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Abstract: Day-ahead electricity price forecasting plays a critical role in balancing energy consumption
and generation, optimizing the decisions of electricity market participants, formulating energy
trading strategies, and dispatching independent system operators. Despite the fact that much
research on price forecasting has been published in recent years, it remains a difficult task because of
the challenging nature of electricity prices that includes seasonality, sharp fluctuations in price, and
high volatility. This study presents a three-stage short-term electricity price forecasting model by
employing ensemble empirical mode decomposition (EEMD) and extreme learning machine (ELM).
In the proposed model, the EEMD is employed to decompose the actual price signals to overcome the
non-linear and non-stationary components in the electricity price data. Then, a day-ahead forecasting
is performed using the ELM model. We conduct several experiments on real-time data obtained from
three different states of the electricity market in Australia, i.e., Queensland, New South Wales, and
Victoria. We also implement various deep learning approaches as benchmark methods, i.e., recurrent
neural network, multi-layer perception, support vector machine, and ELM. In order to affirm the
performance of our proposed and benchmark approaches, this study performs several performance
evaluation metric, including the Diebold–Mariano (DM) test. The results from the experiments show
the productiveness of our developed model (in terms of higher accuracy) over its counterparts.

Keywords: price forecasting; ensemble empirical mode decomposition; extreme learning machine;
hybrid forecasting; smart grids

1. Introduction

One of the primary objectives of smart grids is to mitigate peaks in electricity demand
and to balance between electricity demand and supply [1,2]. Energy users can also in-
volve in reducing total electricity costs and peaks by shifting their load from high-peak
to low-peak hours [3,4]. Dynamic pricing is one of the fundamental indicators of energy
consumers for load shifting [5,6]. Thus, electricity prices play a significant role in smart
grids while balancing power demand and generation/supply. Due to the competitive and
deregulated energy market environments, electricity price has a close relation between
load demand and supply; as a result, it has become one of the most relevant metrics in
the electricity markets [7]. Research related to energy prices is of great importance to the
whole community from an economic and political point of view. Moreover, the prediction
of electricity prices is crucial for participants in the electricity market to optimize profitabil-
ity and improve and strengthen risk management [8,9]. An accurate price prediction is
important for the electricity market and the entire power system. It is also a critical concern
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for the electricity market’s related stakeholders. However, it has unique characteristics, i.e.,
non-linearity, non-stationary, and randomness, which make forecasting electricity prices
difficult [10].

In recent years, the research community has begun to concentrate on the forecasting
of electricity prices as a means of addressing the above-mentioned issue. To forecast
electricity prices, several approaches have been proposed. Based on current literature, the
forecasting approaches can be categorized into five types, i.e., computational intelligence
(CI) models, statistical approaches, reduced-form models, fundamental methods, and
multi-agent models [11]. Among which, CI approaches and statistical models are widely
used for electricity price forecasting. Common statistical models include auto-regressive
moving average (ARMA) and auto-regressive integrated moving average (ARIMA), which
performs relatively well in energy price prediction. However, because of the nonlinear
characteristics and changing behavior of electricity prices, the statistical approaches have
been chastised for their inability to produce reliable and efficient forecasting results [12].
With the development of artificial intelligence (AI), several AI approaches, i.e., artificial
neural network (ANN) [13], extreme learning machine (ELM) [14], least squares support
vector machine (LSSVM) [15], support vector machine (SVM) [16], wavelet neural network
(WNN) [17], radial basis function network (RBFN) [18], generalized regression neural
network (GRNN) [19], and Elman neural network (ENN) [13], have been developed for
forecasting solar energy, wind energy, and electricity load and price [1].

