.208
32111 0.001 0.000 0.301 0.067 0.167 0.016 0.112 0.208 0.235
51111 0.016 0.000 0.503 0.277 0.438 0.115 0.360 0.434 0.455
53111 0.005 0.000 0.569 0.235 0.432 0.064 0.310 0.488 0.518

7. Discussion

In this paper, we studied the performance of nonparametric combined tests for multi-
ple comparisons of scale parameters. The RMD test had been shown in previous studies
to be the preferred test to compare scale parameters, although it was not always the most
powerful test, as the W50 and OB tests were able to outperform RMD in some situations.
We found that combinations of two or more of these tests could be more powerful than
any individual test. Distribution and sample size configurations for which W50 and/or OB
were more powerful than RMD tended to be the cases where a combined test was found to
be most powerful. Combined tests tended to outperform RMD for skewed, lighter-tailed
distributions, while RMD tended to be more powerful when distributions were heavier-
tailed, since in these scenarios, RMD enjoyed large power advantages over W50 and OB.
Combined tests involving OB never showed an advantage over combinations of only RMD
and W50.

As with any simulation study, generalization of results requires caution. These results
may not extend to situations where the true scales are very different than those studied
here, and/or where the data do not come from the distributions studied here. In addition,
the conclusions rely on the assumption of a location-scale model, and thus may not be valid
if that assumption is not plausible.
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