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Abstract: Currently, it is possible to access a large amount of satellite weather information
from monitoring and forecasting severe storms. However, there are no methods of employing
satellite images that can improve real-time early warning systems in different regions of Mexico.
The auto-estimator is the most commonly used technique that was developed for specific locations
in the United States of America (32–49◦ latitude) for the type of convective storms. However,
the estimation of precipitation intensities for meteorological conditions in tropic latitudes, using the
auto-estimator technique, needs to be re-adjusted and calibrated. It is necessary to improve this type
of technique that allows decision-makers to have hydro-informatic tools capable of improving early
warning systems in tropical regions (15–25◦ Mexican tropic latitude). The main objective of the work
is to estimate rainfall from satellite imagery in the infrared (IR) spectrum from the Geostationary
Operational Environmental Satellite (GOES), validating these estimates with a network of surface rain
gauges. Using the GOES-13 IR images every 15 min and using the auto-estimator, a downscaling of
six hurricanes was performed from which surface precipitation events were measured. The two main
difficulties were to match the satellite images taken every 15 min with the surface data measured
every 10 min and to develop a program in C+ that would allow the systematic analysis of the images.
The results of this work allow us to get a new adjustment of coefficients in a new equation of the
auto-estimator, valid for rain produced by hurricanes, something that has not been done until now.
Although no universal relationship has been found for hurricane rainfall, it is evident that the original
formula of the auto-estimator technique needs to be modified according to geographical latitude.
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1. Introduction

The measurement of the space–time variability of rainfall is essential for the progress of hydrologic
studies, such as the water balance in a watershed, or the execution of projects and actions related to
urban development in the field of hydraulic networks [1,2]. There is an increasing demand to improve
rainfall estimates from satellite systems on a different range of scales in time and space. Remote sensing
of the earth and its atmosphere in the infrared spectrum has become a mainstay of environmental
monitoring for weather and climate [3]. The trend towards increasingly new applications in the field
of hydrometeorology requires precise estimates of rainfall for global or local coverage [4–6]. Also,
the new meteorological radar systems with improved beam resolution have increased signal-noise
sensitivity. In fact, one of the most important limits of hydrological prediction is due to the low
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resolution of the input of hydrological models. This input is given by the measurements of the
rain-gauge, so a dense network rain-gauge would allow the progress in radar rainfall estimates [7].
In any case, it is of great importance to have the appropriate characteristics of the passive microwave
radiometers and the computational capacity to analyze the information retrieved from precipitation
events [8,9]. In the case of radars, the algorithms to know the rain-rate or the intensity of the
rainfall (RR) must be calibrated for a specific geographical location. It is also very important to
know the frequencies in which the algorithms derive RR. Usually, the advanced microwave sounding
radiometers (AMSR) measure at 6.9, 7.3, and 10.65 GHz [10]. For tropical regions, it could be from 10
to 150 GHz [11]. Radar measurements are an excellent way to develop warning systems; however,
not all the countries of Latin-American and the Caribbean (LAC) have access to radar data or automatic
telemetric rain-gauges. In this region, hurricanes are undoubtedly the most extreme events to be
studied. Significant progress has already been made in implementing the monitoring of monsoon and
tropical cyclone rainfall. For example, in India, a new technique has been developed to estimate rainfall
on a very fine scale (hourly rain rate), using the infrared (IR) and water vapor (WV 6.7 µm) channel
from satellite images. However, eventually, these values need to be compared with values measured
on a radar [12]. The useful images to report cloud coverage during the day are of 0.6–1.6 µm (visible),
3.9–7.3 µm (infra-red/water vapor), and 8.7–13.4 µm (thermal images). However, the access and use
of satellite images are promising in America for the LAC region with the Geostationary Operational
Environmental Satellite (GOES) and the Meteosat for Africa. Meteosat is a geostationary weather
satellite launched by the European Space Agency (ESA). In Florida, USA, the stream-flow simulated
by satellite rainfall data was slightly better than when driven by rain-gauge data and was similar
to the case of using radar data, reflecting the potential applications of satellite rainfall in basin-scale
hydrologic modeling [13]. These methodologies use the brightness temperature of satellite images
and then transform that brightness temperature into cold cloud temperature. Finally, the brightness
temperature is transformed into precipitation intensity [14,15]. Geostationary satellites are especially
important for their unique ability to simultaneously observe the atmosphere and its cloud cover
from the global scale down to the storm scale at high resolution in both time (every 15 min) and
space (1–4 km) [16]. A feature of the geo-stationary satellite is that it measures the amount of energy
emitted by the atmosphere. The infrared sensors recorded the thermal properties of the Earth’s soil
and ocean surface [17]. The top of the cold clouds is the main focus of the IR sensors in order to
get rainfall quantification. There are a lot of satellite images available for tracking and forecasting
extreme storms. However, in Mexico, since there is no extensive radar coverage, it is necessary to
use satellite images to forecast rainfall intensities during the trajectory of hurricanes. The GOES-13
orbits the Earth at an altitude of approximately of 35 thousand kilometers above the equator; at this
altitude, the satellite speed is equal to the angular speed of the Earth. The satellite rotates 360◦ in 24 h,
this characteristic allows us to have constant monitoring of the same area, and in this case, the whole
Mexican territory is monitored all day long at a 15-min frequency. The temperature of the cloud top
can be estimated by the brightness temperature value of the image from the satellite in the infrared (IR)
channel. This is the satellite is used in Mexico to visualize convective storms and hurricanes. A total of
five geostationary satellites provide operational imagery: these currently include the Meteosat Second
Generation satellites (MSG) from the European Organization for the Exploitation of Meteorological
Satellites (EUMETSAT), two Geostationary Operational Environmental Satellites (GOESs) and the
Japanese Multifunctional Transport Satellite (MTSAT) series [18]. However, the National Weather
Service (Servicio Meteorologico Nacional Mexico, SMN) and the Mexican Space Agency (AEM), through an
agreement signed in 2016 with the National Weather Service, USA (NWS), have access to GOES images.
This allows the use of images with all their characteristics and all their attributes.