Halužan et al. [20] evaluate the performance of different day-ahead electricity price
forecasting algorithms using data from Greece and Hungarian Power Industry simulations.
They also investigated the impact of different training sample sizes on forecasting perfor-
mance, along with the impact of training on an hourly clustered sample. The formation of
electricity prices is modeled over a thousand days, and only the SVM model trained on
Hungarian data successfully overcomes linearity bias and outperforms the econometric
model benchmark in terms of prediction accuracy. However, RF, the regression tree, and
the KNN algorithm trained on Greek data have greater forecasting accuracy than the
econometric model. It was reported that on average, according to the Hungarian data,
models with hourly clustered training samples have better performance, however, hourly
non-clustered training is a preferred training strategy according to the Greek data samples.
Marcjasz [21] addresses the hyper-parameter selection problem for DL implementations by
developing a robust ex-ante hyper-parameter selection mechanism for day-ahead electricity
price forecasting that, when combined with a well-tested forecast averaging methodol-
ogy, yields excellent results in two different markets over a three-year out-of-sample test
cycle. The methodology reduces noise caused by local optimization because it is based
on a grid search with models evaluated over large samples. However, the main results
of the study show that the hyper-parameters can be automatically adjusted to perform a
specific task and the selection can be done ex-ante. According to the evaluation results, all
neural network-based methods outperformed the least absolute shrinkage and selection
operator (LASSO) model on the same data, with the non-transformed Pennsylvania-New
Jersey-Maryland (PJM) data, which has a shift in the volatility of the price series, showing
the highest performance improvement.

Another work presented in [22] proposes a hybrid of variational mode decomposition
(VMD), CNN, and GRU to forecast electricity price. First, VMD is used to divide the time
series into IMFs. After that, CNN is used to extract features from IMFs. Finally, GRU is
used to predict the electricity price values.

Sun et al. [23] proposed a multi-model to predict the day-ahead electricity price.
In this paper, the authors used the tensor canonical correlation analysis to highlight the
important factors that affect the electricity price prediction. A sacked pruning sparse
denoising autoencoder is used to minimize the noise in the input data. The data sufficient
dimension reduction technique is applied to extract the important features for electricity
price forecasting.
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In [24], the authors investigated the influence of electricity price jumps or outliers
in electricity price forecasting. To detect price jumps, the authors used three different
approaches: Recursive filters, the Tukey criterion, and the fitted boxplots approach.

The authors of [25] use a neural network structure and singular spectrum analysis
(SSA) to build a hybrid method to forecast day-ahead electricity prices based on load
and temperature details. A study presented in [26] proposes a probabilistic methodology
for forecasting per hour electricity prices, which makes use of bootstrapping technology.
Ugurlu et al. [27] develop an electricity price prediction method by proposing a multi-layer
gated recurrent unit (GRU). They use real-time price data for three years from the Turkish
day-ahead market to conduct experiments. Several experiments are conducted with real-
time data and the results are compared with state-of-the-art price forecasting algorithms,
i.e., Markov, Naive, ARIMA, CNN, ANN, and LSTM. Another study presented in [28] also
develops a power price prediction model that is based on heterogeneous ensemble learning
and self-adaptive decomposition. This work forecasts the electricity prices in the Brazilian
market for one, two, and three months ahead. In the preprocessing phase, a metaheuristic-
based Coyote algorithm is used for hyperparameters tuning of complementary EEMD.
Then, three machine learning (ML) approaches, including the extreme learning machine
(ELM), support vector regression (SVR), and gradient boosting machine (GBM), are used
for time series forecasting. To forecast electricity prices in Turkey markets, the authors
of [29] develop an ARIMA-based algorithm. Due to the presence of multiple outliers
in ARIMA, constructing a model from raw market data causes forecast accuracy to be
unreliable.

Qiao et al. [30] use a wavelet transform combined with long short-term memory
(LSTM) and a stacked auto-encoder model to predict electricity prices for industrial, com-
mercial, and residential sectors. Another study presented in [31] also develops a hybrid
approach, where a metaheuristic-based cuckoo search is used for feature selection, and
combined with SVR and singular spectrum analysis (SSA). For multi-step electricity price
prediction, Yang et al. [32] propose the VMD model along with an improved multi-objective
(MO) sine cosine algorithm (MO-SCA) and regularized ELM. The VMD method is used
in this approach to obtain data features, such as low and high frequencies and then based
data features day-ahead electricity prices are predicted. Centered on the LSTM model and
the Jaya optimizer, Khalid et al. [33] develop an integrated deep NN architecture for con-
ducting electricity price forecasting. By employing real-time data from Pennsylvania-New
Jersey-Maryland and Spanish electricity markets, the authors of [34] proposed a composed
approach that is based on VMD and feature selection method (that selects feature relevant
to hours of the day). However, the feasibility of using other features applicable to the
electricity market is not discussed in this paper. A detailed summary of literature review is
presented in Table 1.

