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Abstract: Timely generation of accurate and reliable forecasts of flash flood events is of paramount
importance for flood early warning systems in urban areas. Although physically based models are
able to provide realistic reproductions of fast-developing inundation maps in high resolutions, the
high computational demand of such hydraulic models makes them difficult to be implemented as
part of real-time forecasting systems. This paper evaluates the use of a hybrid machine learning
approach as a surrogate of a quasi-2D urban flood inundation model developed in PCSWMM for an
urban catchment located in Toronto (Ontario, Canada). The capability to replicate the behavior of
the hydraulic model was evaluated through multiple performance metrics considering error, bias,
correlation, and contingency table analysis. Results indicate that the surrogate system can provide
useful forecasts for decision makers by rapidly generating future flood inundation maps comparable
to the simulations of physically based models. The experimental tool developed can issue reliable
alerts of upcoming inundation depths on traffic locations within one to two hours of lead time,
which is sufficient for the adoption of important preventive actions. These promising outcomes were
achieved in a deterministic setup and use only past records of precipitation and discharge as input
during runtime.

Keywords: rapid flood forecasting; flood inundation; flash flood; surrogate model; machine learning

1. Introduction

The World Meteorological Organization estimates that flash floods are responsible
for more than 5000 human deaths every year, making them the most frequent and with
highest morality rate type of flooding [1]. The continuous densification of urban areas
associated with the increasing recurrence of high intensity precipitation driven by climate
change has the potential to intensify the frequency of such events [2–4]. To mitigate
impacts, flash flood early warning systems have been implemented around the world
since the 1970s mainly by governmental agencies (e.g., provincial or national flood/flow
forecasting centers) [5], and the development of techniques and technologies to improve
their predictive performance is an active research topic [6,7]. A pivotal component of such
systems is the real-time forecasting of hazardous scenarios, which is decisive for decision
makers on the task of choosing whether or not to take actions. Preventive actions such as
closing roads, evacuating buildings, and changing the current operation of a dam have the
potential to cause significant social disturbance and economical loss, thus a system that
issues an excessive number of false alarms is undesired. To be operationally applicable,
a forecasting system is expected to produce trustable and timely predictions, especially
in the context of flash floods due to their rapid development, which happens “within six
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hours of the causative event (e.g., intense rainfall, dam failure, ice jam)”, as defined by the
United States’ National Weather Service [5].

The capability of forecasting flood inundation maps (IMs) is usually considered a
valuable asset to complement the usual river discharge hydrographs due to the direct
representation of the locations to be (or not) inundated. As flash floods are characterized
by flows with high motion, realistic IMs of such events are attained through the simulation
of physically based hydraulic models that solve the two-dimensional (2D) or quasi-2D
Saint-Venant equation considering both mass and momentum conservation [8]. However,
the computational cost of such models usually becomes a constraint for their direct use as
part of toolchains of forecasting systems. One of the strategies developed for obtaining IMs
in a time interval compatible to the update cycles of real-time flood forecasting systems
is based on the development of simplified 2D models such as the Height Above Nearest
Drainage [9], AutoRAPID [10] and Safer_RAIN [11], which adopt the approach of “spilling
and filling” digital elevation models at specific water heights. Despite providing realistic
results for flood events of large scale with applicability demonstrated in real-time scenar-
ios [12], the lack of physics for representing momentum results in limited applicability
for rapidly-evolving flash flood events [13,14]. Other modelling approaches developed
for reducing the computational burden of high-resolution models that do not neglect the
momentum component include sub-grid techniques [15,16], the use of cellular automata
frameworks [17], and the development of new systems and models specifically designed
to explore the processing power of graphic processing units [18,19]. The implementation
of such promising techniques, however, may require expensive tasks of reimplementing
already existing hydrological models using such new tools and the training of the technical
team for the use of such frameworks.

In this context, the development of response surface surrogate models (hereafter
simply referred to as “surrogate models") have been explored as workarounds to rapidly
estimate realistic IMs. Surrogate models are mathematical systems calibrated to map values
in the input space to values in the output space of more complex, physically based and com-
putationally expensive simulation systems, thus reproducing their behavior through the
use of a simplified set of equations derived from statistical or data-driven approaches [20].

The use of machine learning techniques for the development of surrogate inundation
models has presented significant evolution in recent years. Here, a hydraulic model
in which both mass and momentum components of the surface water flow are present
is implemented for the region of interest. Such a hydraulic model is assumed to be a
realistic representation of the environment and is used to simulate the behavior of the
system when forced with a wide range of realistic forcing values. The resulting IMs are
stored, and a data-driven system is then trained to map each forcing data used to the
respective IM produced. The high number of 2D cells in regular IMs to which a water depth
value must be estimated, associated with the costly task of generating a large number of
simulation products, usually leads to the challenging issue of properly tuning very complex
models with limited input/output datasets. A common approach to reduce the number of
variables to be predicted by the data-driven method is to train multiple independent simpler
networks covering smaller parts of the grid, be it one model trained for each individual
grid cell [21] or one model per groups of neighboring grid cells [22]. Such a strategy has as
drawbacks: (1) the need to train a potentially extensive number of subnetworks, which can
and up being a constraint in operational environments when the hydraulic/hydrological
model is continuously updated (thus demanding continuous retraining of the surrogate
model); and (2) the fact that the spatial correlation of nearby grids trained by independent
predictors is lost, potentially resulting in unrealistic discontinuities in the estimated IM.