The most recognized methodology to estimate rainfall intensity from IR images was developed by
Vicente et al. [19]. This methodology was applied for deep convection storms in the plains of the United
States of America (32–49◦ latitude). Those locations are significantly different in latitude, longitude,
and topographic conditions from those located in the tropical areas (15–25◦ Mexican tropic latitude).
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In order to apply this method in the Mexican territory, an adjustment to the formula proposed by
Vicente et al. [19] is required. It is also relevant to develop this type of regionalization especially for deep
convection storms, “convective systems which produce the greatest rainfall intensity”; these storms
occur when the environment, specifically a parcel of air mass above the ground and under the cloud
top, begins to get colder and starts to expand [20]. Kalinga and Gan [13] introduced rain and no-rain
discrimination in their study, improving the estimates from IR imagery; in this case, the value of the
discrimination brightness temperature was 109. At this brightness temperature value, we can observe
rainfall intensity measured by rain gauges. It is important to mention that, to date, the algorithm
proposed by Vicente et al. [19] only applies to convective storms. The use of this equation should be
reviewed if it is to be applied to hurricane storms. The aim of this work is based on the development of
a new equation for each case study from IR satellite images. Using GOES 13 images and information
from automatic rain-gauge stations (MGS). As already mentioned, the brightness temperature value of
the image is converted to temperature and then to precipitation intensity.

This paper is organized according to the following lineaments. Section 2 presents the imagery
processing based on the brightness temperature value from the geo-localization of the zone of study
(in the IR channel) and to get the brightness temperature values from a convective storm, also to
recollect rain gauge data (rainfall inferred from IR satellite data) and validate the estimations with
gauges measurements (time-lapse desegregation of satellite series). Then, six case examples are
briefly described in Section 3. The first one, Hurricane Dean, on 21 August 2007, and the second,
Hurricane Ernesto, with satellite images from 9 August 2012. These hurricanes were selected because
they were the most intense in recent years. These case studies allow us to prove the limitations of the
auto-estimator technique, with respect to the limit of rainfall rate (RR) to be considered. Section 4
presents a spatial-temporal description of the hurricanes analyzed. Based on the results of estimating
precipitation intensity during a hurricane, the validity of the formula proposed by Vicente et al. [19] is
discussed. The last section summarizes the main results of the research.

