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Abstract: This research proposes an investigative experiment employing binary classification for
short-term electricity price spike forecasting. Numerical definitions for price spikes are derived from
economic and statistical thresholds. The predictive task employs two tree-based machine learning
classifiers and a deterministic point forecaster; a statistical regression model. Hyperparameters for the
tree-based classifiers are optimized for statistical performance based on recall, precision, and F1-score.
The deterministic forecaster is adapted from the literature on electricity price forecasting for the
classification task. Additionally, one tree-based model prioritizes interpretability, generating decision
rules that are subsequently utilized to produce price spike forecasts. For all models, we evaluate the
final statistical and economic predictive performance. The interpretable model is analyzed for the
trade-off between performance and interpretability. Numerical results highlight the significance of
complementing statistical performance with economic assessment in electricity price spike forecasting.
All experiments utilize data from Alberta’s electricity market.

Keywords: electricity price forecasting; price spike occurrence forecasting; interpretable AI; forecast
evaluation

1. Introduction

Price spikes are unexpected and abrupt extreme prices [1] whose value can be several
orders of magnitude higher than normal electricity prices [2]. Moreover, due to their
stochastic nature [3], price spikes are short-lived extreme price variations [4] observed in
the short-term operation of all wholesale electricity markets. These extreme prices impact
both, the supply and demand sides.

The occurrence of electricity price spikes in the short term can be associated with one
or a combination of several factors. For example, forced outages of power generators and
transmission lines [4,5]; transmission line congestion [6]; forecast errors in the production
of intermittent generation (i.e., wind and solar) [7]; sudden increments of the electrical
demand [8]; and strategic bidding of market participants [9]. Overall, these extreme prices
are shaped by the complex interactions between the technical and economic forces driving
the operation of the power system and the electricity market.

Real-time and day-ahead electricity markets are impacted by the occurrence of electric-
ity price spikes. Notably, real-time markets are more prone to observe a higher frequency
of the occurrence of these spikes [10]. This is because unplanned physical power system
disruptions need to be handled in real time, hence, increasing the probability of high
marginal cost generators to be dispatched to provide any last resort capacity to cover the
system contingency [8]. However, in day-ahead markets, price spikes have become more
frequent in recent years [11], too. This is likely attributed to the increased penetration of
variable generation resources that carry an inherent production uncertainty [12,13]. More
frequent and severe spikes in both types of market structures require market participants
to be better prepared to hedge against the increasing volatility of electricity prices.
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Price spikes are the most prominent characteristic of the wholesale electricity market
prices [10]; these extreme prices have significant economic implications. For the supply
side, price spikes present opportunities to generate more profits. Likewise, for the demand
side, spiky prices entail high energy costs that should be avoided where possible. More-
over, for energy traders, price spikes bring opportunities for economic arbitrage. Thus,
predicting the occurrence and/or magnitude of these extreme prices is important for all
market participants.

Different types of price spike forecasts are reported in the literature. For example,
the authors of [8,9,13,14] estimate forecasts of the probability of occurrence of price spikes.
Moreover, some works in price spike forecasting use a hybrid approach, e.g., predictions of
the occurrence of price spikes are used to generate deterministic spiky forecasts [2,3,15,16].
Likewise, other works on price spike forecasting directly generate deterministic fore-
casts [17–20]. Finally, using a binary classification approach, the authors of [21,22] generate
class forecasts of the occurrence of price spikes.

In a wholesale electricity market, price spike forecasts serve different purposes for
different types of market participants. For example, deterministic price spike forecasts can
be used to optimize the bidding strategies of a generation asset in the ancillary services
market [23]. Likewise, a retailer of electricity may use forecasts of the probability of
occurrence of spiky prices to hedge its operational portfolio against future extreme prices [8].
From the modeling perspective, price spike forecasts are conditional to a certain threshold.

Selection of a threshold for price spikes usually lies on either two general categories,
i.e., fixed and/or variable [24]. Some authors [4] also identified these thresholds as eco-
nomic or statistical, respectively. Furthermore, the selection of the threshold for high or
extreme prices would vary subject to different criteria, for instance, market structure and/or
modeler’s expert knowledge; and is being argued to be generic [8].

A price spike forecasting model requires the definition of a threshold that would
categorize the spiky prices from normal prices. This holds for the majority of the price
spike forecasting approaches in the literature, i.e., deterministic [23]; occurrence as a
probability [13]; and occurrence as a binary classification approach [21]. For example, in
the price spike occurrence forecasting literature, we have observed the proposed modeling
methodologies involve one, or a combination of the two general price spike thresholds
previously mentioned, and one or different models are used to generate the forecasts of the
spiky prices either as probabilities or price classes.

From the multiple modeling approaches in the literature of price spike occurrence
forecasting, methods can be categorized as parametric or non-parametric. Examples of para-
metric methods used to forecast the occurrence of price spikes are [4,8,13,24,25]. Likewise,
examples of non-parametric methods that have been also used to predict the occurrence
of price spikes are [3,21,22,26]. From this set of references, to better understand the deci-
sions made by a predictive model, the authors of [24] map the contribution importance of
different input features to predictions of the probability of occurrence of price spikes.