In this paper, a novel three-stage forecasting model is proposed to predict short-term
electricity price data based on small instances (as 12 historical instances are used to forecast
price data for a given time window). Before forecasting electricity price data, we first
decompose the original price series into a fixed number of intrinsic mode functions (IMFs)
and a residual. Each IMF and the residual is forecast individually using the ELM. The
prediction results of each IMF are then combined to obtain the actual predicted price of
the electricity load. To validate our proposed forecasting model, several experiments were
conducted on real-time datasets obtained from three different states in Australia, i.e., New
South Wales (NSW), Queensland (QLD), and Victoria (VIC). The results from experiments
reveal the effectiveness of the developed model over the compared approaches, i.e., re-
current neural network (RNN), multi-layer perceptron (MLP), support vector regression
(SVR), and extreme learning machine (ELM).

The remaining work is managed as follows. The next section explains the architecture
and working of the proposed hybrid (EEMD-ELM) method. Section 3 presents the exper-
imental setting along with the results of proposed and compared approaches. Section 4
concludes this paper along with future directions.
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Table 1. Summary of literature review.

Ref. Model Description & Methodology Study Area Remarks

[20] SVM, RF, KNN, Re-
gression tree

The performance of different day-ahead electricity price
forecasting algorithms was evaluated using data samples
from Greece and Hungarian Power Industries, as well as
the impact of different training sample sizes on forecast-
ing performance and the impact of training on an hourly
clustered sample.

Long-term Using Hungry data, hourly
clustered training mod-
els perform better, while
hourly non-clustered train-
ing models are better for
Greece data.

[21] DNN The proposed methodology for day-ahead power price
forecasting solves the hyper-parameter selection problem
for DL implementations by establishing a robust ex-ante
hyper-parameter selection mechanism.

Long-term The proposed method re-
duces the noise and out-
performs LASSO estimated
model and DNN with non-
optimized parameters.

[22] SEPNet (hybrid
of VMD, CNN,
and GRU)

In SEPNet, the VMD decomposes the complex time series of
electricity price into IMFs with different center frequencies.
The CNN is employed to extract the time domain features
for all IMFs in the VMD domain. Then the GRU processes
and learns the time domain features extracted by the CNN
which leads to the final forecasting.

Short-term It is observed that the
proposed method has
higher performance
over VMD in terms of
MAPE and RMSE by 84%
and 81%, respectively.

[23] SDR-MASES-
SPSD method

In the proposed model, the stacked pruning sparse denois-
ing autoencoder (SPSDAE) is used to individually reduce
the noise of the data. Then, to detect the features of the
input data, a maximum separation subspace (MASES) in
sufficient dimension reduction (SDR) is proposed. Finally,
a new multimodal combined (MMC) method is introduced
to accurately predict the day-ahead electricity price.

Short-term It is confirmed by simu-
lation that the proposed
method achieves higher per-
formance in terms of mini-
mum error rate compared to
benchmark methods.

[24] Bayesian models In the proposed model, the Bayesian jump model is used
along with the double exponential model and explanatory
variables to detect upward jumps, no jumps, or downward
jumps in electricity price.

Short-term Results suggest that electric-
ity jump predictions are use-
ful for price prediction in
peak hours.
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Table 1. Cont.

Ref. Model Description & Methodology Study Area Remarks

[25] Hybrid of SSA and
radial basis func-
tion NN (RBFNN)

In the proposed method, the SSA captures the trends and
oscillatory components of the time series data, while the
selection of input features for the NN is based on the cor-
relation analysis. Then, the RBFNN is used for the final
prediction based on real-time load and temperature data
from New York City.

Short-term The MAPE of the pro-
posed method is minimum
and is 4.73; SSA: 7.36,
NN: 7.80, KNN: 10.22, and
ARIMA: 13.26

[26] Hybrid of General-
ized ELM, wavelet
NN, wavelet
preprocessing,
and bootstrapping

In the proposed model, bootstrapping is used to implement
uncertainty and a generalized ELM is used for low compu-
tational cost and fast daily price prediction. In addition, to
achieve a better fit of the prediction model to the changes
in time series price, wavelet preprocessing is used. To con-
firm the productivity of the proposed model, real datasets
from Ontario and Australia electricity markets are used for
implementation.

Short-term It is confirmed through sim-
ulations that the proposed
model achieves higher
prediction accuracy than
its counterparts.