In this context, the use of a Self-Organizing Maps (SOM) model was proposed as
a dimensionality reduction method by Chang et al. [23] for regional flood inundation
forecasting triggered by river overflow. In their work, SOMs are trained to cluster the
inundation maps of the training dataset so that the topologic nodes of the network hold
what can be interpreted as representative inundation instant conditions of the covered area.
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The average inundation depth (AID) of each topological node is calculated and stored as
an associated variable after the tuning step so that a univariate predicted AID value can be
used for querying complete IMs during forecasting time. A recurrent model is then trained
to predict the univariate AID variable out of descriptive hydrologic observed features
to provide the temporal development of the event. Chang et al. [23] reported promising
results for the prediction of inundation maps with spatiotemporal resolution of 75 km/3 h
for a lead time of up to 12 h, a configuration suitable for the regional scope evaluated
in their work (total area of 100 km2 in the outlet of the nearly 2000 km2 Kemaman River
Basin, Malaysia). Kim et al. [24] applied a similar approach on a finer grid resolution and
assessed its effectiveness on timely predicting flash flood inundation scenarios caused by
direct runoff generation and consequent sewer overflow in a densely occupied urban area
in Seoul, South Korea, under heavy rain. In their work, the overflow of 103 manholes
were used as the querying variables and 122 rainfall events were applied for training
the networks. Consistent results were obtained when the analysis was later extended to
24 districts [25]. Nonlinear Autoregressive neural network with exogenous inputs (NARX)
is the recurrent structure commonly chosen by the abovementioned works due to its
simplicity and efficiency.

To the best of the author’s knowledge, results for the application of such a hybrid
approach are yet to be reported for urban catchments prone to flash flood events caused
by fast-response river overflow. Our study aims to fill this research gap by evaluating the
applicability of a hybrid NARX-SOM structure to surrogate a coupled hydrologic/hydraulic
model in the prediction of IMs in a timely and accurate manner compatible with operational
purposes for the Don River Basin in Toronto, Canada.

2. Study Area

The Don River basin (DRB), located in the Greater Toronto Area, Ontario, Canada,
has a total drainage area of nearly 350 km2, approximately 300 km2 of which is located
upstream from the river gauge HY019. The baseflow of the Don River recorded by HY019
is approximately 4.5 m3/s. As represented in Figure 1, its landcover is characterized
predominantly by urban infrastructure (80%), with disperse portions of sparse tree clusters,
wetlands and crops [26]. The region just downstream the HY019 river gauge is often
inundated during flash flood events with reports of stranding cars and urban trains in
streets and railroads along the riverbanks of the Don River [27,28]. Two locations were
selected as points of interest (POI) for further analysis: POI 1 is a segment of the local urban
train railway, while the POI 2 is a section of the Don Valley Parkway.

Precipitation data from four rain gauges (HY016, HY021, HY027, HY036) and river
discharge data from the river gauge HY019, both with 15 min resolution and ranging from
2011 to 2019, were used to select high-flow rainfall-runoff events. As this study is focused
on pluvial flash floods, only the data of the warm seasons (from May to October) of each
year were considered to avoid potential influence of snowfall and snowmelt.
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considered in this study. 
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3.1. Physically Based Model Used as Reference 

A calibrated semi-distributed hydrologic model of the entire DRB (Figure 1b) was 
initially developed and provided by the Toronto and Region Conservation Authority 
(TRCA). The model is based on the Storm Water Management Model (SWMM) [29] and 
was implemented with the PCSWMM software [30]. The basin is discretized into 462 sub-
catchments, each of them set to receive the same precipitation timeseries observed by its 
nearest precipitation gauge as if it was spatially uniform within the sub-catchment. Water 
flow is routed through 2703 SWMM conduits (river segments) that reproduce the major 
rivers and pathways by solving the complete one-dimensional Saint-Venant equation, 
thus considering the momentum component but without the explicit modeling of surface 
inundation spread. 

The original DRB model was modified to include a hydraulic surface flow component 
(hereafter referred to as “hydraulic component”) of the aforementioned flood-prone area 
(Figure 1c). The Digital Elevation Model (DEM) used was obtained from the aggregation 
of LiDAR products originally provided publicly by the governmental agency Natural Re-
sources Canada at 1 m resolution. The spatial aggregation into 2 m was performed to re-
duce the negative impact that relatively small surface artefacts, such as sudden spikes or 
depressions generated by signal noise, may cause to the final simulation results as they 
can be wrongly interpreted as barriers to the surface water flow [31,32]. 

In PCSWMM, surface flow is simulated through a dense network of regular SWMM 
components. A mesh of junctions is established from the underlying DEM, each junction 
being connected to up to 6 neighbors by 1-segment conduits. Each junction reports the 

Figure 1. Representation of the (a) location of the Don River Basin, (b) its landcover with stream
and rain gauges, and (c) the domain of the 2D hydraulic model with the two points of interest (POI)
considered in this study.

3. Materials and Methods
3.1. Physically Based Model Used as Reference

A calibrated semi-distributed hydrologic model of the entire DRB (Figure 1b) was
initially developed and provided by the Toronto and Region Conservation Authority
(TRCA). The model is based on the Storm Water Management Model (SWMM) [29] and
was implemented with the PCSWMM software [30]. The basin is discretized into 462 sub-
catchments, each of them set to receive the same precipitation timeseries observed by
its nearest precipitation gauge as if it was spatially uniform within the sub-catchment.
Water flow is routed through 2703 SWMM conduits (river segments) that reproduce the
major rivers and pathways by solving the complete one-dimensional Saint-Venant equation,
thus considering the momentum component but without the explicit modeling of surface
inundation spread.

The original DRB model was modified to include a hydraulic surface flow component
(hereafter referred to as “hydraulic component”) of the aforementioned flood-prone area
(Figure 1c). The Digital Elevation Model (DEM) used was obtained from the aggregation
of LiDAR products originally provided publicly by the governmental agency Natural
Resources Canada at 1 m resolution. The spatial aggregation into 2 m was performed to
reduce the negative impact that relatively small surface artefacts, such as sudden spikes or
depressions generated by signal noise, may cause to the final simulation results as they can
be wrongly interpreted as barriers to the surface water flow [31,32].