The notion of interpretability in machine learning can be understood as models that
are inherently interpretable [27]. Conversely, explainability refers to post hoc explanations
that are generated on top of black box models [27]. In electricity price forecasting, model
interpretability has recently started to gain inertia; some of these models are based on inter-
pretable neural networks, e.g., see the studies from [5,28]. Other works, like [24], introduce
a form of model explainability as a post-processing stage. Either an interpretable or an
explainable model, the goal seems to be the same, i.e., a collective research effort towards
enhancing the trustworthiness of the predictions generated by the AI algorithms [28]. If
this is achieved, it should help on reduce the barriers to better acceptability of AI in the
industry [29].

In this paper, we contribute to the existing literature by proposing an investigative
methodology to evaluate how alternative price spike forecasting methods perform when
assessed against different fixed and variable price spike thresholds and performance evalu-
ation metrics. We employ various metrics for both, model hyperparameter optimization
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and performance evaluation. In particular, we apply classification-based and regression-
based methods. The deployed classification-based methods are optimized against recall,
precision, and F1-score to generate binary predictions of the occurrence of price spikes.
The regression-based model is adapted from the literature on electricity price forecast-
ing [30]. This model generates deterministic point price forecasts that are converted to
binary spike/non-spike predictions based on the different spike thresholds. We evaluate
the performance of all models against both, data-driven and economic measures. Fur-
thermore, inspired by the recent works in interpretable machine learning in electricity
price forecasting [5,28], we explore the costs and benefits of interpretability in price spike
occurrence forecasting. Here, we use the decision rules generated from an interpretable
model [31] to predict the occurrence of spiky prices. Based on the obtained statistical
and economic performance, we quantify the model’s trade-off between performance and
interpretability. In other words, the economic impact of interpretability, which, to the best
of our knowledge, has not been explored yet in the price spike forecasting literature. This
paper provides a comprehensive investigation of the value of predicting electricity price
spikes when alternative models and performance evaluation measures are implemented.

The rest of this paper is organized as follows. Section 2 introduces the relevant
literature associated with the proposed research study. The investigative experiment used
to predict the occurrence of price spikes is presented in Section 3. Section 4 discusses in
detail the numerical results of the analysis. Likewise, Section 5 summarizes the findings
of this investigative methodology, discusses the limitations of the proposed study, and
provides potential future research paths.

2. Literature Review

This section provides a review of the works in electricity price spike forecasting.
Particularly, research methodologies on price spike occurrence forecasting. Furthermore, we
review those works in the electricity price forecasting literature that incorporate economic
evaluation as part of the task, and, if applicable, some form of explainability.

2.1. Forecasting the Occurrence of Price Spikes

The task of forecasting electricity price spikes requires establishing a threshold over
which price spikes can be numerically defined. In other words, prices above this threshold
would be mapped as price spikes. Thresholds for price spikes can be either economic [4] or
statistical [3], respectively. They are also known as fixed [32] or variable [9] thresholds, too.

The definition of the proper threshold for price spikes depends on different factors.
Fixed thresholds are selected based on the economic applications or practices of the dif-
ferent market participants [8,26]. For example, common fixed threshold values observed
in electricity price spike occurrence forecasting correspond to AUD 100/MWh or AUD
300/MWh [4,8,14]. Authors in [25] select fixed thresholds for price spikes corresponding to
AUD 100/MWh, AUD 250/MWh, and AUD 500/MWh, respectively. The authors of [21]
uses fixed thresholds for price spikes of USD 150/MWh and USD 200/MWh. Similarly,
the work in [26] selects fixed price spike thresholds of EUR 80/MWh, EUR 90/MWh, EUR
100/MWh, EUR 120/MWh and EUR150/MWh, respectively. Overall, fixed thresholds
present the disadvantage of not considering the price fluctuations over time [1,13].

In the literature on electricity price spike occurrence forecasting, different variable
thresholds have been proposed. Variable thresholds consider the electricity price move-
ments associated with the market dynamics, e.g., daily or weekly seasonality [19,33]. For
example, authors in [21] define a variable threshold using the mean plus two standard
deviations of the Australian electricity prices. Similarly, the work in [22] defines a vari-
able threshold for the Australian market using a kernel function to estimate the expected
value of the prices plus the adjusted standard deviation affected by a constant. In [13] a
two-regime autoregressive threshold conditional to upper (AUD 400/MWh) and lower
(AUD 80/MWh) limits, is used. Likewise, a variable threshold based on the 5th and
95th quantiles is proposed by [24]. Finally, recursive filters, variable price thresholds,
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recursive filters on prices, and regime-switching classification, are used as price spike
thresholds in [9].

Predicting the occurrence of price spikes is not a trivial task [9]. Generally, two different
approaches are observed in the literature. The first approach considers a parametric model-
ing; which can be used to quantify the uncertainty of the predictions [24], e.g., probabilistic
price spike occurrence forecasting. The second consists of a non-parametric approach that
treats the problem as a pattern recognition task [33], e.g., a binary classification [21].