[27] GRU The objective of this study is to evaluate the perfor-
mance of different neural networks in predicting the price
of electricity.

Short-term Simulation results confirm
the productivity, in terms of
MAE, of their proposed mul-
tilayer GRU method.

[28] Complementary
EEMD, ELM,
Gaussian process,
and SVM

In the proposed model, the complementary EEMD is used
to decompose the current series into a number of subseries.
The subseries are predicted using ELM, gradient boosting
machine, Gaussian process, and SVM. The results are inte-
grated to output the predicted electricity price

Short-term The proposed model out-
performs the benchmark
algorithms in terms of
error reduction.

[29] Seasonal ARIMA
and ANN

In the proposed work, the current series is decomposed
into two components: Linear and non-linear. The linear
component is forecast using ARIMA, while the non-linear
component is forecast using ANN

Short-term The proposed model shows
a 30 percent improvement
in terms of error reduction
in forecasting compared to
benchmark models.
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Table 1. Cont.

Ref. Model Description & Methodology Study Area Remarks

[30] Hybrid of wavelet
transform, SAE
and LSTM

Wavelet transform is used to decompose the current se-
ries. SAE -LSTM is used to forecast each series. Then the
predicted series is reconstructed. The proposed hybrid al-
gorithms overcome the shortcomings of wavelet transform
and improve the price forecasting for residential, commer-
cial, and industrial users using an optimal and stratified
model.

Short-term In terms of MAPE reduc-
tion, the performance
of the proposed model
is superior compared to
other algorithms.

[31] Hybrid of cuckoo
search, SVM,
and SSA

In the proposed model, electricity price forecasting is per-
formed by analyzing seasonal trends and patterns. More-
over, a hybrid feature selection algorithm is introduced to
improve the electricity price forecasting.

Short-term MAPE and RMSE of the
proposed model along
with DM are significantly
lower compared to other
benchmark models.

[32] RELM, VMD,
and MO-SCA

An adaptive, deterministic, and probabilistic model is used
for forecasting. A divide-and-conquer strategy is used to
improve price forecasting. VMD is used to decompose the
current series into a number of series and each series is
forecast individually.

Short-term MAE, RMSE, MAPE, and
TIC of the proposed model
is significantly lower com-
pared to benchmark models.

[33] LSTM and Jaya
optimization algorithm

In the proposed model, the Jaya optimization algorithm is
used to tune the hyperparameters of LSTM to accurately
forecast the electricity load and price.

Long-term It is observed that the pro-
posed model achieves
low error rate over
benchmark models.

[34] VMD GRRN,
and gravity
search optimization

In the proposed model, a mixed approach is proposed to
predict electricity load and price. A hybrid of a neural
network and gravity search optimization is developed for
input selection to select important features.

Short-term It is observed from results
that RMSE and TIC values
of the proposed model are
lower than counterparts.
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2. Methodology

In this section, we first introduce EEMD and ELM models, and then we describe our
proposed electricity price forecasting model, namely EEMD-ELM.

2.1. Ensemble Empirical Mode Decomposition

Wu and Huang [35] developed ensemble empirical mode decomposition (EEMD),
which is an extended form of empirical mode decomposition (EMD) obtained by solving
the mode mixing problem. In general, the data is a combination of signal and noise. Let x
be the data recorded at any time t, “s” be the signal, and “n” be the noise. Then we can
express it as:

x(t) = s(t) + n(t). (1)

In practice, noise is the highly undesirable part of the data that interferes with data
analysis. To remove the noise from the data, EMD decomposes the data by extracting a
number of IMFs and a residual. IMFs are oscillatory functions with varying frequency
and amplitude. In order to decompose a time series into a number of IMFs, first, all the
local maximum and minimum are identified and connected by means of a cubic spline to
form the upper and lower envelope. Secondly, the mean of the upper and lower envelopes
is determined. Afterward, the mean is subtracted from the actual time series to generate
the first IMF. The process is repeated until the final component becomes a monotonic
function. In practice, the extraction process follows a shifting process by identifying the
local maximum and minimum. Mathematically, the extraction process is presented as:

x(t) =
n

∑
i=1

cj + rn. (2)

In Equation (2) “r” is the residue, “n” is the number of IMF extracted.
Mode mixing occurs due to signal intermittency. It suggests that an IMF may involve

different physical processes. As a result, the transparent decomposition process of the
signal is affected. Wu and Huang solved the problem of mode mixing by adding white
noise to the target data. The advantage of using EEMD is that the white noise added to the
target data cancels the effect of the actual noise. As a result, the dyadic property of each
IMF is preserved. It is worth noting that the effect of white noise can be controlled using
the well-established statistical rule:

ε =
ε√
N

. (3)

In Equation (3), ε shows the amplitude of the included noise, while N presents
ensemble members.

