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Abstract: Forest fire is an environmental disaster that poses immense threat to public safety,
infrastructure, and biodiversity. Therefore, it is essential to have a rapid and robust method to
produce reliable forest fire maps, especially in a data-poor country or region. In this study, the
knowledge-based qualitative Analytic Hierarchy Process (AHP) and the statistical-based quantitative
Frequency Ratio (FR) techniques were utilized to model forest fire-prone areas in the Himalayan
Kingdom of Bhutan. Seven forest fire conditioning factors were used: land-use land cover, distance
from human settlement, distance from road, distance from international border, aspect, elevation,
and slope. The fire-prone maps generated by both models were validated using the Area Under
Curve assessment method. The FR-based model yielded a fire-prone map with higher accuracy (87%
success rate; 82% prediction rate) than the AHP-based model (71% success rate; 63% prediction rate).
However, both the models showed almost similar extent of ‘very high’ prone areas in Bhutan, which
corresponded to coniferous-dominated areas, lower elevations, steeper slopes, and areas close to
human settlements, roads, and the southern international border. Moderate Resolution Imaging
Spectroradiometer (MODIS) fire points were overlaid on the model generated maps to assess their
reliability in predicting forest fires. They were found to be not reliable in Bhutan, as most of them
overlapped with fire-prone classes, such as ‘moderate’, ‘low’, and ‘very low’. The fire-prone map
derived from the FR model will assist Bhutan’s Department of Forests and Park Services to update its
current National Forest Fire Management Strategy.
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1. Introduction

Forest fire is an environmental catastrophe that threatens the safety of humans, infrastructure,
and biodiversity [1,2]. Global climate change has led to the considerable decrease in precipitation
and increase in the temperature, further influencing the occurrence of forest fires. There are other
factors influencing forest fire increase, such as a longer arid season and contributing anthropogenic
activities [3]. For example, the evidence for declining forest resilience to wildfires under climate change
has been documented by Stevens-Rumann, Kemp [4], Allen, Macalady [5], and Rother and Veblen [6]
(also see [7–13]). Abatzoglou and Williams [14] stated the increased fire activity in the western US and
in the US Northern Rockies has been driven by both rising temperatures and widespread drought,
particularly since 2000. These factors have altered the trend and frequency of forest fires at an alarming
rate in many regions of the world [15–17]. It is, therefore, vital to have a reliable and precise approach to
predict areas susceptible to forest fire. An accurate forest fire-prone map can assist forest management
and planning authorities in allocating relevant resources, emergency responses, and early warning
systems [18]. Several methods have been proposed and tested to map forest fire-prone regions. These
approaches can be categorized into three major groups of physics-based techniques [19], statistical
techniques [20], and machine learning techniques [21].

Many physics-based techniques existed, such as EMBYR [22], FARSITE—Fire Area Simulator [23],
FIRETEC [24], FDS [25], and LANDIS-II [26]. Combinations of equations on fluid mechanics, combustion
of canopy biomass, and heat transfer mechanisms are required for physics-based methods to recognize
fire-prone areas including predicted forest fire periods. The main weak point of these approaches is the
difficulty in measuring the amount of inherent errors [27]. Another disadvantage of the physics-based
method is the requirement of having detailed data. For instance, data on locations and sizes of trees,
fuel mass, soil moisture etc., have to be collected over large areas, making this a difficult task [28].
Therefore, these techniques may not be applicable in data-poor regions. Machine learning methods,
such as the Artificial Neural Network [29], Support Vector Machine [30], and Decision Tree [31], are
considerably time consuming and software dependent with a high computer capacity [31,32]. As
such, these techniques also may not be practicable for regions with limited resources but requiring
urgent actions.