2. Materials and Methods

2.1. The Auto-Estimator in Tropical Regions

The auto-estimator is the most commonly used technique in the forecasting of rainfall intensity
estimation from satellite images. However, it was developed for specific locations at 32–49◦ latitude,
and only for convective storms. Nevertheless, the estimation of rainfall intensities for meteorological
conditions in tropic latitudes, using the auto-estimator technique, needs to be re-adjusted and calibrated.
First, hurricane events are selected with information available from GOES images and MGS surface data.
Then, the satellite images are processed to get the brightness temperature values of each pixel. Then,
using the original auto-estimator equation and coefficients, the brightness temperature is transformed
into cloud top temperature, and the RR–satellite image is calculated. The next step is to match these
obtained values with the surface data from RR–MGS. To carry out this comparison, it is necessary to
disaggregate the rainfall data at the same time intervals. The comparative of the RR values allows us
to know if the original formulation of the auto-estimator can properly forecast the RR. By applying the
logarithmic conversion, it is possible to convert the auto-estimator equation into a linear expression,
and thus to calculate the two coefficient (parameters) by multiple regression. In this way, two new
parameters of the auto-estimator equation are calculated from the hurricanes analyzed. It can also
be solved through B-spline estimation or least squares [21] getting the same set of results. Next,
a regionalization of all the parameters that are obtained in this way is carried out and these are plotted
in a Mexico map. Finally, a validation of the new auto-estimator coefficients is carried out with data
from other hurricanes.
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2.2. Imagery Treatment Processing

In Mexico, the SMN has records of MGS rain-gauges and has a receiving station of the IR images
from GOES-13 with a frequency of approximately 15 min. All this data, MGS and image records
include a period of 13 years. In order to assign each pixel, its digital level value between 0 and
255, according to its resolution of 8 bits. The first step is to obtain the brightness temperature value
from a convective storm (in the IR channel), geo-localize the zone of study, as well as to recollect
rain-gauge data and, with the help of the auto-estimator technique, validate the RR with surface
gauge measurements. The first step involves reading the brightness temperature values from cloud
tops for each pixel, and then convert them into temperature and subsequently into RR. To carry out
this, a hydro-informatics tool was developed (Sat-Viewer®). Other software is available to do this
analysis. However, the development of our own software allows us to get basic information since
it is required to systematize the analysis and verify the results obtained step by step. Commercial
software would work as a “black-box”, where the possibility of following the processes is limited [22].
This hydro-informatic tool obtains the value of the brightness temperature in the pixels from de satellite
images. This hydro-informatics tool consists of a screen of conformed visualization of two-parts, on the
left is placed the satellite image previously converted from pcx to bmp format, later with the aid of the
hydro-informatic tool of selection, on the right part the values of the digital level of the brightness
temperature are extracted in tabular format for all the pixels of the selection and are placed with a
nominative Bi,j for their identification, the sub-index i corresponds to the column, and j corresponds to
the row of the location of the pixel (Figure 1).
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Figure 1. Extraction of the brightness temperature value of the pixels, using the Sat-Viewer®.

The data extracted in the table are exported in txt format facilitating the estimation of the
precipitation by means of the auto-estimator technique of the area of study through worksheets to
develop the pertinent statistical and multivariate analysis.

2.3. Rainfall Inferred from IR Satellite Data

There are several methods to estimate rainfall from satellite images, i.e., convective stratiform
technique (CST), modified convective stratiform technique (mCST), auto-estimator (AE), and quantile
analysis formed by regression function of sorted rainfall intensity [23]. The formulas that relate the
brightness temperature of the cloud-top with the associate temperature are provided by the National
Oceanic and Atmospheric Administration (NOAA). The value of rainfall intensity can be determined
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by each pixel from the IR images. If B represents the brightness temperature value in the IR image,
then the temperature in Kelvin degrees (K) is given by

T = 418− B for B > 176 (1)

T = 330− (B/2) for B ≤ 176 (2)

There are some formulas that can find rain rate or rainfall intensity RR (mm/h) depending on the
temperature (K). One of the well-known techniques was developed to estimate it with images in the
band 10.7 µm (channel 4), coming from the GOES-8 and GOES-9 satellites, but they are also valid and
can be used with GOES-13 data. Particularly, events related to summertime and deep convection [19]
found the curve fitting between these two variables with α = 11.183 × 1010 and β = −0.036382;
the equation that describes the curve fitting with a power-law relationship is