Different parametric models have been used to forecast the occurrence of price spikes.
For example, authors in [8,13,25] fit different econometric models to predict one-day and
one-step-ahead probabilities of the occurrence of price spikes in the Australian market.
These models consist of a zero-inflated Poisson autoregressive with exogenous variables, a
Poisson autoregressive, and an autoregressive conditional hazard, respectively. Considering
a one-step-ahead forecasting horizon, authors in [14] forecast the occurrence of price spikes
in the Australian market by fitting a dynamic copula-based multivariate discrete choice
model. In [4] a modified version of the model proposed by [8] and different configurations
of the logit and scobit models generate one-step-ahead forecasts in the Australian market.
Finally, the work in [9] uses the demand-to-capacity ratio to forecast the 2-day up to 2-week
probability of occurrence of price spikes in the UK market; and finds this probability is well
fitted to an exponential function. Authors in [24] forecast the probability of occurrence of
day-ahead price spikes in the Australian electricity market using a multivariate logistic
regression. Similarly, authors in [34] generate 14-day-ahead forecasts of the occurrence
(probability and binary) of price spikes in the Japanese market using a modified form of
the Hawkes model.

Non-parametric models have also been used in electricity price spike occurrence
forecasting. For example, the authors of [26] generate forecasts of the probability of price
spikes in the Dutch market using a fundamental model [1] consisting of the functional
form of the relation between supply and demand. Authors in [21] predict the occurrence of
day-ahead price spikes in the PJM and Australian markets using a probabilistic NN in a
binary classification approach. Authors in [35] predict the occurrence of one-step-ahead
price spikes in the region of Queensland, within the Australian market, using six different
machine learning classifiers. Finally, the work in [22] forecasts the occurrence of price
spikes using SVM classifiers in the Australian market. In all cases, these works rely on a
variety of error metrics that are usually specific to evaluate the statistical performance of
the algorithms in forecasting price spikes [3].

Electricity prices exhibit right skewness and high levels of kurtosis due to the presence
of extreme price spikes [10]. Thus, in price spike forecasting, it is important to consider error
metrics that properly penalize forecasts based on these characteristics. At their convenience,
market participants should look for the set of error metrics that take into account the
asymmetric nature imposed on the spot prices time series due to the presence of extreme
price spikes [25]. In other words, metrics that penalize the model’s decision on incorrectly
assigning the value of a normal price to a price spike, or vice versa.

The literature on price spike forecasting proposes different metrics to evaluate the
forecasts. For example, ref. [25] defines an error metric with attention on penalizing
more the underestimation of price spikes than their overestimation. Authors in [8] use
different error metrics, namely, log-probability score error, the asymmetric loss score, mean
absolute error (MAE), and root mean square error (RMSE). In [4,14] the spike forecast
errors are evaluated with the predictive loglikelihood and the Cramer statistic. The work
from [16] proposes the spike prediction accuracy (i.e., recall) and confidence (i.e., precision)
evaluation metrics; which are further used by [3,20,21,35]. In [24] the area under the curve,
which can be derived from the receiver operating characteristic, is used to evaluate spiky
forecasts. Similarly, reference [13] uses different error metrics, e.g., true (false) positive
rate, forecast score, MAE, RMSE, mean probability score error, and the asymmetric loss
used in [8]. The coefficient of determination R2 is used to evaluate the good-of-fitness of
the probabilities of observing price spikes by [9]. In [34] the MAE, an adjusted weighted
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accuracy, and the Matthews correlation coefficient are used as metrics to evaluate the spiky
forecasts. Overall, price spike forecast error metrics should be associated with a market
participant’s decision-making process [35].

The investigative studies on price spike occurrence forecasting from [4,35] propose
the use of either a fixed or variable threshold, respectively. In contrast to these studies, our
investigative study incorporates the use of both, fixed and variable thresholds. Moreover,
in contrast to other non-parametric (i.e., machine learning) modeling approaches in the
price spike occurrence forecasting literature [21,22,35], we select the optimal set of hyperpa-
rameters using different error metrics during the hyperparameter optimization process.

2.2. Economic Evaluation of Electricity Price Forecasts

An economic evaluation of electricity price forecasts allows market participants to
assess the inherent benefits of these predictions, such that profits can be maximized [36].
Additionally, the economic risks posed by price spikes on these market participants suggest
that the evaluation of the forecasts goes beyond measuring their statistical performance,
and invites to carefully design price risk management strategies [37].