However, statistical methods are more appropriate for forest fire susceptibility modeling in the
case of large study areas, particularly in combination with Geographic Information System (GIS)
technology [33]. GIS and Remote Sensing (RS) techniques make it considerably easy to collect and
assess spatial data on large regions with different scales and resolutions [34,35]. Statistical methods are
easily comprehensible and implementable, because they do not require specific tailor-made software.
Statistical methods, such as Frequency Ratio (FR), quantitatively evaluate the correlation between
conditioning factors and forest fire occurrence without involving any expert opinion in the analysis [36].
Conversely, qualitative methods like the Analytical Hierarchical Process (AHP) are based on knowledge
of fire experts [37], but are also easily implementable if there is adequate knowledge of previous forest
fire occurrences.

In this study, FR and AHP techniques were utilized for the spatial prediction of forest fire-prone
areas based on a case study in Bhutan, which represents a data-poor country. Bhutan has more than 72%
forest cover [38], which is the highest in the world in terms of proportion of land covered with forest.
Every year, several forest fires are reported in various parts of the country. For instance, between 1993
and 2005, a staggering 868 forest fires were reported with 128,368 hectares of forested area reported to
be burnt [39]. The country’s highly rugged terrain, which is compounded by a large accumulation of
fuel load, poses significant challenges and risks in preventing and containing wildfires. Almost 30% of
the country is covered with coniferous forest [40], which is considered as the most flammable forest
type because of an accumulation of resin and dried needles [41]. Usually, the dry undercover of pine
forests during sustained dry period that lasts for more than six months makes this forest type prone
to wildfires. Repeated forest fires can potentially jeopardize sustainable management of Bhutan’s
forests. Currently, there are no maps of forest fire-prone areas in Bhutan. This has greatly hindered
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the government, particularly the Department of Forests and Park Services, in developing an effective
forest fire management strategy.

The main objective of this study is to generate forest fire-prone area maps and compare the
efficiency of statistical-based and knowledge-based techniques to predict fire-prone areas, using
the case of forest fire incidences in Bhutan. In addition, we test if Moderate Resolution Imaging
Spectroradiometer (MODIS) fire points were reliable for predicting forest fires in the case of Bhutan.
Using the outcome of this study, we intend to assist the Bhutan Government in forest fire prevention
and management.

2. Methodology

2.1. Study Area Description

Situated between 27◦ 30′ N latitude and 90◦30′ E longitude and measuring approximately 38,394
km2 [NSB] [42], Bhutan is a Himalayan kingdom straddled between India and China, as shown in
Figure 1. This tiny nation has 5369 plant species, 129 mammal species, 736 bird species, 125 fishes, 158
amphibian and reptile species, and 3966 invertebrate species (including 3511 insect species) [NBC] [43],
all of which signify its importance in global and regional biodiversity conservation.

Geomorphologically, Bhutan is a highly mountainous country with approximately 95% of the
total land situated 600 m above sea level (a.s.l), with landforms gradually rising from 97 m a.s.l.
in the southern foothills to 7750 m a.s.l. in the northern snow-capped peaks [MoAF] [44]. The
vegetation cover changes with elevation, with sub-tropical broadleaved forest occupying elevations
below 1200 m a.s.l. and temperate cool broadleaved forests occupying elevations between 1200 and
2000 m a.s.l. Pine forests (with pure stands of blue pine Pinus wallichiana and sometimes mixed with
oaks and rhododendron) are found between 1500 and 3200 m a.s.l., while mixed coniferous forests with
stands of fir Abies densa, hemlock Tsuga dumosa, spruce Picea spinulosa, larch Larix griffithii, and juniper
Juniperus indica occur between 2500 and 3500 m a.s.l. Pure stands of chirpine Pinus roxburghii are
found in dry valleys between elevations of 1520 to 1860 m a.s.l. [45]. At higher elevations, sub-alpine
forests (3300 to 3800 m a.s.l.) and alpine meadows (3800 to 4800 m a.s.l.) predominate. Areas above
4800 m a.s.l. are featured by alpine rocky outcrops, and those beyond 6000 m a.s.l. are permanently
covered in snow [46]. The country has four seasons: spring (February to April), summer (May to July),
autumn (August to October), and winter (November to January). Precipitation is mainly attributed to
the summer monsoon which lasts from mid-April to mid-September. In terms of demography, Bhutan
has a population of 733,003 people [NSB] [42], which is probably the lowest in Asia.
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Figure 1. Study area (Bhutan) and forest fire inventories (record of forest fire incidences, shown in red
dots from 2013 to 2015).