RR = α· exp
(
β·T1.2

)
when 195 < T < 260 K (3)

2.4. Time Lapse Desegregation of Satellite Series

It is important to take into account that the time lapses between the automatic rain gauge station
(MGS) and the satellite data differ a few minutes. In this case, the MGS has data every 10 min,
while satellite images are received every 15 min. For this reason, a previous adjustment of the data is
required to be able to compare the values in real-time. An alternative is to use only the data obtained at
30 and 60 min, which are the only values that can be compared by satellite images and MGS. However,
in this study, all the data measured on the surface are to be used; a temporal disaggregation of the
precipitation is made. An alternative is to use Huff curves; unfortunately, these are not available
for Mexico. We propose using a wavelet transform-based method to fit the daily rainfall data [24];
see Appendix A for details. This allows us to estimate rainfall intensities from satellite images
(brightness temperature values) at each delay and to compare the hyetograph measure in the ground by
the MGS. Disaggregation over time is of great importance since the auto-estimator is used in real-time
(every 15 min), unlike other studies where downscaling is done daily or monthly [25,26].

2.5. Targeted Hurricanes

Mexico is a country with a great diversity of natural protected areas; however, this biodiversity is
exposed to a large number of meteorological phenomena such as hurricanes that every year disturbs
the balance of environmental processes. Hurricanes such as Emily 2005, Wilma 2005, Dean 2007,
Rick 2009, and Patricia 2015 have caused serious damage to ecosystems and forests. The criteria for the
identification of an erosive event are: (i) the cumulative rainfall of an event should be greater than
12.7 mm, or (ii) the event has at least one peak that is greater than 6.35 mm in 15 min (25.4 mm/h) [27].

Just to mention a few examples. Emily 2005; Campeche-MGS: 17 July from 23:20 to 23:20 recorded
8.38 mm (50.3 mm/h). Cancun-MGS: 18 July from 03:40 to 03:50 recorded 32.77 mm (196.6 mm/h).
Wilma 2005; Campeche-MGS: 20 October from 23:40 to 23:50 recorded 8.89 mm (53.3 mm/h). Dean 2007;
Cancun-MGS: 21 August from 10:00 to 10:10 recoded 15.49 mm (92.9 mm/h). Rick 2009; El Fuerte-MGS:
12 October from 17:00 to 17:10 recorded 7.4 mm (44.4 mm/h). Tomatlan-MGS: 21 October from 10:00 to
10:10 recorded 10.41 mm (62.46 mm/h). Odile 2014; Cabo San Lucas-MGS: 15 September from 02:10 to
02:20 recorded 18.54 mm (111.2 mm/h). Patricia 2015; Atoyac-MGS: 23 October from 23:30 to 23:40
recorded 7.4 mm (44.4 mm/h). This is why it is essential to know the intensity of the precipitation from
hurricanes (RR > 25 mm/h).

In Mexico, there are also meteorological radars; however, their coverage is limited and, for this
reason, satellite images are used [28]. In Mexico, there are 175 MGS; however, with two million square
kilometers of territory, coverage is still limited. Even so, some MGS can monitor the hurricanes that
affect both Mexican coasts. Many of these MGS are even destroyed during the passage of these extreme
events. Therefore, the few data obtained from hurricane storms are very valuable. Table 1 shows the
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hurricanes analyzed in this study. Some of the MGS that record the precipitation height generated by
the hurricanes in the studies are listed. In fact, it would be better if there were more automatic stations.
However, in Mexico and the main Latin American and Caribbean countries, the network of stations is
not the same as in the developed countries. However, this does not prevent an analysis of proposed
formulas in non-hurricane countries with the available data.

Table 1. Relation of automatic rain-gauge stations (MGS) and the hurricanes studied.