Different case studies are presented in the price forecasting literature. For example,
the authors of [8] evaluate the profitability of the spiky forecasts by simulating a trading
strategy based on future contracts. The main goal is to simulate hedging the risk that
an Australian retailer of electricity would have against price spikes. The work in [35]
quantifies the cost-benefit that the forecasts of the occurrence of price spikes have on a
generator aiming to optimize its bidding strategies in the Australian market. The economic
impact of electricity price class forecasts for the New York market is evaluated with a
demand-side management strategy applied to an industrial load in [38]. Reference [39]
proposes a statistical arbitrage trading strategy based on price differences forecasts for
the short-term Dutch electricity markets (i.e., day-ahead, intraday, and balancing). The
trading positions are managed using deep reinforcement learning agents. Overall, due to
the increasing penetration of intermittent generation, modern electricity markets present a
challenging environment for risk management to the market participants [40].

Accounting for the uncertainties of the price forecasts allows market participants
to better evaluate the risks associated with different trading activities, e.g., managing a
power portfolio [41]. Recent works in electricity price forecasting evaluate the economic
implications of probabilistic forecasts. For example, authors in [36,41,42] quantify the prof-
itability of probabilistic price forecasts in the German day-ahead market by implementing
a trading strategy that looks to optimally allocate bids to charge and discharge a battery
storage system.

To add to an already complex operation of modern electricity markets, as previously
stated, researchers have been also inspired to explore model interpretability in electricity
price forecasting. One reason is that computational intelligence models [1], i.e., AI models,
have been demonstrated to outperform state-of-the-art statistical methods in price forecast-
ing applications [11]. However, the decision-making process of AI models still represents a
barrier to acceptability among industry stakeholders [29].

Finally, the work in [35] quantifies the benefits and cost impacts of a price spike
occurrence forecasting strategy based on empirically varying a series of factors that directly
affect the weights of correctly or incorrectly classified price spikes. In other words, factors
that affect the weights of the true (false) positives and negatives. In contrast to these authors,
our economic evaluation allows a selected price spike threshold to quantify how much the
benefit or cost would be for a market participant.

2.3. Interpretability in Electricity Price Forecasting

The literature in electricity price forecasting is aware of the importance of model
interpretability in AI. An interpretable model can serve different purposes. For example, to
enhance the trustworthiness of an algorithm’s output, to better understand the interactions
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between input variables and the model’s output, and to improve our understanding of the
phenomenon under study [28,43].

Authors have used interpretable models in electricity price forecasting. For example,
the authors of [5] present an interpretable Transformer-based probabilistic forecasting
model to predict the imbalance electricity prices in the Belgian market. Here, interpretabil-
ity plays a key role because the Transformer-based attention mechanism allows it to learn
the non-linear temporal (past and future) relationships between the input features and the
target variable at specific time steps. Moreover, it allows for global and local interpretability
analysis of input features associated with their temporal nature. Similarly, the work by [28]
proposes a neural basis expansion analysis with exogenous variables to generate price
forecasts in four (one) European (US) day-ahead markets. Here, interpretability is achieved
as the combination of a stack of fully connected NN, along with a mechanism capable of de-
composing the forecasts time-series into its trend and seasonal components (e.g., harmonic
functions and polynomial trends), as well as the effects of exogenous features (time-varying
local regression). Moreover, using a multivariate logistic regression model, authors in [24]
conduct relative importance analysis to evaluate the impact the input features have on
predicting the probability of occurrence of price spikes in the Australian market. Authors
in [44] generate electricity price point forecasts for Ontario’s market using a single-layer
NN and an adaptive neuro-fuzzy inference system based on decision rules. These rules are
of the form ‘if-then’, i.e., antecedent-consequent.

Even though interpretable AI promises to bring innovation to the field of electricity
price forecasting, quantifying the economic benefits and risks of the price forecasts is of
importance to the market participants. Hence, we quantify the so-called trade-off between
model performance and interpretability. In this sense, performance can be understood as
the different evaluations a model is subject to, i.e., statistical and economic. Moreover, to
the best of our knowledge, no other work in the electricity price spike forecasting literature
has explored the economic impact of interpretability.

3. The Proposed Methodology

The proposed investigation methodology uses a set of different forecasting models,
input features, price spike thresholds and evaluation error metrics to generate forecasts of
the occurrence of electricity price spikes in a binary classification task. Additionally, the
value of the forecasts is also quantified with an economic evaluation.

3.1. Modeling Approach

A set of models, i.e., classification-based (interpretable and non-interpretable) and
regression-based models Ck, k ∈ {k1, k2, ...} generate binary predictions ĉk ∈ {0, 1} of the
occurrence of normal and price spikes at the forecasting origin. Here, class 0 represents
normal prices, and class 1, price spikes. Moreover, each classifier Ck is trained, validated
and tested using a dataset D, where {X, y} ∈ D, D ∈ R. X is the set of input features and y
is a vector of historical spot prices.

The feature set X consists of a combination of features that help classifier Ck to better
capture the extreme price movements and the seasonal effects at the forecasting origin.
Here, observed and forecasts of the features at times t and t− h are used to generate the
one-step-ahead forecasts of class prices ĉk.

In electricity price forecasting is a common practice to use lagged values of the features
to account for seasonal effects of the spot prices [45], e.g., daily and weekly seasonality.
Furthermore, in electricity price spike forecasting, lagged values should also account for
the fact that price spikes tend to cluster during short periods of time [13,34,46], e.g., no
more than 24 h [3].