2.2. Forest Fire Modeling Flow Chart

The FR and AHP-based modeling were performed separately using forest fire inventory points
recorded from 2013 to 2015 (as shown in Figure 1) maintained at the Forest Fire Management Section
of the Department of Forests and Park Services. Two forest fire-prone maps were produced, and each
map was assessed using the Area Under Curve (AUC) assessment technique. MODIS fire points were
overlaid on the fire-prone maps. The step-by-step modeling flowchart is shown in Figure 2.



Forecasting 2020, 2 40
Forecasting 2020, 2 FOR PEER REVIEW  5 

 

Figure 2. A flowchart of Analytic Hierarchy Process (AHP) and Frequency Ratio (FR)-based modeling 

of forest fire-prone areas in Bhutan using a Geographic Information System. 

2.3. Data Used  

2.3.1. Forest Fire Inventory  

Forest fire-prone areas were detected by performing a correlation analysis between previous 

forest fire events and forest fire conditioning factors [47]. The first mandatory stage performed was 

to prepare a forest fire inventory map for which 177 historical fire locations, as shown in Figure 2, 

from three years (2013, 2014, and 2015) were gathered. These points were used for the FR technique 

in performing a correlation between previous forest fire events and their conditioning factors [47]. 

They were also used for accuracy assessment of fire-prone maps produced by both the techniques for 

which they were divided into training (n = 124; 70%) and testing (n = 53; 30%) datasets [20, 48, 49].  

2.3.2. Forest Fire Conditioning Factors  

A critical influential factor in the quality and precision of the final probability map is the proper 

selection of forest fire conditioning factors [50]. In this study, seven conditioning factors comprising 

Land-Use Land Cover (LULC), distance from road, distance from human settlement, elevation, slope, 

aspect, and distance from the southern international border (with India) were utilized, as shown in 

Figure 3. The selection of these factors was based on forest fire studies in the region, local knowledge 

on forest fire, and the availability of spatial layers [9, 51-55].  

Some spatial layers of these conditioning factors were obtained from offices of the Royal 

Government of Bhutan: the LULC map of Bhutan 2010 (in vector format) was obtained from the 

Policy and Planning Division; the road network map of Bhutan 2014 (in vector format) from the 
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of forest fire-prone areas in Bhutan using a Geographic Information System.

2.3. Data Used

2.3.1. Forest Fire Inventory

Forest fire-prone areas were detected by performing a correlation analysis between previous forest
fire events and forest fire conditioning factors [47]. The first mandatory stage performed was to prepare
a forest fire inventory map for which 177 historical fire locations, as shown in Figure 2, from three
years (2013, 2014, and 2015) were gathered. These points were used for the FR technique in performing
a correlation between previous forest fire events and their conditioning factors [47]. They were also
used for accuracy assessment of fire-prone maps produced by both the techniques for which they were
divided into training (n = 124; 70%) and testing (n = 53; 30%) datasets [20,48,49].

2.3.2. Forest Fire Conditioning Factors

A critical influential factor in the quality and precision of the final probability map is the proper
selection of forest fire conditioning factors [50]. In this study, seven conditioning factors comprising
Land-Use Land Cover (LULC), distance from road, distance from human settlement, elevation, slope,
aspect, and distance from the southern international border (with India) were utilized, as shown in
Figure 3. The selection of these factors was based on forest fire studies in the region, local knowledge
on forest fire, and the availability of spatial layers [9,51–55].