MGS
Name

H. Patricia
20–24 Oct

2015

H. Dean
13–27 Aug

2007

H. Odile
9–18 Sep

2014

H. Manuel
12–20 Sep

2013

H. Paul
12–18 Sep

2012

H. Ernesto
1–10 Aug

2012

Chinipas D15 1 - D15 D15 D15 -
Guachochi D15 - - - D15 -

Urique D15 - D15 D15 D15 -
Maguarichi D15 - - D15 D15 -
Cabo San L - - D15 D15 D15 -

Cancun - D15 - - - D15
Alvarado - D15 - - - D15

Atoyac D15 D15 - D15 D15 D15
Huichapan D15 - D15 D15 D15 -

Chinatu D15 - D15 D15 D15 -
Las Vegas D15 - D15 D15 D15 -

Obispo D15 - D15 D15 D15 -
San Juan D15 - D15 - - -
El Fuerte - - - D15 D15 -
Alamos D15 - D15 D15 D15 -

1 D15, data available every 15 min. - MGS did not record any rain at that site.

3. Results

As stated above, there are several methods to estimate rainfall from satellite images [23]. Once the
method proposed here is implemented, it is possible to carry out a comparison of the estimated RR
values with satellite images and those measured in MGS. It is possible to desegregate the time series in
two examples cases. The first one, Hurricane Dean, 21 August 2007, and data of the MGS Cancun in
Yucatán. The second case, Hurricane Ernesto, with satellite images from 9 August 2012, and data of
the MGS Alvarado in Veracruz. For Hurricane Ernesto, disaggregated time series was for 10 min as
in MGS, while for Hurricane Dean, the desegregation time was for 5 min because the images used a
breakdown of 5 min less. All times are referred to as GMT-6.

3.1. Hurricane Dean MGS Cancun, Yucatán (21 August 2007)

Dean was named as the second major hurricane, cataloged category V in the Saffir–Simpson
scale, of the top 20 major hurricanes in Mexico, according to records in the years from 1970 to 2007.
Dean caused damage of more than 450 million dollars. The strong winds of up to 230 km/h and the
rain caused by Hurricane Dean caused 32 deaths. This hurricane hit the Mexican coast twice. The first
impact inland was as a hurricane category V on 21 August at 3:00. The eye of the hurricane Dean
impacted land with maximum sustained winds of 260 km/h and gusts of 315 km/h. The Hurricane
Center was located at 65 km east of Chetumal, Quintana Roo. After causing devastation in Jamaica
and other Caribbean islands, Dean reached the Mexican coast near the Caribbean Coast, not far from
the Belize border; the hurricane was moving westward at a speed of 32 km/h. Figure 2 compares the
values between the rain intensity recorded by MGS Cancun on 21 August 2007, (from 9:40 to 11:10)
with the RR value of the satellite image, and with the new auto-estimator setting proposed by Equation
(4). It is important to highlight that the original formula proposed by Vicente et al. [19] that limits
the rainfall intensity (RR) to 72 mm/h; however, for this case, the maximum intensity recorded was
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92.94 mm/h recorded at 10:00 (192 K temperature value). In all cases, the original form of the equation
proposed by Vicente et al. [19] is preserved.

RR = 0.00737358743 × 1010
· exp

(
−0.025·T1.2

)
(4)
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3.2. Hurricane Ernesto MGS Alvarado, Veracruz (9 August 2012)

Hurricane Ernesto was formed from a tropical wave developed on 27 July on the African coast;
the tropical wave was intensified to a depression storm on 1 August, next to the evolution of this
system in Tropical Storm on 2 August, and by 7 August, Ernesto was cataloged as a hurricane category
II on the Saffir–Simpson scale. The principal affectation was the heavy rainfall in the states of Yucatán,
Quintana Roo, Campeche, Tabasco, and Veracruz. Ernesto made landfall in the south of Quintana Roo,
moving west and impacting the Campeche coast. Afterwards, it made a second landfall in Veracruz;
this region received more than 300 mm of rain, mainly on the central coast of Veracruz. The state
of Veracruz has seven MGS, but just three of them registered the event, and just one registered the
maximum rainfall intensity. Alvarado Station received 80.76 mm/h on 9 August 2012 at 14:00 (175 K).
The beginning of the measurements was taken from 12:32 an hour before the maximum was registered.
For the Hurricane Ernesto, the series of time was greater because rainfall records had a duration of
3 h 10 min. Figure 3 compares the values between the rain intensity recorded by MGS Alvarado
on 9 August 2012 (from 06:30 to 16:40) with the RR value of the satellite image, and with the new
auto-estimator setting proposed by Equation (5).