Different price spike thresholds τα are used in the proposed investigation study to
generate binary electricity price class predictions ĉk. Let us define τα as follows:
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τα =

{
τ
(I)
α = v, v ∈ {v1, v2, ...}

τ
(I I)
α = µ +K · σ,K ∈ {1, ..., n}

(1)

The set of thresholds in (1) correspond to fixed and variable thresholds, i.e., τ
(I)
α and

τ
(I I)
α , respectively. Here, v and K are numeric constants used to define a different spike

threshold value. Particularly, in τ
(I I)
α , µ and σ represent the mean and standard deviation

of a vector of spot prices, respectively. Moreover, thresholds τ
(·)
α convert the observed

prices y to price classes c ∈ {0, 1} such that a classifier-based model Ck, generates class
price predictions ĉk. Likewise, since a regression-based model Ck predicts ŷk, thus τ

(·)
α is

used such that ŷk is converted to ĉk.
In price spike forecasting, different thresholds serve different purposes. For example,

fixed thresholds, i.e., τ
(I)
α in (1), can be defined based on a market participant’s future

short-term operation that would satisfy a profitable economic expectation in the electricity
market. Fixed thresholds can be also thought to define an economic spike [4], associated,
for example, with trading activities [8]. However, fixed thresholds on spiky prices do not
reflect spot price dynamics.

Electricity prices are responsive to the market dynamics. For example, the seasonal
effects of the electricity demand [11] and the variability of an increasing amount of renew-
able resources [13,47], among others. As opposed to fixed thresholds, a variable threshold
for price spikes, i.e., τ

(I I)
α in (1) accounts to reflect such dynamics [19,24]. However, the

definition of a variable threshold is conditional to past market price dynamics. Once
defined, it can be used to forecast future price spikes. However, it is restricted to the
flexibility allowed by the fixed threshold to set a value that appropriately aligns with future
short-term economic operations. In any case, in price spike forecasting, a proper selection
of a threshold can be adapted to the different necessities of market participants. Here,
predictions ĉk from classifier Ck should be evaluated based on a selected forecast error
metric that accounts for the price spikes.

3.2. Statistical Evaluation Error Metrics

A forecast error metric Ei evaluates the statistical performance of a classifier Ck. More-
over, the training forecast error metric E∗j is used during the hyperparameter optimization
process of classifier Ck.

The optimal set of hyperparameters is found during the training stage by using a
Bayesian optimization approach and an error function E∗j . Once found, predictions ĉk are
generated with the test set and evaluated using Ei. These error metrics would influence a
classifier’s decision function towards adding more weight to different sets of relationships,
i.e., between correctly and incorrectly predicted price spikes. Here, incorrectly predicted
price spikes mean either over or underestimation of the occurrence of a spike by classifier Ck.
Thus, in machine learning applications, the selection of the optimal set of hyperparameters
is important.

Machine learning models require a careful fine-tuning of several hyperparameters [5];
this is typically achieved by following some heuristic optimization [30]. Here, different
algorithms may be used, however, in electricity price forecasting, common approaches
involve Bayesian optimization algorithms [11,30]. These approaches require a forecast error
metric E∗j where the optimal set of hyperparameters is searched within the hyperparameter
space during the training stage.

In the proposed study, the error function is E∗j , where j ∈ {recall, precision, F1-score}.
For each E∗j , all three performance metrics Ei, where i ∈ {recall, precision, F1-score} are
computed. These metrics are formulated in (2), (3), and (4) [48,49].

Rec =
TP

TP + FN
(2)
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Pr =
TP

TP + FP
(3)

F1 =
(2 ∗ Pr ∗ Rec

Pr + Rec

)
(4)

In (2) and (3), TP, FP, and FN correspond to the true positives, false negatives, and
false positives, respectively. To put it in context, the underestimation of the occurrence of a
price spike is directly related to the FN. Conversely, overestimation is related to the FP. In
other words, (3) can be seen as a measure of price spike forecasting reliability [35]. Also, (4)
is the trade-off between recall and precision, usually observed in real-life applications, e.g.,
price spike forecasting [35]. These metrics alongside the true negatives TN can be used to
evaluate the economic impact a market participant, who is looking to enhance its energy
efficiency strategy, would have, based on predictions from Ck using threshold τ

(·)
α . Here, a

market participant would decide which metric E∗j has a bigger positive economic impact,
depending on the specific application.

In the proposed experiment, the statistical performance of an optimized classifier Ck
based on Ei is further quantified using an economic evaluation on an electricity market
application case study.

3.3. Economic Evaluation of the Forecasts

The economic impact for each classifier Ck using threshold τ
(·)
α is evaluated. This

evaluation represents the operational economic benefits (costs) of a market participant if
operational decisions have to be made based on the forecasts ĉk from classifier Ck. In other
words, it quantifies the marginal value of electricity when class price forecasts ĉk are above
or below the price spike threshold τ

(·)
α .