Some spatial layers of these conditioning factors were obtained from offices of the Royal
Government of Bhutan: the LULC map of Bhutan 2010 (in vector format) was obtained from
the Policy and Planning Division; the road network map of Bhutan 2014 (in vector format) from the
Department of Roads; and the human settlement map of Bhutan 2005 (in vector format) from the



Forecasting 2020, 2 41

National Statistical Bureau. Three topographical factors of slope, aspect, and elevation were extracted
from a Digital Elevation Model (DEM) for Bhutan created by Jarvis, Reuter [56]. All spatial input
layers, including those in vector formats, were converted to a raster format with a standard cell size of
30 m × 30 m following the lowest resolution of the DEM. These input layers were classified prior to the
analysis using the popular quantile method [57,58]. This is because FR and AHP evaluate the impact
of each class on the forest fire occurrence separately.

Detailed steps in preparation of the input spatial layers for the AHP and their parameterization
are described below. Local expert knowledge from field forest fire managers together with published
literature were used to assign fire hazard values for the different classes of the spatial layers.

A LULC—The LULC map contained details of major forest types and other land use types found
in Bhutan. As reported by Dorji [39], people deliberately set fire in chirpine forests for harvesting
lemon grass Cymbopogon flexuosus. Since the frequency of forest fire is the highest in chirpine forests, it
was assigned the highest fire hazard value, which was then followed by hazard values of blue pine
forest and mixed broadleaved-conifer forest. Other land use types were rated as per their contribution
to forest fire incidences, based on expert experience and records from past events, as shown in Table 1.
Human land use activities could be ignition sources that induce forest fire susceptibility [59], and hence,
agricultural lands were assigned higher hazard values compared to other non-forest land-use types.

B Settlement—Based on historical records of forest fires in Bhutan, most fires originated from
agricultural lands and areas near human settlements. Thus far, more forest fires in the country have
resulted from accidental escape from burning agricultural fields [DoFPS] [60]. Since forested areas
located near settlements were highly vulnerable to fire [61], they were assigned high hazard values than
those farther away, similar to the method employed by Opie, March [62] and Sivrikaya, Sağlam [63], as
shown in Table 1.

C Roads—Most roads in Bhutan pass through highly forested areas. Roads influence forest
fires during black-topping or surfacing by tar, which is conducted for new road construction and
maintenance. Forest fires also occur when road travelers, either on foot or in vehicles, throw igniting
substances such as un-extinguished cigarette butts [64]. Therefore, the presence of roads was deemed
as increasing an area’s vulnerability to forest fire, and thus areas closer to roads were assigned higher
hazard values, as shown in Table 1, similar to the approach used by Sowmya and Somashekar [65].

D International border—Frequent forest fires have been observed in areas near the international
border with India, particularly in areas adjoining the Indian states of Assam, Arunachal Pradesh, and
West Bengal [DoFPS] [60]. Wildlife managers and poachers deliberately light fires in these states to
facilitate the growth of grasses for wild herbivores (Pers. Comm., Sonam Wangdi). Due to contiguous
forest cover along many sections of the international border, such fires spread into Bhutan’s forests.
Therefore, higher values were assigned to areas closer to the southern international border, as shown
in Table 1.

E Aspect—Aspect has been widely used for forest fire modeling, because slope direction influences
soil moisture and wind speeds that, in turn, affect fire behavior [66]. Moreover, in the northern
hemisphere where Bhutan is located, south facing areas receive more sunlight which renders an area
dry and prone to forest fire during dry seasons [67]. Hence, the highest hazard value was assigned to
areas with a southerly aspect and the lowest to areas with a northerly aspect, as shown in Table 2.

F Elevation—Elevation is also considered as a factor influencing forest fire, as it indirectly influences
evapotranspiration, temperature, humidity, and precipitation [50]. These conditions, in turn, determine
an area’s susceptibility to forest fire. In Bhutan, most forest fires are known to occur frequently at lower
elevations compared to higher elevations, and hence, higher hazard values were assigned to lower
elevated areas, as shown in Table 2.

H Slope—Slope is a well-known contributing factor in forest fire susceptibility mapping. According
to [61], fire travels faster up slope and slowly down slope, meaning the steeper the slopes, the faster
the fire travels [68]. Therefore, steeper slopes were accorded higher hazard values, as shown in Table 2,
similar to the methods applied by [67].
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Table 1. Land-use and anthropogenic factors that determine an area’s proneness to forest fire in Bhutan.
Higher values reflect higher proneness. The values are assigned based on empirical field observations
and expert judgments.