RR = 0.0010929761 × 1010
· exp

(
−0.0246·T1.2

)
(5)

Figure 4 compares the values between the rain intensity recorded by MGS Cabo San Lucas on
15 September 2014 with the RR value of the satellite image of hurricane Odile, and with the new
auto-estimator setting proposed by Equation (6).
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Figure 3. The relationship (R2 = 0.67) between rainfall intensity from MGS Alvarado on 9 August 2012
and the temperature of cloud tops from the satellite image on the same date of Hurricane Ernesto.
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Figure 4. The relationship (R2 = 0.57) between rainfall intensity from MGS Cabo San Lucas on
15 September 2014 and the temperature of cloud tops from the satellite image at the same date of
Hurricane Odile.

3.3. Validation

The validation process consists of accepting the estimated RR values from the satellite images
(RR–satellite) and comparing them with the RR values obtained from the surface MGS stations
(RR–MGS). The validation is made every 10 min when the two RR time series are already matched.
A difference is calculated between the measured value in MGS and the RR value of the satellite image.
Using an optimization process with the generalized reduced gradient (GRG) nonlinear algorithm of
the Excel Solver tool, the difference between the two RR values is minimized.

Other procedures can be used, for example, a procedure based on the maximum likelihood
method [29]. Optimization algorithms can be effective for optimizing the training of artificial
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intelligence models [30,31], multi-layer perceptron neural networks [32], and machine learning
models [33]. The use of a meta-heuristic technique as a harmonic search was proposed [34]. In this way,
new coefficients of Formula (3) are obtained for each hurricane analyzed. It is important to mention
that only the alpha and beta coefficients are changed. The exponent (−1.2) of the original formula is
preserved so that the new coefficients have a similarity with the original formula and can be compared.

To confirm the new proposed equations, satellite images of the analyzed hurricanes were used
at 15-min intervals. With the support of the Sat-Viewer® tool, the intensity of precipitation for each
hurricane was calculated. On the other hand, the precipitation intensities were obtained from the MGS
stations that recorded the precipitation sheets during the tracks of the hurricanes. Figures 5 and 6 show
the results of this procedure as a validation of the proposed equations. Figure 5 shows the validation
with Hurricane Odile for days 14 (23:50) to 15 (02:10) of September 2014, compared with the data
measured at the Cabo San Lucas station, BCS. According to Equation (6):

RR = 0.0085641613 × 1010
· exp

(
−0.1553·T1.2

)
(6)
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Figure 5. Validation of the methodology using data from Hurricane Odile, 14 (23:50) to 15 (02:10)
September 2014 at MGS Cabo San Lucas, BCS. (R2 = 0.9387).

Using the same procedure, Figure 6 shows the validation using the data from Hurricane Patricia
in October 2015 on the 23rd (22:00) to the 24th (06:30) compared with the data from the Atoyac station,
Guerrero. According to Equation (7):

RR = 0.0074832483 × 1010
· exp

(
−0.1522·T1.2

)
(7)
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Figure 6. Validation of the methodology using data from Hurricane Patricia, 23 (22:00) to 24 (06:30)
October 2015, in the MGS Atoyac, Guerrero. (R2 = 0.9605).

4. Discussion

The auto-estimator technique is typically used to estimate precipitation in deep convective systems
collected in 24 h by infrared information [35]. One of the main restrictions of the auto-estimator
technique is related to the precipitation from clouds with more cold-tops low, like the nimbostratus,
which is ignored if there is no convection present in the environment close. In events of intense
precipitation, the contribution of these clouds to the total record of precipitation is small in proportion,
but in other cases, it is not negligible. In addition, there are cases of precipitation from clouds stratus
in the absence of convection, which occur mainly at extra-tropical latitudes, in which the technique
does not either assign precipitation [36]. This finding has important implications for developing
the use of the auto-estimator technique in the LAC region, where mostly convective rains can be
detected by satellite images. However, the cold cloud-top cannot detect rainy system information,
and the radar would have to be used (as commented, countries in the LAC region have poor access
to radar data). In the United States, the detection of cloudy areas is carried out with a network of
meteorological radars that cover the national territory [37], and cirrus and clusters in the dissipation
stage, which do not produce precipitation or are rather low, are filtered in this way. Without the help
of radars, the auto-estimator technique confuses these cold cloud tops in areas of cirrus and remains
of clusters, with precipitating systems, which was reported by Rozumalski [38]. These results are
consistent with those of other studies and suggest that all the remote-sensing products underestimate
the rainfall as compared to the rain gauge measurements when evaluated rainfall estimates from
ground radar network and satellite algorithms for typhoons at various spatio-temporal scales from
0.04 to 0.25◦ and hourly to event total accumulation [39].