Evaluating what the economic impact of class price forecasts ĉk would be for a market
participant is important. This is because no forecasting method is perfect, thus, statistical
and economic evaluation should not be independent of each other [35]. Moreover, this
would allow us to analyze if operational decisions could or not be profitable. Thus, based
on threshold τ

(·)
α and classifier’s Ck statistical performance, we evaluate what the marginal

value of electricity is for a market participant. Let us define the net profit (loss) Πk (5c) of
classifier Ck as follows:

π1 = ∑
t∈FN

γt · (λt − τα) + ∑
t∈FP

γt · (τα − λt) (5a)

π2 = ∑
t∈TN

γt · (τα − λt) + ∑
t∈TP

γt · (λt − τα) (5b)

Πk = π2 − π1 (5c)

In (5a) and (5b), π1 (π2) quantifies the total loss (profit), that a market participant γ
would incur at each time interval t using forecasts ĉk from Ck. Moreover, in (5a) and (5b), λt

and τ
(·)
α correspond to the observed hourly electricity price and the price spike threshold

(i.e., see (1)), respectively.
Observe that the first and second elements in (5a) represent the operational cost due

to forecast errors from Ck. Conversely, the first and second elements in (5b) represent the
profits associated with correctly predicted price classes from Ck.

A simple economic benchmark that quantifies the marginal value of electricity based
on threshold τ

(·)
α is implemented as a comparison to evaluate the overall impact of forecasts

ĉk in Πk in (5c). We refer to this as a blind operation benchmark B. Let us define B.
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B = ∑
t

γt · (τα − λt) (6)

The expression in (6) quantifies the economic impact of threshold τ
(·)
α with respect to

the observed hourly electricity price λt. Thus, for every interval t where γt · (τα − λt) > 0,
the marginal value of electricity is positive. A negative marginal value of electricity occurs
on interval t if γt · (τα − λt) < 0. Finally, the case where γt · (τα − λt) = 0 at time t, the
marginal value of electricity is zero.

3.4. Pseudocode of the Proposed Experiment

The proposed investigation methodology pseudocode is formalized in Algorithm 1.
Here, we show the general process used to generate one-step-ahead class price forecasts ĉk
by classifier Ck, as described in Sections 3.1–3.3.

Algorithm 1 Pseudocode of the proposed methodology

Input: Threshold type τ
(·)
α ; classifier Ck; training forecast error metric E∗j ; data D; training

periods M; hyperparameter optimization trials N
Output: Eki, Πk j

1: θ ← (τ
(·)
α , Ck, E∗k j,D, M, N) ▷ Complete set of inputs

2: for m = 1, . . . , M do
3: c←

{
(y(train), τ

(·)
α ), (y(val), τ

(·)
α ), (y(test), τ

(·)
α )

}
4: for n = 1, . . . , N do
5: Ck ← Ck

(
D(train)) ▷ D(train) ∈

{(
X(train), c(train)

)}
6: E∗k j ←

(
c(val), C(Ω)

k (X(val))
)

▷ Optimized (Ω) classifier
7: end for
8: ĉk ← C

(Ω)
k (X(test)) ▷ ĉk ∈ {0, 1}

9: if C(Ω)
k ← InterpretableModel then

10: C(Ω)
k ← x1 ∧ · · · ∧ xn ▷ Extract decision rule from C(Ω)

k
11: ĉk ← {x1 ∧ · · · ∧ xn, X(test)}
12: end if
13: if Ck ← RegressionBasedModel then

Ck ← Ck
(
D(train))

14: ĉk ←
{(

ŷ(test)
k , τ

(·)
α

)}
15: end if
16: Eki ← (c(test), ĉk)
17: Πk j ← γ(TP,TN,FP,FN)
18: end for

In short, the pseudocode shown in Algorithm 1 uses a rolling calibration window [13]
across the M training periods for classifier Ck. Here, hyperparameter optimization over N
trials for model Ck is performed using the training (i.e., D(train)) and validation (i.e., D(val))
sets, by maximizing E∗j . Price class predictions ĉk are then generated using an optimized

classifier C(Ω)
k and the set of features, i.e., X(test). Finally, the statistical and economic

performance of classifier Ck is evaluated using Eki and Πk j.

3.5. Selected Models

Our first selection corresponds to a machine learning model, i.e., XGBoost [50]. The
reason for our selection is that XGBoost is an enhanced version of gradient boosting
machine methods, i.e., GBM. These methods have been among the top-ranked performing
methods in, e.g., probabilistic electricity price forecasting, within an important International
energy forecasting competition [6]. Moreover, GBM methods have been widely used in
different applications, and in some cases, like classification, these algorithms have provided
state-of-the-art results [50].
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Likewise, our second selection corresponds to Skope rules, i.e., a tree-based machine
learning explainable method [31]. We justify our selection because it has been recognized
in the forecasting literature that tree-based methods are interpretable [51]. Their versatility
allowed them to be used for core forecasting tasks in the past. For example, random forest,
whose design relies on the statistical principles of bagging [52], was primarily used by
important companies in challenging forecasting applications [51], e.g., retailing.