Spatial Layers Classes Hazard Value

LULC

Glaciers/Snow/Rock outcrops/ Water
spreads/landslips/Marshy areas 1

Meadows 2
Scrub forest/Settlements/Agriculture/Improved

pasture/horticulture 3

Plantations 4
Broadleaf 5

Fir 6
Broadleaf with conifer 7

Mixed Conifer 8
Blue pine 9
Chirpine 10

Settlement (Distance
from human

settlement in meters)

0–1927.6 10
1927.7–3426.9 9
3427–5140.4 8

5140.5–6853.9 7
6854–8781.5 6

8781.6–11,138 5
11,139–13,922 4
13,923–17,991 3
17,992–24,845 2
24,846–54,617 1

Road (Distance from
road in meters)

0–236.61 10
236.62–1183.1 9
1183.2–2602.8 8
2602.9–4259.1 7
4259.2–6152 6

6152.1–8518.1 5
8518.2–11,357 4
11,358–16,090 3
16,091–25,791 2
25,792–60,337 1

Border (Distance
from the southern

international border
with India in meters)

0–3742.6 10
3742.7–8349 9

8349.1–13,243 8
13,244–18,425 7
18,426–24,183 6
24,184–30,229 5
30,230–36,851 4
36,852–44,912 3
44,913–54,412 2
54,413–73,413 1



Forecasting 2020, 2 43

Table 2. Geophysical factors that determine an area’s proneness to forest fire in Bhutan. Higher values
reflect higher proneness.

Spatial Layers Classes Hazard Value

Aspect (directions)

Flat 6
North 1

Northeast 4
East 5

Southeast 7
South 9

Southwest 8
West 3

Northwest 2

Elevation (meters above sea level)

5–891 1
891.001–1406 2
1406.01–1856 3
1856.01–2295 4
2295.01–2714 5
2714.01–3111 6
3111.01–3556 7
3556.01–4090 8
4090.01–4654 9
4654.01–7519 9

Slope (Degree)

0–11.758 1
11.759–16.6 2

16.601–20.404 3
20.405–23.516 4
23.517–26.629 5
26.63–29.741 6
29.742–32.854 7
32.855–36.658 8
36.659–41.845 9
41.846–87.84 9

2.4. Modeling Forest Fire-Prone Areas

2.4.1. Analytic Hierarchy Process (AHP) Modeling

The AHP is a weight estimation technique that generates weights or ratio scales from paired
comparisons [69]. It is widely used in Multi-Criteria Decision Analysis (MCDA), resource planning,
and conflict resolution. AHP-based modeling has been used for forest fire hazard mapping in the south
Asian region [37,70–72]. The AHP method basically employs a square matrix with ones on the (main)
diagonal, weights on one side of the diagonal and reciprocal weights on the reverse side. In such a
pair-wise comparison matrix, weightage of one factor over the other is assigned using a fundamental
scale with numerical values ranging from 1/9 to 9 in the order of least comparative importance to
highest comparative importance. It is during this step that expert knowledge on the subject matter
becomes extremely useful. Expert knowledge was gathered from published literature, forest fire
managers, field personnel, and field reports of forest fire incidences. Several rounds of consultations
were held with forest fire managers to assign weights for an AHP matrix. Consistency of the weight
matrix was measured by a Consistency Ratio (CR), which measures divergence of the weights from
a principal eigenvalue. Recalibration of the weights was needed whenever the CR was greater than
0.10 (or 10%). Once a consistent matrix was obtained, a vector of relative weights for each factor was
produced. In this study, a 7 × 7 AHP matrix was used, as shown in Table 3. A highly consistent CR
value of 0.05 was obtained, and the relative weights were subsequently produced, as shown in Table 4.
The highest weightage (45%) was assigned to the LULC layer, followed by the settlement layer (19%)
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and road layer (12%). The lowest weightage (4%) was assigned to the slope layer. These weights
were used as the percentages of influence of each layer in the ‘weighted overlay’ process in ArcGIS to
produce a map of forest fire-prone areas.