In PCSWMM, surface flow is simulated through a dense network of regular SWMM
components. A mesh of junctions is established from the underlying DEM, each junction
being connected to up to 6 neighbors by 1-segment conduits. Each junction reports the
water depth of a location, thus acting (and hereafter referred) as “surface flow cells”. The
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conduits are modeled as open rectangular cross-sections and perform bi-directional 1D
flow routing between two neighboring surface flow cells. Such a configuration allows the
simulation of both the lateral and longitudinal water flows needed to represent a 2D surface
water movement by solving multiple one-dimensional equations—an approach usually
referred to as “quasi-2D”. The flow under crossing bridges is represented by concrete
conduits with closed rectangular cross-sections. Manning’s roughness coefficient of the
river channel and surrounding vegetated areas were set as 0.01 and 0.05 following the
values suggested by Ricketts et al. [33], for open-channel flow over concrete and over light
brush on banks, respectively. To represent the flow resistance offered by piers, Manning’s
roughness in the channel segments under passing bridges was set to 0.035. Buildings were
represented as barriers for the water in the form of regions in the 2D space without surface
flow cells.

The hydraulic component of the coupled model is composed by a total of 101,577 cells,
6394 of which are within the river boundaries, 40,482 are floodable cells (i.e., land cells that
were inundated in at least one simulation), and the remaining cells are land cells that were
not inundated in any simulation.

3.2. Self-Organizing Map (SOM)

SOMs, also known as Kohonen maps after its proposer [34], are among one of the most
traditional unsupervised clustering methods in machine learning. An SOM is a specific
structure of feed forward artificial neural networks in which the output nodes, representing
the clusters, are organized in a 2D topological map. As a clustering technique, each output
node of the network refers to a cluster identified for the dataset and has the same number of
features as the number of input features. The output nodes in the topological map (hereafter
referred simply as “topological nodes”, or TNs) are tuned to be similar to their topological
neighbors and, conversely, dissimilar to topologically distant nodes. The process of training
starts with a network with randomly defined weights. The records in the training set are
successively clustered by the network, i.e., the TN most similar to the clustered record, also
called winner node, is identified using a distance function. The winner node then has its
weights updated to become more similar to the clustered record through the reduction of the
distance value between them by a learning rate α. The other TNs are updated with learning
rates that gradually reduce as their topological distance to the winner node increases. Such
a gradual reduction is governed by a neighborhood function with parameters defined by
the user.

One of its most highlighted features is the capability to successfully cluster [35,36] and
provide visual insights [37,38] on high dimensional datasets, which are assets for problems
related to flood IMs due to the extensive number of water depth values predicted, one
for each inundation cell in the domain. Other applications in water resources include
but are not limited to the regionalization of groundwater types [38] and of hydrologic
homogeneous watersheds [39], the simulation of daily precipitation [40], and the support
of decisions for the operation of reservoirs [41]. The reader is referred to [42] for a further
discussion on the use of SOMs in water resources.

The number of TNs of an SOM is defined by the designer during the model imple-
mentation step. As a clustering technique, the higher the number of TNs (clusters), the
higher is the expected sharpness of the results and the lower is the degree of generalization
of the patterns detected. In this work, SOMs with 12 TNs organized in a 3 × 4 conventional
rectangular shape were trained using the water depth values of the 40,482 floodable cells
as input features so that each output node can be interpreted as a complete representative
IM itself (Figure 2). The total number of 12 TNs was determined heuristically based on the
rule-of-thumb suggested by Kohonen [43] of an average of 50 training records per node.
Considering the high number of features involved, the total number of training records
per node was increased to 100 for a more consistent detection of patterns in the data. The
networks were constructed and trained with the MiniSOM library for Python [44] using
Gaussian neighborhood and Euclidian distance functions.
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Figure 2. Illustration of an SOM utilized in this work during the training step, when the IM of time
t, composed by N (40, 482) instant water depths d1,t, d2,t, . . . , dN,t, is associated to the TN 4 × 3 by
similitude. The values of such winning TN (d1,4×3, d2,4×3, . . . , dN,4×3) are updated following the
new learned values.

To ensure that all records in the train/validation dataset are used for training the
data-driven models, 9 SOMs were tuned following the k-fold cross-validation approach,
i.e., the records in the train/validation dataset were split into 9 subgroups, then each SOM
was trained using 8 of such groups (fold in) and validated against the remaining subgroup
(fold out). Hereafter, SOM f indicates the SOM validated against the fold-out group f .
The choice of splitting the records into 9 subgroups was done so that the conventional
proportion of 90% training and 10% validation records was achieved (the effective dataset
has 17 rainfall events, as discussed in Section 4.1). The training and validation steps are
performed concurrently so that, after every fold-in record is presented to the SOM in
learning mode, all records in the fold-out group are clustered in prediction mode and the
sum of their distances to their respective winner nodes is calculated as ∆t. The fold-in
records have their order shuffled and the process is repeated so that ∆t+1 is calculated. The
iteration continues indefinitely while gains in similarity with the validation dataset are
observed, i.e., ∆t > ∆t+1. Such approach is usually referred as “early stopping criteria” and
tends to improve the generalization power of data-driven models [45].

3.3. Recurrent Network
3.3.1. Phase Space Composition

The objective of the recurrent models in this work is to predict the best topological
node (and, consequently, the best IM cluster representative) in a specific time in the future
given the limited number of hydrological features available in the present. For such, the
available dataset needs to be organized in a tabular format so that all the predictive features
(inputs) and the respective topological node expected to be predicted (output) are in the
same tuple.

Three types of hydrological data were chosen to compose the input set: precipitation
(P), discharge (Q) and average inundation depth (AID). P is given as the accumulated
average areal precipitation in the sub-catchments of the hydrological model. Initially, at
15 min resolution, P is reconstructed so that Pt is the accumulated precipitation in the
interval [t − 2 h, t). Q is the discharge value estimated by the hydrological model in
the Don River at the input of the hydraulic domain. Originally at 15 min resolution,
Q is reconstructed so that Qt is the mean of the discharge values within the interval
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[t − 30 min, t). The instantaneous AIDt of each IMt calculated by the hydraulic model for
time t is given simply by:

AIDt =
N

∑
n=1

dn,t

N
, (1)

in which dn,t is the water depth in the nth floodable cell at time t and N is the total number
of floodable cells in the model.