2.2. Extreme Learning Machine

Huang et al. [36] developed an extreme learning machine that is based on a neural
network with a single hidden layer and a number of “N” hidden nodes and nonlinear acti-
vation functions. It is one of the most popular neural networks due to its fast learning ability
and satisfactory results. For any given dataset: (xi, yi)

N
i=1 ⊂ Rn ∗ Rm with i = 1, 2, 3, ..., N,

Rn as the input samples, and Rm as the output samples, ELM can be formulated as follows:

f (x) =
N

∑
i=1

βihi(x) (4)

where β = [β1,β2,....βN], is the weight vector that connects the hidden layer neurons with
the output layer, h(x) = [h(x)1, h(x)2, ..., h(x)N] is the output of the ith hidden node with
respect to the input of a hidden node x, and g(x) represents the activation function (in
our case the activation functions is sigmoid), then based on the hidden layer output, the
equation can be written as:

Hβ = Y (5)
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where,

H =

 h(x)1
..

h(x)N

 =

 h1(x1) ... hL(x1)
.. .. ..

h1(xN) .. hL(xN)

 (6)

and

Y =

 y1
..

yN

. (7)

ELM aims to minimize the training error however, in some cases where the dataset is
unstable due to random observations or contains outliers, ELM may perform poorly.

2.3. Combined EEMD-ELM Forecasting Model

In this section, the three-stage EEMD-ELM model is introduced in detail. Figure 1
presents the structure of our proposed model. Before inputting the time series into the
EEMD-ELM, we first extract all the observations for each day separately. Then, the ob-
servations of the same days are appended to each other by forming a new time series,
as presented in Figure 2. The main reason for extracting and appending similar days to
each other is to ensure the historical observations of the same days are used to forecast the
electricity price of a given day.

Electricity price series 

EEMD 

eIMF1 eIMF2 eIMF3 eIMF4 Residual

ELM5ELM1 ELM2 ELM3 ELM4

∑ forecasted eIMFs

Forecasted price
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N
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Figure 1. Proposed system model.

After forming a time series, the number of IMFs are determined. It is important to
maintain the same number of inputs for each dataset to evaluate the performance of our
model with the same inputs. When EEMD is applied to each dataset, the IMFs for each
data source decomposes into 12–16 components. In order to keep the same number of IMFs
for each dataset, we started to train and test our model with two IMFs and a residue and
compare the performance by incriminating the IMFs by one. We observe slight performance
improvement when IMFs were increased from four to higher. As we are forecasting each
IMF individually, therefore, we choose four as the suitable number of IMFs for each set
because the time to train and forecast each IMF for each state is significantly higher.

Once the number of IMFs is determined, the electricity price series is input to the
three-stage model. At the first stage, the actual price series decomposes into four intrinsic
mode function (IMF) and a residual component using the EEMD algorithm. Figure 3 shows
the IMFs, the residual component, and the input time series. In the second stage, each
IMF and the residual are considered as independent time series. In order to forecast the
electricity price, each component is converted into a supervised learning problem and ELM
is used to train and test the components individually. It is worthy to mention that a single
model cannot capture the non-linear and non-stationary trend in the electricity price series.
The key advantage of our model over the existing model is that our model uses a divide
and conquer strategy to forecast the electricity price. By splitting the actual series into
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multiple series, the series becomes simple and easy to forecast. In the third stage, all the
forecast values of all IMFs and the residue obtained in stage two are added to output the
forecast value of electricity prices.
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Figure 2. Extracting and appending observations.
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3. Results and Simulations

In this section, we first present the experimental design. Second, the details are
provided of three datasets that are adapted (for the experiments) from three different
markets in Australia, i.e., NSW, QLD, and VIC. Then, performance evaluation metrics
are disclosed along with the results of the proposed model (EEMD-ELM) and benchmark
approaches, i.e., RNN, MLP, SVR, and ELM.