Table 3. A 7 × 7 Analytic Hierarchy Process (AHP) matrix showing pairwise comparison of forest
fire conditioning factors with respect to perceived influence on forest fire susceptibility using expert
knowledge in Bhutan. Unity of diagonal represents equality of weights, which range from 1/9 (extremely
low importance) to 9 (extremely high importance).

Factors LULC Settlement Road Boundary Elevation Aspect Slope

LULC 1 3 4 5 6 7 8
Settlement 1/3 1 2 3 4 5 6

Road 1/4 1/2 1 2 3 4 5
Boundary 1/5 1/3 1/2 1 2 3 4
Elevation 1/6 1/4 1/3 1/2 1 2 3

Aspect 1/7 1/5 1/4 1/3 1/2 1 2
Slope 1/8 1/6 1/5 1/4 1/3 1/2 1

Table 4. The weights for the seven conditioning factors in Bhutan with respect to influence on forest
fire susceptibility derived from an Analytical Hierarchy Process with a consistency ratio of 0.05.

Factors Derived Ratio Scale Percentage of Influence

LULC 0.451 45
Settlement 0.188 19

Road 0.124 12
Boundary 0.086 9
Elevation 0.063 6

Aspect 0.049 5
Slope 0.04 4

2.4.2. Frequency Ratio (FR) Modeling

The FR can be defined as the probability of occurrence of a specific attribute [73]. Higher FR
weights illustrate a high relationship among that class and forest fire occurrence [74]. For modeling
of forest fire-prone areas, an FR was used to extract the quantitative relationship between forest fire
occurrence points and the seven forest fire conditioning factors. The FR-based modeling is a popular
approach for computing the probabilistic relationship between a specific phenomenon and a set of
contributing factors involved in the creation of a spatial layer of that phenomenon [75].

The following equation for the FR was used:

FRi = (Ai/Bi)/(Hi/L) = Pi/K (1)

where:

FRi = frequency ratio of a class for the ith conditioning factor;
Ai = area of a class for the ith conditioning factor;
Bi = total area of the ith conditioning factor;
Hi = number of pixels in each class of the ith factor;
L = number of total pixels in the study area;
Pi = the percentage for area with respect to a class for the ith factor; and
K = is the percentage for the entire domain.
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2.5. Accuracy Assessment of Model Outputs

The Area Under Curve (AUC) is an intuitive and comprehensive tool to evaluate the reliability and
precision of the model outcomes [76]. The AUC method has been broadly applied in several studies
to evaluate the efficiency of susceptibility mapping. It starts with dividing the forest fire probability
map into equal area categories and then ranking them from a minimum to a maximum value. Curve
creation is implemented by plotting the cumulative percentage of forest fire susceptible areas on the ‘x’
axis and the cumulative percentage of forest fire events on the ‘y’ axis. Prediction and success rate are
two outputs of the AUC method [77]. The success and prediction curves determine the percentage
of fire occurrence points in each probability category. The validation process was undertaken by
comparing the existing forest fire inventory data with the model derived forest fire-prone areas maps.
The AUC values range from 0.5 to 1.0 such that values closer to or equal to 0.5 indicate very poor
fit or classification by chance, whereas those closer to or equal to 1 indicate perfect fit or perfect
classification [78]. The success rate outcome was attained using the forest fire training dataset (70%
of the inventory forest fire points). The real proficiency of the model output can be tested using the
prediction rate, which was implemented using the test dataset (30% of the inventory forest fire points).
This is because the prediction capability of the model cannot be achieved using the training data. The
prediction rate shows how well the model can predict the forest fire proneness or susceptibility of
an area.