Each IMt of the train/validation dataset assigned to a record in the fold f was clustered
by SOM f (Section 3.2), thus being associated to a winning topological node w of SOM f
(TNw, f ). Then, 17 phase spaces were constructed, one for each lead time L ∈ [0, 15, 30, . . . ,
240] (values in minutes), so that a record for the time t in the phase space for L is composed
by the tuple: Pt, Qt−1, Qt, AIDt+L−1, IMt+L, TNw, f . The first four elements compose the
predictor feature set while the last is the predictand. The data organization is illustrated in
Figure 3.
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Figure 3. Organization of the phase space used as input for the NARX. In the scheme (a), data in
the state space (light grey boxes) are aggregated and used as predictive features (yellow boxes) in
different combinations to predict IMs (blue rounded-corner boxes). In the output file (b), the first
four columns (P0, Q−1, Q1, AID0 ) are the predictors and the last is the target (TN1 ).

3.3.2. Nonlinear Autoregressive Neural Network with Exogenous Inputs (NARX)

A NARX is a simple recurrent model structured as a conventional feed forward neural
network. Its autoregressive component is due the fact that part of the input features
depends on the output values predicted by the same model for an antecedent time step.
Additional (exogenous) explanatory variables are included in the input set to provide more
information to the model. NARX models can be generically described as a mathematical
function f () given by:

ŷt = f
(

ŷt−1, ŷt−2, ŷt−3, . . . , ŷt−My , xt−L−1, . . . , xt−L−Mx

)
+ εt (2)

in which ŷt is the value predicted for time t, L is the lead time of the forecast (always
positive), xt is an exogenous variable at time t, My and Mx are the number of previous time
steps considered (memory) of the variables y and x, respectively, and εt is the estimation
error at time t that is minimized during the training step. It is worth noting that: (1) multiple
exogenous variables can be part of the input feature set, and (2) that the recurrent values
may be derived from the previous output values, i.e., an input feature can be, for example,
g(ŷt−1) instead of the direct output ŷt−1.
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In the original work of Chang et al. [23], a NARX model is trained and used to
estimate future AID values using the most recent three-hour accumulated precipitation
records observed in three sub-catchments in addition to the last AID value estimated. Such
configuration is set up four times, one for each of the four lead times forecasted.

As described in Section 3.3.1, the configuration adopted in our work uses Pt, Qt−1,
Qt, AIDn,t+L−1 to estimate the probability for each TN to be the winner (TNw,t+L) for such
inputs. From such a set of probabilities and the associated IMs of each TN, the respective
IMt+L is retrieved through interpolation or extrapolation (Section 3.5), from which the
AIDt+L required for the prediction of the following step is estimated. Similar to the SOMs
configuration, 9 sets of NARX models were tuned according to the training/validation
dataset groups. Each set f is composed by 17 NARX f ,L models, one for each phase space
constructed towards a lead time L.

All models trained were composed by a three-layer feed forward neural network
structure (one input, one hidden and one output layers). Rectified Linear Unit (ReLu) [46]
was set as the activation function of the input and hidden layers, while Softmax [47] was
used as the activation function of the output layer. The size of the output layer was 12,
each output node of the NARX f ,L matching a topological node of the respective SOM f
model. In such a configuration, the 12 values predicted by the Softmax function represent
the probability of each SOM topological map to be the correct one for a given input. The
networks were trained to optimize the Categorical Cross-Entropy loss function, which
is usually considered as a standard loss function for multi-class classification tasks. The
criterion adopted for early stopping is the increase of loss in the validation dataset between
each epoch.

The number of nodes in the hidden layer was not defined a priori. For each combina-
tion of f and L, 8 neural networks were trained, each with a different number of hidden
nodes ranging from 5 to 12. The configuration that presented the best (lowest) validation
loss was taken as the NARX f ,L and the others were discarded.

3.4. Update SOMs with Associated Variables

After training, the SOMs were updated to have values of Q0 linked to their topological
nodes as additional variables. Q0,t is the instantaneous discharge value at time t, thus each
IMt has a respective Q0,t. The Q0 of a topological node TN is calculated as the mean of the
Q0,t values associated with all IMt clustered as part of TN.

3.5. Hybrid Model Structure

Each pair of NARX f ,L and SOM f is considered a hybrid model that receives the
4-variables input for the NARX models and outputs an IM derived from the SOM topo-
logical nodes for the lead time L. The 9 hybrid models set up for a lead time L are used
simultaneously to produce ensemble forecasts. Such a strategy is often named multiple
predicting cross-validation and the merged product of the ensemble members tends to be
more consistent than the prediction performed by a single model through conventional
approaches [48]. A schematic representation of the reproduced forecasting system apply-
ing the dual NARX-SOM is presented in Figure 4. Due to the lack of descriptive data of
observed inundation flood maps, the discharge produced by the hydrologic model was
assumed to be a realistic response from the catchment to a forcing precipitation data. In an
operational environment, however, the simulated discharge data can be replaced by obser-
vations if real-time stream gauges are timely available, or discharge forecasts produced by
the hydrologic model.
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Figure 4. Overview of the system in the runtime setup demonstrating how the inundation map (IM)
forecasted for a lead time L is obtained from the current data available at time t and from previous
steps s. It represents an ensemble system composed by 9 predictors (E1, . . . , E9), NARX components
have 4 input and 5 hidden nodes (interconnected circles), and SOMs have 3 × 4 topological nodes
(square grids).