Similarly, our third selection considers a statistical regression-based model adapted
from the literature in electricity price forecasting [30]. Our decision to use this model is
because statistical methods have been demonstrated to be state-of-the-art in electricity price
forecasting. Overall, for the task under study, the modeler is free to choose other models
than those introduced here. A brief mathematical review of the selected models is found in
the Appendix A.

4. Numerical Results and Discussions

Our experiments are carried out using publicly available hourly data from Alberta’s
electricity market, where the minimum (maximum) value of the pool price is CAD 0/MWh
(CAD 999.99/MWh). However, the proposed method applies to other electricity markets,
too. Even those where negative prices may occur; nevertheless, the definition of threshold
τ
(·)
α should account for the presence of negative price spikes. Some authors have modeled

negative price spikes, e.g., in [49].
The simulation setup and numerical results for the models’ predictive performance

and generated net profits in the proposed study are presented in this section. All our
experiments are carried out using the Python programming language, and a machine
with Ubuntu 22.04 LTS, 32 GB of RAM, and 8 11th Gen i7 Intel cores at 2.80 GHz. Finally,
for all classifiers Ck, k ∈ {1, ..., 7}, the experiments follow the methodology introduced
in Section 3.

The set of classifiers Ck and their configurations based on an error metric E∗j , quanti-
fying their training error during the hyperparameter optimization stage, are introduced
in Table 1.

Table 1. The set of classifiers Ck with a hyperparamter optimization based on E∗j (see Algorithm 1).

Classifier (Ck) Optimized with E∗
j

C1 XGBC-OR
C2 XGBC-OP
C3 XGBC-OF1
C4 SKRC-OR
C5 SKRC-OP
C6 SKRC-OF1
C7 LEAR

In Table 1, models from C1 to C3 consist of a set of XGBoost [50] classifiers (i.e., XGBC)
optimized with recall, precision and F1-score, i.e., OR, OP, OF1, respectively. For exam-
ple, XGBC-OR corresponds to an XGBoost classifier optimized to enhance its predictive
performance based on the recall metric.

The set of classifiers from C4 to C6 in Table 1 consists of the family of interpretable
classifiers, i.e., Skope Rules [31] (i.e., SKRC). Similarly, as with XGBC-based models, these
models are optimized in the training stage with recall (OR), precision (OP), and F1-score
(OF1), respectively. Explainable decision rules are extracted to generate the class price
predictions from each SKRC- classifier (see Algorithm 1) in Section 3.

Also, in Table 1, C7 consists of the LEAR [30] regression-based classifier. Here, the
numerical forecasts from C7 are converted to price class forecasts ĉ7 based on threshold τ

(·)
α .

All classifiers but C7 in Table 1 are optimized using Optuna [53] over 40 trials. The
selection of the number of trials is empirically determined aiming to balance the running
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time while preserving classification performance as much as possible. Hereafter, we refer
to each of these models as their respective classifier assignation in Table 1.

Finally, the set of features {SCt, Wt, ϕt−h} ∈ X, where {SCt−h, Wt−h, pt−h} ∈ ϕt−h and
h ∈ {1, 2, 24, 48, 168}. Hence, SCt (SCt−h), Wt (Wt−h), and pt−h correspond to the estimated
supply cushion [54,55], wind power forecasts [5] and observed pool prices [56], respectively;
and their corresponding lagged values at intervals t− h. Using input set X in the proposed
investigation study, a classifier Ck generates class price forecasts ĉk based on threshold τ

(·)
α .

4.1. Forecasting the Occurrence of Price Spikes

Each model in Table 1 uses the same set of input features X to generate one-hour-ahead
electricity price class predictions ĉk. These forecasts are generated using a rolling calibration
window [13]. Moreover, the training period m in Algorithm 1 in Section 3 corresponds
to one year of data, starting on 1 January 2018, at 00:00. Here, the last month is used as
a validation set. For example, in the first training round, the month of December 2018 is
used as a validation set. The total test period starts on 1 January 2019, at 00:00 and ends on
31 December 2022, at 23:00. Following the previous example, after the first training round,
January 2019 is used as the test period.

Similarly as made by [8] for the Australian market, Figure 1 shows the 10, 50, and 90%
percentiles (i.e., P10, P50, and P90) of the pool price dynamics in Alberta’s market for the
years where class predictions ĉk are generated.

0
25
50
75

100
125

20
19

 
(C

AD
/M

Wh
) P10 P50 P90

0

25

50

75

100

20
20

 
(C

AD
/M

Wh
)

0
100
200
300
400
500

20
21

 
(C

AD
/M

Wh
)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
(Hour)

0

200

400

600

800

20
22

 
(C

AD
/M

Wh
)

Figure 1. The P10, P50, and P90 for the 24 h spot prices in Alberta’s market.