2.6. Validation of MODIS Fire Points with Model Outputs

MODIS is a remote sensing sensor with fire detection capability mounted on two satellites that
were launched in December 1999 and May 2002 by the National Aeronautics and Space Administration
(NASA), USA. Each of these satellites records two fire observations daily, resulting in four daily
observations [79]. The MODIS system carries out automated data acquisition, processing, reporting,
and feedback on fire locations. It provides location information at 1 km × 1 km resolution on active
fires present during the satellite’s hover across an area, twice in a day. The International Center for
Mountain Development (ICIMOD), based in Nepal, has the ground receiving station, launched in
January 2011, which is convenient for the south Asian countries to acquire data when required. The
MODIS fire points from 2000 to 2013 for Bhutan were obtained from the ICIMOD. The detection
algorithm identifies pixels with one or more actively burning fires that are commonly referred to as
“fire pixels”. Each detected fire represents the center of a 1 km pixel that contains one or more fire
hotspots. The actual pixel size varies depending on the location of an observation in the swath [80]. In
this study, the MODIS points were overlaid on each of the forest fire-prone maps produced by the
FR and AHP-based models. The number of points overlapped with each of the fire-prone categories
were measured to determine the reliability of MODIS satellites and fire points in predicting forest
fire-prone areas.

3. Results

3.1. Model Outputs: Forest Fire-Prone Area Maps

Both AHP and FR models were performed, and two forest fire probability maps were initially
produced. For a proper one-to-one comparison, both probability maps were normalized with probability
values ranging from 0 to 1, as shown in Figure 4a,c. These probability maps were then classified into
five different forest fire-prone classes: ‘very low’, ‘low’, ‘moderate’, ‘high’, and ‘very high’, using
the quantile method of classification to produce the final forest fire-prone areas maps, as shown in
Figure 4b,d.

The percentage of total land area encompassed by each fire-prone category generated by AHP
and FR-based models can be seen in Figure 5. The AHP model depicted large areas for ‘moderate’ and
‘high’ prone classes, and together they covered 16,893 km2 (44%) of Bhutan’s total land area. The FR
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model showed the areas of each fire-prone class in a decreasing trend from ‘very low’ (22,268 km2;
58%) to ‘very high’ (1535 km2; 4%).

Most of the very high fire-prone areas detected by both the models were situated along the middle
belt of the country, corresponding to areas dominated by pure stands of chirpine and blue pine forests,
ranging between the 100 to 4962 m a.s.l. and between 0◦ to 75◦ slope, and areas close to the southern
international border with India.
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Figure 5. Graphical comparison of relative difference in percentage of total land area in Bhutan
encompassed by each fire-prone category yielded by AHP and FR-based models.

3.2. Accuracies of Model Outputs

While assessing the efficiency of each method using AUC, the AHP model produced a 70.61%
success rate and a 62.46% prediction rate, whereas the FR model produced 87% success rate and 82%
prediction rateas shown in Figure 6.
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Figure 6. Comparison of the Area Under Curve (AUC) curves for assessing the predictive accuracies of
(a) AHP and (b) FR modeling of forest fire-prone areas in Bhutan.

3.3. Validation of MODIS Fire Points

Upon overlay of 2769 MODIS fire points on the forest fire-prone maps, only 353 points (13%)
overlapped with ‘very high’ and 340 points (12%) with ‘high’ classes on the fire-prone map yielded by
the AHP model, as shown in Figures 7 and 8. Similarly, only 260 points (9%) occurred on ‘very high’
and 346 points (13%) on ‘high’ classes of the FR-based fire-prone map. On the contrary, the highest
number of MODIS points overlapped with ‘moderate’ class (n = 981; 35%) on the AHP-based map and
‘low’ class (n = 861; 31%) on the FR-based map.
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4. Discussion