The 9 individual inundation maps forecasted for a certain lead time are aggregated
into a single, deterministic map through the Conditional Median/Mean Function (CMMF).
CMMF simply defines the water depth value of the floodable cell n as either the mean or
the median value of the water depths predicted by all ensemble members to the same node
n, represented as the multivariate Dn, by:

CMMFn(Dn) =

{
0 i f median(Dn) = 0,
mean(Dn) otherwise.

(3)

CMMF is used as an alternative to the direct application of the elementwise mean
value to ensure that nodes more likely to be dry (i.e., that had its water depth predicted to
be zero by most of the ensemble members) are not set as wet due to the results of a minority
of the members. The aggregation of multiple ensemble forecasts has the potential to
smooth out oscillations detected in independent realization that are potentially caused by
overfitting [22].

The topologic node with higher value of AID of each SOM model trained is labeled
as the most extreme inundation scenario learned. Such identification is used to determine
whether the predicted inundation map should be estimated by the interpolation or ex-
trapolation of the learned patterns. If the winner topologic node is the most extreme one
and its estimated probability is above 50%, then it is assumed that the input will produce
an inundation condition potentially not covered in the train/validation dataset and thus
an extrapolation from the most extreme scenario shall be performed. The extrapolation
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is performed by the multiplication of the water depths of the most extreme inundation
scenario learned by a factor α, given by:

α =
Q0

TN(Q0)1,L
∗
(

1− β ∗ L
∆t

)
(4)

in which Q0 is the most recent input discharge in the as predictive feature set, TN(Q0)1,L is
the most recent input discharge associated with the winner topologic node, β is a decay
factor, L is the lead time of the forecast, and ∆t is the temporal resolution. The inclusion of
a decay factor aims to simulate an expected reduction of future input discharge after the
observation of extreme conditions (the higher the value of β, the more intense is the decay).
The β value used influences the performance of the maps generated outside of the training
data space and reflects the expectations of the implementers concerning the intensity of
possible future extreme rainfall events. In this work, a decay factor of 0.03 was utilized
after experiments performed in the train/validation dataset.

For all other scenarios, the IMs of the two topologic nodes with highest estimated
probabilities are interpolated by the weighted averaging, so that the interpolated IM
estimated for a lead time L, INTL, is calculated as:

INTL =

(
TN(IM)1,L ∗ EP1,L

)
+
(

TN(IM)2,L ∗ EP2,L

)
EP1,L + EP2,L

(5)

in which TN(IM)1,L and TN(IM)2,L are the water depth values of the floodable cells of the
topologic node with the first and second highest estimated probabilities EP1,L and EP2,L,
respectively.

3.6. Train/Validation and Test Datasets

A total of 87 significant rainfall-runoff events were initially extracted from the available
gauge data (described in Section 2). In this work, a rainfall-runoff event is characterized as
“significant” if a precipitation record is followed by an increase in the discharge recorded
at the HY019 gauge of 2 times the magnitude of the regular baseflow or more. All intense
rainfall events were equally set to have total duration of 24 h, starting 12 h before and
ending 12 h after its peak precipitation record. As the observed precipitation data were kept
unmodified, this set of rainfall events are named RE-O (Rainfall Events—Observations)
hereafter.

A set of 87 synthetic rainfall events were generated out of the RE-O dataset through
the shuffling of the precipitation timeseries observations within the same event (e.g., as if
the gauge HY036 had recorded what was recorded by the HY027 gauge, and as if HY027
had recorded what was recorded by HY021, and so on until all timeseries were set to a
gauge different from its original gauge). Such a spatial disturbance of past observations
through shuffling the location of observations is assumed to be a realistic “what-if” scenario.
This set of records is named RE-SS (Rainfall Events—Synthetic by Shuffling) hereafter.

The 10 RE-O events with highest observed peak flows were selected to compose
the RE-OH (Rainfall Event—Observed Highest) set. An additional augmentation was
performed on the RE-OH events by a simple increase of 10% of all values of the timeseries.
The resulting synthetic events represent scenarios of more intense, less recurrent events
that could be observed but were not captured in the considered data period. This set is
named RE-SE (Rainfall Events—Synthetic by Extrapolation) hereafter. A summary of the
intermediate datasets is presented in Table 1.
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Table 1. Summary of sub datasets.

Acronym Description Number of Events

RE-O Rainfall Events—Observations 87
RE-OH Rainfall Events—Observations (Highest) 10
RE-SS Rainfall Events—Synthetic by Shuffling 87

RE-SE Rainfall Events—Synthetic by
Extrapolation 10

All records of RE-O, RE-OH, RE-SS and RE-SE were used as the precipitation forcing
for the hydrologic-hydraulic model starting from a baseflow steady condition. The simu-
lated IMs and river discharge at HY019 were recorded with a temporal resolution of 15 min
to match the temporal resolution of the precipitation dataset.

The 194 simulated events were subsampled to reduce redundancies. Then, two disjoint
subsets of the subsampled set were built through manual selection of records to compose
the train/validation and the test datasets, respectively. This selection was performed to
reduce the imbalance of the original datasets in which higher recurrence events, usually of
lower intensity, are predominant. The events in the train/validation dataset were randomly
split into 9 groups (or “folds”) for the application of k-fold cross-validation technique in
the tunning of both the SOM and the NARX models.

3.7. Evaluation Metrics

The performance of the NARX models on predicting the correct SOM topological node
was performed through a binary approach using accuracy as the metric, i.e., the topological
node deterministically predicted by the NARX model was compared to the topological
node obtained by direct SOM classification of the respective inundation map. The total
number of correct predictions (Cpred) and the total number of predictions evaluated (Npred)
were used to estimate the overall accuracy as:

Accuracy =
Cpred

Npred
. (6)

Accuracy values range from 0 (no correct predictions detected) to 1 (perfect predictive
power).

Three metrics were used to evaluate the performance of the hybrid model so that
average error, variance replicability and bias of the studied models can be assessed.