3.1. Experimental Design

Simulations of our proposed model and benchmark algorithms were evaluated using
Google COLAB [37]. Three months of data are used to train and test all models (from
Monday, 1 January 2018, to Saturday, 31 March 2018). In the three months of data, we
took 12 days of data for each day of the week (e.g., 12 Mondays, 12 Saturdays, etc.). It
is worth noting that in the three months, the number of some days may be greater than
12 (e.g., Tuesday may occur 13 times in three months); however, we only considered the
first 12 days for each day and discarded the rest of the days. To predict the next day’s
electricity prices (e.g., for Monday), historical observations of the last 11 Mondays are
used as training data. The main reason to train the model on the observations for the
same days is that the pattern of electricity price generation/consumption is different for
each day, i.e., the electricity price pattern of Sundays is different from the electricity price
generation/consumption/price pattern of Mondays and vice versa. It is worth noting that
unlike other forecasting algorithms, we have not trained our model for a specific day, i.e.,
the next day does not necessarily have to be a specific Sunday or Monday, etc. Moreover,
we predicted the price values for the same day for all three states and ran all models five
times in the same test environment to present the average of the performance metric values.

3.2. Dataset Description

To check the productivity of our newly developed model, datasets from three different
states of the Australian Energy Market Operator (AEMO) were analyzed. The main reason
for selecting different states is to ensure that the applicability of the proposed model is not
affected by different attributes such as population, geographical, or climatic characteristics,
etc. As the Australian electricity dataset is recorded for different geographical and climate
conditions, this makes our model applicable to any data source with variable seasonal
or geographical conditions. The datasets are publicly available on the AEMO website
https://aemo.com.au/en (Accessed date: 1 February 2021). The temporal resolution in
each dataset is 30 min. This results in 48 observations for one day.

3.3. Performance Evaluation Metric

To comprehensively evaluate the performance of the prediction models, we employ
four performance evaluation metrics, including mean square error (MSE), MAE, mean
absolute percentage error (MAPE), and root means square error (RMSE), as shown in
Equations (8)–(10). The lower the values of the metrics, the higher the prediction accuracy
of our proposed model. In Equations (8)–(11), Xi and X̄i show the actual and predicted
electricity price values, respectively. Where N is the total number of instances:

MSE =
1
N

N

∑
i=1

(Xi − X̄i)
2 (8)

MAE =
1
N

N

∑
i=1
|Xi − X̄i| (9)

MAPE = (
1
N

N

∑
i=1
|Xi − X̄i

X̄i
|)× 100 (10)

https://aemo.com.au/en
https://aemo.com.au/en
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RMSE =

√√√√ 1
N

N

∑
i=1
|Xi − X̄i|2. (11)

Moreover, to illustrate the better performance, the Diebold–Mariano (DM) [38] test on
all the datasets is performed to highlight the statistical significance of all the forecasting
models. The loss function is set to MAPE and to test the forecasting results of each model,
we test the null hypothesis i.e., the forecasting ability of the models is the same. The
alternate hypothesis states that the forecasting ability of one model is better than the other.
Mathematically, DM can be expressed as:

DM =
1√

γ0+2 ∑h−1
k=1 γk

n

(12)

where γk denotes the auto co-variance.

3.4. Analysis of IMFs

To overcome the nonlinear and nonstationary components in the electricity price
data, the actual price signal is first decomposed using EEMD. Figure 3a–c shows the
actual electricity price series, IMFs, and residual of NSW, QLD, and VIC respectively. As
shown in Figure 3, the frequency of each IMF ranges from high to low. In addition, each
IMF shows a unique oscillating mode embedded in the actual price series. In this paper,
the actual electricity price signal is decomposed into four IMFs and a residual. The first
component, i.e., IMF1, is the most non-stationary and non-linear component. Moreover,
the prediction accuracy of IMF1 is also the worst among all IMFs. As we move from IMF1
to IMF4, the prediction accuracy is improved. The last IMF (i.e., residual) shows the best
prediction results.