In the case of hurricanes, the auto-estimator overestimates the precipitations that come from
Cumulonimbus clouds that generate large systems such as hurricanes, as shown in Figures 2 and 3.
The results of this study show that with no radar data available, the alternative is to change the
coefficients in Equation (3) to adjust the RR values to surface precipitation records.

On the other hand, in Equation (3) proposed by Vicente et al. [19], the maximum intensity of rainfall
intensity is reached between 195◦ and 200◦ K, while in the two cases above, present lower rainfall
intensity at those temperatures. In other words, higher intensity occurs at colder temperatures (less than
190◦ K). This difference in temperature is associated with latitudes near the equator. In Figure 3,
it can be observed that the potential fitting for Ernesto values is close to zero or minimum rainfall
intensity decreases the potential slope. Precipitation is a well-known phenomenon, and it can make
some simplifications, establishing a range of temperatures where rainfall intensity is equal to zero,
at the same time getting a fitting in the potential curve with the recorders in the ground. In Figure 2,
Hurricane Dean’s fit shows a tendency that corresponds to a power-law curve; according to [19], it is
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notable that at temperatures colder than 210◦ K, rainfall intensity increases exponentially. A relevant
aspect to consider is the Saffir–Simpson category for hurricanes.

For example, Hurricane Ernesto, categorized as hurricane category II, shows a tendency of
coldest temperatures related with minimal rainfall intensity; in contrast, the hurricanes cataloged as
major hurricanes, higher than category III, present the highest rainfall intensity in warmer cloud top
temperatures, very similar to the relationship demonstrated by Scofield [40]. In this paper, only the
results for a few hurricanes are presented. However, 175 storms caused by 14 major hurricanes that
have affected Mexico were analyzed. The results show a pattern in the alpha and beta coefficients.
Figures 7 and 8 show that there is a spatial pattern in the distribution of the parameter values of the
equation proposed by Vicente et al. [19]. This means that the limits of Vincent’s equation must be
adjusted for tropical latitudes. Further studies, which take these variables into account, will need to be
undertaken the extreme rainfall from hurricanes and the coefficients of auto-estimator. The findings of
this study have a number of important implications for the future practice of auto-estimator in the LAC
region. Further investigation and experimentation into the Advanced Baseline Imager (ABI) is strongly
recommended. The ABI is being developed as the future image on the Geostationary Operational
Environmental Satellite GOES-R [41]. The GOES-R rainfall rate algorithm is an infrared-based algorithm
calibrated in real-time against passive microwave rain rates [42].
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5. Conclusions

For the equation that relates the rainfall intensity with the cloud top temperature, it is important
to recall that this equation was developed in the United States of America. The method can be
applied in the tropics, but it is important to consider that there are different atmospheric conditions.
For example, the highest rainfall intensity that was measured in the hurricanes does not take in
count in the original formulation of auto-estimator (limited to 72 mm/h). Since space technology
can be accessible for countries that have not developed their own meteorological satellite technology,
the sharing information is a relevant hydro-informatics tool for those who see and prognosticate the
weather in a wide time–space resolution. The image from GOES provides important information
about meso and local scale of hydrometeorological events, which impact the local weather generating
severe rainfall, flash floods, and floods. Since we can read this GOES-13 image at almost real-time,
it can be read as rainfall intensity in all Mexican territory, providing a beneficial tool, which improves
the decision-making in different parts of Mexico. The next step is to develop a connection between
the image bright-temperature values to the MGS having the auto-adjusted relationship in real-time.
While there are several alternatives to use satellite images, in Mexico, the access is with GOES images.
With images from other satellites, the result of applying the technique of auto-estimator will be the
same; the only variation would be the resolution of the images.