The coefficient of determination (R2) calculates the goodness of the fit of an estimation
to a reference dataset in terms of variance replicability. It has values ranging from 0 (worse
possible) to 1 (perfect) and is calculated as the square of the Pearson correlation coefficient
ρ, i.e.,

R2 =

 ∑N
i=1(yi − y)

(
ŷi − ŷ

)√
∑N

i=1(yi − y)2 ∑N
i=1
(
ŷi − ŷ

)2

2

(7)

in which N is the total number of records, y is the mean value of the reference dataset, and
yi and ŷi are the i-th reference and estimated values, respectively.

The root mean square error (RMSE) estimates the average error magnitude in the
estimations from a model given in the same unit as the evaluated variable (meters in this
work), with 0 meaning perfect match and no upstream value constraint. RMSE is given by:

RMSE =

√
∑N

i=1(ŷi − yi)
2

N
. (8)
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Bias is calculated by the relative percent difference of the predictions to the observa-
tions, being calculated by:

Bias =
N

∑
i=1

(
2

ŷi − yi
|ŷi|+ |yi|

)
÷ N . (9)

A positive bias value represents overestimation while a negative value indicates
underestimation, both bounded by 2 and −2, respectively. The closer the bias value is to 0,
the less biased is considered the model. This approach to calculate bias was selected due to
its tolerance to zero values, be it in the reference or in estimation.

Contingency tables synthetize the performance of a model in predicting the occurrence
of a certain type of event through the number of true positives (or “hits”, H), false negatives
(or “misses”, M), false positives (or “false alarms”, F) and true negatives (or “correct
no-alarm”, N). In the context of contingency analysis of this work, the occurrence of an
“event” is determined by the exceedance of the water depth in a floodable cell over a given
threshold during any moment of a time interval. In this work, water depths of 10, 25,
50, 100 cm were considered as thresholds representing the respective conditions of minor,
moderate, high and major threat for the traffic of cars and urban trains.

Contingency metrics considered in this work are the probability of detection (POD),
the Success Ratio (SR) and the Critical Success Index (CSI) at the 2 POIS for the prediction
of multiple maximum water depths. POD is a metric of sensibility and has values ranging
from 0 (completely insensitive, i.e., unable to predict any tested event) to 1 (completely
sensitive, i.e., able to predict all tested events) and is given by:

POD =
H

H + M
, (10)

while SR is a metric of reliability also with values between 0 (completely unreliable, i.e., no
forecasted events were observed) and 1 (completely reliable, i.e., all forecasted events were
observed), and is calculated by:

SR =
H

H + F
. (11)

There is a usual trade-off between the POD and the SR metrics: while models charac-
terized by overestimated predictions tend to have high POD and low SR scores, models
with underestimated prediction forecasts tend to present the opposite POD/SR relationship.
As both sensibility and reliability are important features for predicting floods, such duality
may turn the task of evaluating the overall performance of models to be subjective. The
CSI metric can be seen taken as an objective metric that balances both the abovementioned
characteristics and is calculated as:

CSI =
H

H + F + M
(12)

with values ranging from 0 (worse possible with no correct prediction) to 1 (best possible
with no miss predictions). By not taking into consideration the component N, CSI values
tend to be numerically lower than accuracy values in circumstances in which non-event
records significantly outnumber event records, as for the prediction of low recurrence
flood events. Given such consideration, we assume in this work that a model must have
a minimum CSI of 0.8 to be considered useful for flood forecasting from the perspective
of decision makers. This can be considered a conservative threshold after the minimum
accuracy of the same value as reported by [49] for a catchment also managed by TRCA.

4. Results and Discussion
4.1. Selected Rainfall-Runoff Events

Table 2 presents the overall characteristics of the 24 h events selected for the tuning
and evaluation of the data-driven models. To reduce overbias of the model towards
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highly recurrent scenarios, several rainfall events with low maximum AID (lower than
0.15 m) were discarded. A total of 30 events were effectively used out of the 194 initial
simulations performed, 17 of which composed the train/validation dataset while the
remaining 13 composed the test dataset. The most extreme event, identified as e41-vDr_x11,
was included in the test dataset so that the performance of the model for extrapolating
results could be assessed. Figure 5 shows the AID timeseries of all selected events and
illustrates the data distribution of each dataset, with the timeseries of the two events used
as study case scenarios (Section 4.4.2) highlighted.

Table 2. Events characteristics.

Dataset Events
Total P (mm) Peak Q (m3/s) Peak AID (m)

Min Max Min Max Min Max

Train/validation 17 84.1 238.6 83.6 294.9 0.13 1.39
Test 13 95.2 246.9 64.1 274.9 0.06 1.52
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Figure 5. AID timeseries of the rainfall-runoff events selected to compose the train/validation (left)
and test (right) datasets. Highlighted timeseries are from events selected as study cases.

4.2. Assessment of the SOM Models Trained

As discussed in Section 3.2, nine SOM networks were trained using the k-fold cross
validation approach, each of which have 3 × 4 topological dimension and output node
weights representing the water depth at individual cells of the 2D predicted inundation
map. Figure 6 presents the topological nodes of one of the nine SOMs trained to illustrate
their overall organization. As expected, it can be observed a gradual increase of the flood
extension and overall water depth from the map with virtually no flooding (node 1 × 3)
to the map related to the most extreme conditions (node 4 × 1). The consistency of the
inundation maps obtained demonstrate that SOM is able to properly cluster high-resolution
grids (i.e., high number of features) with a relatively limited number of inundation maps
used as samples for training (1320 IMs) and validating (176 IMs). Linear discontinuities
through the inundated area and river path are due to the existence of crossing bridges,
which are modeled in SWMM as closed conduits to represent their underneath water
pathways instead of nodes that are interpreted as floodable cells.