3.5. Forecasting Result of NSW

In this subsection, the prediction results of NSW are discussed. In general, the pro-
posed EEMD-ELM has the lowest performance metric values compared to the other models.
The performance metrics can be seen in the bar chart in Figure 4, where it shows that EEMD-
ELM has the lowest values for the performance metric compared to the other electricity
price forecasting models used in this work. From Figure 4, it can be concluded that EEMD-
ELM reduces the MSE by 68.66%, 65.82%, 83.83%, and 85.72% compared to RNN, MLP,
SVR, and ELM respectively. In terms of MAE reduction, EEMD-ELM is 43.47%, 53.72%,
and 58.18% efficient. In terms of MAPE reduction, the proposed EEMD-ELM is 80.063%,
38.18%, 45.28%, and 53.98% efficient. On the other hand, in terms of RMSE, the proposed
scheme has 81.09%, 41.54%, 59.8%, and 62.22% higher performance over RNN, MLP, SVR,
and ELM, respectively. Table 2 shows the DM test results for the NSW state.

The forecasted electricity price values by EEMD-ELM and benchmark approaches are
presented in Figure 5, where, it is clear that only EEMD-ELM can forecast the irregular
trend in the electricity price data. The price values predicted by RNN are far from the
actual electricity price signal as shown by the red line. MLP also does not perform well
in forecasting electricity prices, however, MLP’s predicted price values are slightly better
compared to RNN. SVR’s predicted electricity price values are better compared to RNN.
However, in time slots 24–40, the price values predicted by SVR are unacceptable. Similarly,
in time slots 32–40, the price values predicted by ELM are unacceptable. From Figure 5, it
is clear that only EEMD-ELM can both capture and forecast the irregular trend in electricity
price data. Moreover, the price predicted by EEMD-ELM is almost identical to the actual
electricity price in some time windows (e.g., time windows 8 to 28).
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Figure 4. Performance metrics score of all schemes for NSW.

Table 2. DM test results for NSW.

State Tested Models SVR MLP RNN EEMD-ELM

NSW

ELM 1.04 1.87 1.89 3.22
SVR −0.82 0.85 4.07
MLP 0.02 3.25
RNN 5.12
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Figure 5. Price forecast by all schemes for NSW.

3.6. Forecasting Result of QLD

The forecasting results of electricity price data for the state of QLD are discussed in
this subsection. Like NSW, the proposed EEMD-ELM achieves the lowest performance
metric values compared to the other benchmark models. Moreover, the performance of
all the forecasting models in predicting the electricity price for QLD is better compared
to NSW. The error bars present the values of performance metrics for all models used
to forecast the electricity price for QLD are shown in Figure 6. According to Figure 6,
EEMD-ELM has the lowest MSE value. EEMD-ELM minimized the MSE in predicting the
electricity price of QLD by 94.47%, 82.36%, 92.12%, and 92% compared to RNN, MLP, SVR,
and ELM, respectively. Similarly, EEMD-ELM is efficient in minimizing MAE by 75.43%,
53.42%, 64.78%, and 66.22%, respectively. Similarly, the MAPE achieved by EEMD-ELM is
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minimal compared to RNN, MLP, SVR, and ELM at 85.11%, 45.75%, 54.45%, and 59.45%,
respectively. Table 3 shows the DM results for the state of QLD.
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Figure 6. Performance metrics score of all schemes for QLD.

Figure 7 shows the price values predicted by all schemes for QLD. From this figure, it
is clear that the price values forecasted by RNN are completely unacceptable. The price
values predicted by MLP are better as compared to RNN. However, MLP cannot forecast
the irregular behavior of electricity price data. In time slots 8–24, the price values forecasted
by ELM are very close to the actual electricity price. However, for time slots 32–48, the
price values forecasted by ELM are not acceptable. Like NSW, EEMD-ELM also overlaps
with the actual electricity price values in predicting the electricity price of QLD. As shown
in Figure 7, the magenta and black lines overlap in almost every time window.
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Figure 7. Price forecast by all schemes for QLD.

Table 3. DM test results for QLD.