There are few studies of the coupling of satellite images during the occurrence of hurricanes.
Not only is it enough to check their track, but also to match and verify it with surface measurements.
Certainly, this work, although it has the limitation of only having used information for Mexico,
expects to be the beginning of the verification in the downscaling of the instantaneous precipitation
data measured in surface with the satellite data [43].

There is an important opportunity in developing new and innovative techniques and technology
based on satellite data adjusted to the tropical latitudes. Further investigations consist of the
classification of climatic regions, more specifically, rainfall similarity zones, which include patrons
of storms and rainfall intensity in all Mexican territories and the greatest rainfall intensity for each
region will be set; as a result, the auto-estimator can be used to monitor rainfall in all states in Mexico
where there is no meteorological information available. The hydro-informatics tools developed by
www.redciaq.uaq.mx help decision-makers to have a better understanding of hydrometeorological
events; they can visualize the possible storms getting close to a specific area in order to act and send
help to critical areas. These kinds of hydro-informatics tools give new and reliable information that
can support decision-making. At the same time, people can check the weather from home, work,
school, and mobile phones. It is important to conduct more investigations and research in this field.
Satellite images offer wide time-space coverage, and it is possible to get enough information that
can help scientists and researchers to get different values that give understanding and prediction to
weather phenomena as a result of climate change.
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Appendix A. Wavelet Transformation

Engineers involved in the design of waterworks and the exact natural sciences usually see the time
series of hydro-meteorological variables referred to in the time and frequency domain. The origin of
the wavelet transformation is due to the need to get the time-frequency disaggregation of a time series.
The Fourier transform provides information about which frequencies are present in the time series but
does not respond to their exact location in time. The wavelet solution requires a time window of a
certain width for all the evaluated frequencies. With the help of the τ -scale parameter, it is possible to
change the width of the window. With the s parameter, called the position-parameter, the location of
the series on the time axis is changed [44].

ψτ,s(t) =
1
√
τ
ψ

( t− s
τ

)
τ, s ∈ R, τ , 0 (A1)

W f (τ, s) =
∫ +∞

−∞

f (t)
1
√
τ
ψτ,s(t) dt (A2)

In this way, the wavelet function transforms an input function f (t) of t variable into its
two-dimensional representation W(τ, s) of τ and s variables. The variable τ refers to the scale
and the variable s represents the time displacement of ψ(t).

With the hypothesis that a time series can be expressed (or disaggregated) according to its two
basic components: h(t) the trend represents the main behavior of the RR–MGS, and s(t) is the periodic
movement of the series in RR–satellite image. The wavelet’s continuous transformation is defined as

W(τ, s) =
∫ +∞

−∞

f (t)ψ̂τ,s(t) dt (A3)

ψ̂τ,s(t) denotes the complex conjugate of the function ψτ,s(t). Equation (A3) can be easily
represented as a set of linear, displaced, and invariant filters over time. These filters are described as a
convolution ψ̂τ,s(t) of the filtered signal s(t) with its response to the pulse h(t):

h(t)·s(t) =
∫ +∞

−∞

h(t)s(t− τ)dt; W(τ, s) = f (s)·ψ̂τ,s(−s) (A4)

The steps to follow to find the wavelet transform of a signal are

i. It starts with a scale value, e.g., τ = 1 for the wavelet signal; this is placed at the beginning of
the data record in t = 0 (see the output in Figure A1).

ii. The two time series are multiplied together, and the result is integrated over the time-frame.
The result of this integration is multiplied by the inverse of the square root of τ (see the output
in Figure A2).

iii. The wavelet function in the same scale s = 1 is displaced in time to the right in τ. The procedure
of Step (i) is also repeated until the end of the analyzed series is finished (see the output in
Figure A3).
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Figure A1. Temporarily disaggregated series of the RR–MGS Huichapan (red line) and RR–satellite
image (blue line) during the Hurricane Manuel (16 Sep 2013), Step (i).
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Figure A2. Temporarily disaggregated series of the RR–MGS Huichapan (red line) and RR–satellite
image (blue line) during the Hurricane Manuel (16 Sep 2013), Step (ii).
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