It is also interesting to note that the four maps in the top left corner of Figure 5 may
be taken as scenarios of concern for the POI 2 while all scenarios in columns 3 and 4 may
result in the need of actions for POI 1. In an operational setting, such a configuration could
be used as additional information to improve the perception of imminent risk through the
interpretation that the topologically closer a predicted winner node is to these “clusters of
clusters”, the higher should be the awareness level of the forecasters.
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4.3. Assessment of the NARX Models Trained

As discussed in Section 3.3, eight NARX models were trained for each of the 17 lead
times predicted for each of the nine folding groups, resulting in a total of 1224 models
trained, 153 of which were selected as the ones with the best performance. There was not a
predominant set of hyperparameter values in the selected models, which corroborates with
the general concept that each independent problem may have different optimal network
structures.

The accuracy of the selected NARX models on predicting the correct topological node
of its related SOM out of the hydrological features is presented in Figure 7. As expected,
the predictive performance on the training dataset is superior to the performance on
the validation dataset, but the relatively small difference between their accuracy values
indicates an acceptable degree of generalization. As also expected, the overall performance
of the classifier decreases as the lead time of the prediction increases from the lowest
lead time up to a lead time of 2 h, after which the performance only oscillates around
a constant value. As the response time of the catchment is also in the order of 2 h, the
discontinuity can be explained by the influence of precipitation and discharge in the earlier
lead times, while for longer lead times the performance is influenced almost completely by
the recurrent variable of AID. The performance obtained was superior to 80% for all lead
times; however, such a result must be observed with discretion as the AID values used as
part of the predictive feature sets were calculated from the IMs simulated by the physically
based model instead of being derived from estimations of the outputs from the surrogate
model for previous time steps. Such a configuration represents an ideal scenario in which
the surrogate model reproduces with perfection the physically based model.
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It is worth noting that a misclassification may still be considered a useful classification
if the predicted TN neighbored the correct TN, which would result in a low overall error
due to their similarities. The global error of the combined model is explored in Section 4.4.
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4.4. Assessment of the Hybrid Model
4.4.1. Global Performance

After both SOM and NARX models were trained using the train/validation dataset,
the effective performance of the hybrid model was assessed using the testing dataset in an
operational setup, i.e., with the value of the recurrent feature AID being obtained from the
inundation map latest predicted in previous steps.

Figure 8 shows the performance of the forecasts in terms of R2, RMSE and bias for the
different lead times considered. The higher degradation in performance with respect to
the lead time when compared to the NARX analysis is due the cumulative error carried
with the sequential estimation of AID values. Results were considered acceptable for the
lead time of up to 2 h (120 min) in terms of both R2 (above 0.8) and RMSE (bellow 0.25 m).
All lead times presented low overall bias; however, the significant spread for lead times
longer than 1.5 h (90 min) indicates a high level of uncertainty that can be considered a
constraint for decision makers. The slight trend towards overestimation can be induced
by the loss function used during the training of the NARX models, which prioritizes the
correct classification of less recurrent (in our case, more intense) events over more common
(and thus less intense) events.

The forecasts were able to satisfactorily predict the occurrence of flood conditions at
different depths on both POIs (Tables 3 and 4). The aforementioned tendency to overesti-
mate the forecast is reflected in highs level of sensitivity (POD), allowing the early detection
of more than 90% of the upcoming events in most of the cases and increasing with longer
lead times. However, as the sensitivity increases with longer lead times, the number of
false alarms issued also increases, which disproportionately decreases the reliability (SR) of
the predictions and consequently reduces the overall skill of the model (CSI). CSI is higher
than 0.8 for maximum lead times ranging from 30 min (POI 1 for a threshold of 50 cm)
up to 150 min (POI 1 for threshold of 25 cm), which indicates that the proposed system
can be useful to forecasters. The overall better performance to detect events in the POIS
2 for early lead times when compared to the POIS 1 (Figure 9) can be explained by the
different location and surrounding areas of each point. POIS 2 is located close to the margin
of stream and is not subject to pounded water, which leads to its water depth to be highly
correlated to the instantaneous river water depth. Conversely, the POIS 1 has its behavior
more correlated to longstanding flow conditions due to its longer distance from the stream
margin and its surrounding micro-relief to be subject to pounded water, which results in
better prediction performances at longer lead times.
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4.4.2. Performance on Selected Events

The two most extreme events of the testing dataset (highlighted in Figure 5) were
selected as study cases. The first event (e32-r-x10) refers to the storm event observed
during the night of 29 May 2013, which caused a temporary interruption of the urban train
operations and the partial submersion of cars due to inundations in the POIs [50]. Such
a rainfall event has a magnitude below the most extreme event in the train/validation
dataset, thus it is expected to be reproduced by the hybrid model from the interpolation
of its “known” events. The second event (e41-r-x11) simulates the storm event that was
observed less than two months after the first one, on 9 July 2013, when several passengers
had to be rescued from an urban train strained in the POI 1, and the road traffic was
interrupted in the POI 2 due to river overbank conditions [51]. It has a magnitude above the
most extreme scenario of the train/validation dataset, thus serves to assess the capabilities
of the hybrid model to perform predictions through extrapolation of learned patterns.
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Table 3. Contingency metrics at different lead times for the POI 1.

Metric
Water

Depth (cm)
Lead Time (minutes)

0 30 60 90 120 150 180 240

POD

10 0.97 0.97 0.98 0.98 0.99 0.99 0.99 1.00
25 0.98 0.98 0.99 0.99 0.99 0.99 0.99 0.99
50 0.97 0.98 0.98 0.99 0.99 0.99 0.99 0.99

100 0.91 0.93 0.95 0.96 0.97 0.97 0.97 0.97

SR

10 0.86 0.87 0.89 0.86 0.80 0.73 0.68 0.65
25 0.93 0.85 0.85 0.85 0.85 0.83 0.79 0.70
50 0.94 0.84 0.79 0.75 0.73 0.71 0.68 0.61

100 0.99 0.98 0.97 0.94 0.85 0.81 0.79 0.76

CSI

10 0.83 0.85 0.87 0.85 0.80 0.72 0.68 0.65
25 0.91 0.84 0.84 0.84 0.85 0.83 0.79 0.69
50 0.91 0.82 0.78 0.74 0.72 0.70 0.68 0.60

100 0.90 0.91 0.92 0.91 0.83 0.78 0.77 0.75

Table 4. Contingency metrics at different lead times for the POI 2.