Due to the non-linear and complex nature of a forest fire, rapidly modeling this catastrophe at
the regional scale is a challenge. In this study, two simple yet robust models for predicting forest
fire-prone areas in Bhutan were presented and compared. The FR model was shown to produce a
more accurate fire-prone map than the AHP model, based on the higher AUC values. Therefore, the
use of the FR model is recommended. The weakness of the AHP model is due to potential errors
in pair-wise comparisons of the conditioning factors. The AHP model is highly reliant on expert
judgment that is prone to error in the sense that its accuracy can be greatly altered by divergent views
from the fire experts. Such a possibility was also acknowledged by Rathore, Dubey [81] while creating
an expert-based least-cost corridor for tigers Panthera tigris in Madhya Pradesh, India. Therefore,
considerable attention is required in assigning values in an AHP matrix with repeated iterations,
until a desired CR is attained. The FR modeling, on the other hand, produces outcomes based on
mathematical analysis; hence, it does not require any expert judgments and is, therefore, less prone
to errors emanating from expert opinion. In recent times in Bhutan, forest fires have been caused by
electrical short circuits along the power transmission lines traversing coniferous forests. Due to the
non-availability of a spatial layer on distance from power lines, it was not used as a conditioning factor
in the modeling. However, it should be used in future studies if the spatial layer becomes available.
One of the advantages of GIS-based modeling is that new spatial layers can be added, and the model
repeatedly generated.

We have found that the MODIS fire points are not reliable in predicting forest fires, as most of
the points overlapped with ‘moderate’ and ‘low’ prone classes on the AHP and FR model outputs,
respectively. The low predictability of MODIS fire points in predicting forest fire-prone areas in Bhutan
could be due to cloudy weather conditions in the Himalayan ranges that could shield forest fires from
the satellites. It could also be possible that the timing of forest fires may not have coincided with
the timing of satellite passes. Similar explanations are reported by Müller, Suess [82] in Lao People’s
Democratic Republic. Additionally, in Thailand, there were false alarms observed during ground
validation of fires in the hilly areas, although MODIS detection accuracy was 97% [83]. In the case
of Bhutan, Pemagatshel Dzongkhag (‘district’ in Bhutanese national language) in the southeast was
classified as a ‘moderate’ or ‘low’ fire-prone area by our models despite the large concentration of
MODIS fire points (n = 327). In fact, most of these fire points represented fires from the burning of
agricultural debris and from shifting cultivation, which is still being practiced at a small scale despite
officially being banned. One should, therefore, exercise caution while developing any forest fire-prone
maps using MODIS fire points.

This study has created the first ever forest fire-prone map for Bhutan (based on the FR model),
which will be forwarded to the Department of Forests and Park Services for adoption. Such forest
fire-prone area maps will be highly valuable to Bhutanese area managers and also to policy makers at
regional and national levels for effective planning of resources to prevent and manage forest fires. This
map is highly relevant and timely for the current situation in Bhutan, which still does not have an
officially recognized forest fire-prone area map. Fire-prone classes, such as ‘very high’ and ‘high’, are
predicted in the central districts of Bhutan. Mongar Dzongkhag has the highest percentage of fire-prone
areas (combination of ‘very high’ and ‘high’ classes), followed by Wangduephodrang, Trashigang,
Bumthang, Thimpu, and Paro Dzongkhags. These are areas with a corresponding high percentage of
blue pine and chirpine forests along with high human populations and a comprehensive road network.
Therefore, these areas need to be prioritized for any future fire prevention and management programs
in Bhutan.

5. Conclusions

In this study, quantitative FR and qualitative AHP techniques were applied to map forest fire-prone
areas in Bhutan and were compared in terms of accuracy of mapping. Seven forest fire conditioning
factors, comprising LULC, distance from human settlement, distance from road, distance from the
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southern international border, aspect, elevation, and slope, were utilized for predicting fire-prone
areas in Bhutan. The map produced by the FR model was found to be more accurate (with an 82%
prediction rate). Therefore, we suggest using this to reliably predict forest fires and allocate resources
to fire-prone areas for any prevention and suppression activities. MODIS forest fire points were found
to be not reliable in predicting forest fires in Bhutan due to a high percentage of overlap with ‘low’
fire-prone areas. Hence, we caution their use for predicting forest fires. The forest fire-prone area maps
generated in this research will be useful for the Bhutan Government to improve its current National
Forest Fire Management Strategy.
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