State Tested Models SVR MLP RNN EEMD-ELM

QLD

ELM 1.04 1.87 2.12 3.00
SVR −0.82 1.07 4.07
MLP 0.25 3.25
RNN 5.12
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3.7. Forecasting Result of VIC

This section unfolds the forecasting results of the VIC state. From a comparison of the
bar graphs in Figures 4, 6 and 8, it is concluded that except EEMD-ELM, the performance
of all schemes is better compared to the performance of the schemes in predicting the
electricity price of QLD and NSW. As shown in Figure 8, EEMD-ELM outperforms all the
forecasting models in terms of minimum performance metric values. The MSE achieved
by EEMD-ELM in forecasting the electricity price of VIC is the lowest, and corresponds
to a minimum of 76.52%, 72.63%, 77.74%, and 76.82% compared to RNN, MLP, SVR, and
ELM, respectively. In terms of the lowest MAE value, EEMD-ELM outperforms RNN, MLP,
SVR, and ELM by 51.55%, 46.18%, 50.12%, and 45.88%, respectively. The MAPE achieved
by EEMD-ELM is 82.52%, 46.98%, 51.96%, and 47.92% minimally compared to RNN, MLP,
SVR, and ELM. Similarly, the lowest RMSE value is obtained for EEMD-ELM. The RMSE
value obtained by EEMD-ELM is 81.16%, 47.69%, 52.82%, and 51.85% better than RNN,
MLP, SVR, and ELM respectively. Table 4 shows the DM results for the state of VIC.

The forecasted electricity price values using the combined EEMD-ELM for VIC are
shown in Figure 9. As with NSW and QLD, the RNN forecast price values are nowhere near
the actual electricity price. MLP also shows a similar trend. In some time windows, SVR’s
predicted electricity price values are close to the actual price values, however such time
windows are very limited. Similarly, ELM also fails to accurately forecast the electricity
price of VIC. EEMD-ELM performs better compared to the other forecasting models.
However, in the electricity price prediction of VIC, the difference between the predicted
and actual price values is visible in some time windows, e.g., time windows 36–48.
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Figure 8. Performance metrics score of all schemes for VIC.
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Figure 9. Price forecast by all schemes for VIC.

Table 4. DM test results for VIC.

State Tested Models SVR MLP RNN EEMD-ELM

VIC

ELM −0.56 0.16 −0.84 4.10
SVR −0.72 −0.27 3.82
MLP −1.00 3.09
RNN 3.26

4. Conclusions and Future Work

This study proposes a novel forecasting model to predict short-term electricity prices
based on EEMD and ELM approaches. To overcome the nonlinear and non-stationary
components in electricity price data, the actual price signal is decomposed using EEMD.
In this process, the actual electricity price signals are decomposed into four IMFs and a
residual (IMF1 is the most non-linear and non-stationary component; in contrast, IMF4
is the least non-linear and non-stationary component). Then, an ELM model is fitted to
predict the price for a given day based on historical observations of the same days. The
newly developed model (EEMD-ELM) was implemented along with benchmark methods,
i.e., RNN, MLP, SVR, and ELM, in three real-time datasets obtained from NSW, QLD, and
VIC electricity markets in Australia. The results from the experiments demonstrate that
the proposed model had a higher performance than the counterparts, i.e., the MSE, MAE,
MAPE, and RMSE of the proposed model are lower than the benchmark approaches.

In future, we will investigate electricity theft detection in power grids. Smart meter
data and power load data will be analyzed with deep learning models to study power loss
and abnormal power consumption.
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Abbreviations
AEMO Australian energy market operator
AI Artificial intelligence
ANN Artificial neural network
ANFIS Adaptive network-based fuzzy inference system
ARMA Autoregressive moving average
ARIMA Autoregressive integrated moving average
CI Computational intelligence
CNN Convolutional neural network
DL Deep learning
DM Diebold–Mariano
EEMD Ensemble empirical mode decomposition
ELM Extreme learning machine
ENN Elman neural network
GBM Gradient boosting machine
GRNN Generalized regression neural network
GRU Gated recurrent unit
IMF Intrinsic mode functions
KNN K-nearest neighbor
LASSO least absolute shrinkage and selection operator
LSSVM Least squares support vector machine
LSTM Long short term memory
MAE Mean absolute error
MAPE Mean absolute percentage error
ML Machine learning
MLP Multi-layer perceptron
MSE Mean square error
NN Neural network
NSW New South Walves
QLD Queensland
RBFN Radial basis function network
RMSE Root mean square error
RNN Recurrent neural network
SCA Sine-cosine algorithm
SSA Singular spectrum analysis
SVM Support vector machine
SVR Support vector regression
VIC Victoria
VMD Variational mode decomposition
WNN Wavelet neural network
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