Metric
Water

Depth (cm)
Lead Time (minutes)

0 30 60 90 120 150 180 240

POD

10 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00
25 0.97 0.99 0.99 0.99 0.99 0.99 0.99 1.00
50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

100 0.97 1.00 1.00 1.00 1.00 1.00 1.00 1.00

SR

10 0.95 0.90 0.81 0.74 0.71 0.68 0.66 0.58
25 1.00 0.97 0.95 0.88 0.82 0.79 0.75 0.70
50 0.99 0.94 0.90 0.87 0.82 0.74 0.71 0.68

100 0.97 0.89 0.85 0.78 0.71 0.64 0.60 0.58

CSI

10 0.95 0.89 0.81 0.74 0.71 0.68 0.66 0.58
25 0.97 0.96 0.94 0.88 0.81 0.78 0.75 0.69
50 0.99 0.94 0.90 0.87 0.82 0.74 0.71 0.68

100 0.95 0.89 0.85 0.78 0.71 0.64 0.60 0.58

A comparison between IMs produced by the physically based model for the event
e32-r-x10 and the respective predictions generated by the surrogate model at a fixed issue
time is shown in Figure 10. It is possible to observe that there is little deviation from the
simulation in the estimation for the present-moment condition, and as that the error due
to overestimation tends to increase as lead time increases. Despite such errors, the overall
development of the inundation is properly reproduced, and decision makers responsible
for closing (or not) the road at the POI 2 would be properly informed that a minor to
moderate inundation scenario would occur in the upcoming 30 min, while a moderate to
major condition would be attained within 60 min. A similar result can be observed at the
POI 1 in spite of its early underestimation of the water depth.

The overall maps issued at different lead times for the peak inundation condition of
the event e41-r-x11 and their comparison with the maps produced by the physically based
model are shown in Figure 11. As it can be observed, IMs with high overall similarity
are forecasted up to 2 h ahead of the most extreme condition despite some significant
underestimation. Figure 12 shows a local view of the POI 2 with the maps produced
directly by PCSWMM and by the surrogate model, illustrating how the overall inundation
pattern is properly reproduced, and how the forecasters would be notified that the roads
along the riverbank would have points in which water height ranges between 1 to 2 m. As
the lead time decreases (i.e., as the issue time approximates the peak inundation time) and
more precipitation and discharge data become available, the overall underestimation of
the water depth also gradually significantly decreases, thus illustrating the effects of recent
data on “correcting” previously issued predictions (Figure 11b,c,e,f).
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4.5. Runtime Comparison

A computer with the following specifications was used to compare the runtime of both
the hydrologic-hydraulic model and its surrogate counterpart: CPU Intel I9 with 3.6 GHz,
eight cores and 16 logical processors; 64 GB memory RAM. The execution of the physically
based hydraulic model for a simulation time of 4 h took 4.5 h to complete, confirming its
unsuitability for real-time operational purposes. On the other hand, the generation of the
inundation maps for all lead times up to 4 h ahead of the same event took the order of 11 to
15 min, which can be considered compatible to operational forecasting setups. It is worth
mentioning that the hybrid models were executed without parallel processing and thus
have the potential to have their execution time reduced if such techniques are applied.
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4.6. Contraints and Limitations of the Methodology

As a surrogate model, the operational adoption of the proposed methodology depends
on a pre-existing hydrological/hydraulic model to be available and properly configured.
The implementation of such models, however, depends on the availability of detailed
information of the study area, such as high-resolution DEMs and drainage systems, which
may not be guaranteed for specific locations.

To maintain a proper replication of the physically based model used as reference, the
surrogate model needs to be retrained every time the physically based model is modified.
Such updates may be performed with certain recurrence to include, for example, significant
structural changes in the covered domain (such as changes in the land use) or recalibrations
to consider changes in the rainfall regimes induced by climate change.

5. Conclusions and Future Works

This work presents evidence that hybrid NARX-SOM models can be effective in
predicting inundation maps for flash floods caused by river overflow of catchments with
short response time. The promising results were obtained using a restrict number of
training events, which can be considered an appealing feature as eventual retraining of
the hybrid models would require limited re-simulations of the hydraulic model. Forecast
products were considered valuable for decision makers for lead times ranging from 30 min
to 2.5 h, which can be considered acceptable for the purposes of closing streets to traffic
and stopping the operation of trains. To increase the lead time, the use of precipitation
forecasts should be considered and are the potential subject of future studies. In the current
study, multiple predictors were trained independently using the cross-fold approach and a
simple aggregation of their predictions was used as deterministic forecasts. The production
of probabilistic flood inundation maps [13] is of continued interest, and future works will
explore the potentials of the dual NARX-SOM approach to produce inundation maps
accompanied with consistent uncertainties. In addition, the presented results are limited
to a single study scope and further experiments are expected to be developed to further
assess its applicability to other scenarios.
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Abbreviations

Acronyms Meaning
AID Average inundation depth
CMMF Conditional Median/Mean Function
CSI Critical Success Index
DEM Digital Elevation Model
DRB Don River Basin
EP Estimated probability
NARX Nonlinear Autoregressive neural network with exogenous inputs
POD Probability of detection
POI Point of interest
RE-O Rainfall Events—Observations
RE-OH Rainfall Events—Observations (Highest)
RE-SS Rainfall Events—Synthetic by Shuffling
RE-SE Rainfall Events—Synthetic by Extrapolation
RMSE Root mean square error
SOM Self-Organizing Maps
SR Success Ratio
SWMM Storm Water Management Model
TN Topological node
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