Observe, for example, the tendency of the P10 and P50 for all of the years in Figure 1
to not exceed 100 CAD/MWh at any hour of the day. Conversely, the P90 shows drastic
changes when comparing between the years of 2019 and 2020 (e.g., approximately be-
tween 125 CAD/MWh and 100 CAD/MWh) against 2021 and 2022 (e.g., approximately
between 500 CAD/MWh and 800 CAD/MWh). The diverse high price dynamics, as shown
in Figure 1, suggests the convenience of testing the models with different thresholds τ

(·)
α .

The price spike threshold τ
(·)
α defined in (1) in Section 3, can be represented either as a

fixed (τ(I)
α ) or variable (τ(I I)

α ) threshold. Let us define the set of fixed thresholds [4,8,21] v
in τ

(I)
α as the prices above or equal to 100 CAD/MWh, 200 CAD/MWh, 300 CAD/MWh,

400 CAD/MWh, here, expressed as τ100, τ200, τ300, and τ400, respectively. Likewise, the set
of variable thresholds [3,16] in τ

(I I)
α is defined by K = 1 and K = 2, i.e., µ + σ and µ + 2 · σ;

and are expressed as τµ+σ, and τµ+2·σ, respectively. For each threshold type, i.e., τ
(I)
α and

τ
(I I)
α , the corresponding number of spikes is shown in Table 2.
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Table 2. Number of price spikes for thresholds τ
(·)
α in (1), and each period in our analysis.

τµ+σ τµ+2·σ τ100 τ200 τ300 τ400

2019 713 458 442 264 184 144
2020 652 324 306 189 149 136
2021 1060 744 1651 871 615 448
2022 1429 920 3179 1663 1194 939

As expected, Table 2 shows that the number of spiky samples decreases as the value
of threshold τ

(·)
α increases for every test period. Observe the notorious increment in the

number of spikes in 2021 and 2022, compared to 2019 and 2020. Among others, an important
reason for this is due to changes in the bidding strategies of some market participants
looking to increase their asset profitability. Thus, resulting in higher market price offers
from these market participants [57]. Moreover, observe the number of hourly spiky samples
in Table 2 is small compared to, e.g., one year of hourly data. The high imbalance between
the spiky and normal prices is one of the reasons why modeling electricity price spikes is a
non-trivial task [9].

Figure 2 shows the mean recall (2), precision (3) and F1-score (4) for each classifier Ck,
and threshold τ

(I)
α across the tests periods. Here, the value of each threshold in τ

(I)
α remains

fixed through every training period m. For each of these performance metrics, Figure 2
shows a general tendency for classifiers Ck to decrease their performance as the value of the
threshold increases. For example, for most of the years, performance metrics, and threshold
τ
(I)
α , we observe this tendency to occur for more than 75% (and up to 90%) of the time. The

only exception is 2020, where this only occurs 63% of the time.

Recall(%)

Precision(%)

F1-score(%)

20
19

79.0 61.0 64.0 22.0 23.0 23.0 54.0

34.0 59.0 53.0 20.0 73.0 46.0 62.0

47.0 59.0 57.0 17.0 34.0 30.0 57.0

71.0 49.0 59.0 36.0 18.0 20.0 36.0

29.0 47.0 40.0 37.0 38.0 52.0 52.0

40.0 45.0 45.0 24.0 24.0 28.0 42.0

62.0 41.0 47.0 19.0 18.0 16.0 28.0

25.0 43.0 32.0 39.0 49.0 31.0 58.0

34.0 39.0 34.0 19.0 24.0 19.0 35.0

74.0 34.0 47.0 27.0 15.0 19.0 20.0

23.0 34.0 30.0 31.0 53.0 47.0 56.0

32.0 32.0 33.0 25.0 22.0 25.0 28.0

Recall(%)

Precision(%)

F1-score(%)

20
20

63.0 41.0 50.0 22.0 16.0 16.0 39.0

33.0 42.0 46.0 45.0 42.0 38.0 54.0

38.0 38.0 42.0 22.0 22.0 20.0 44.0

46.0 29.0 25.0 16.0 13.0 10.0 24.0

19.0 27.0 24.0 13.0 28.0 24.0 38.0

25.0 28.0 24.0 9.0 16.0 14.0 29.0

53.0 29.0 32.0 22.0 17.0 11.0 11.0

25.0 31.0 28.0 21.0 30.0 32.0 23.0

26.0 29.0 28.0 14.0 22.0 15.0 12.0

42.0 24.0 29.0 15.0 14.0 13.0 9.0

25.0 19.0 26.0 29.0 32.0 24.0 16.0

23.0 21.0 25.0 18.0 18.0 17.0 11.0

Recall(%)

Precision(%)

F1-score(%)

20
21

95.0 76.0 81.0 40.0 26.0 26.0 73.0

42.0 65.0 62.0 75.0 92.0 79.0 81.0

57.0 69.0 70.0 51.0 39.0 38.0 77.0

92.0 69.0 75.0 48.0 21.0 27.0 58.0

35.0 62.0 58.0 52.0 62.0 69.0 78.0

47.0 62.0 63.0 44.0 30.0 38.0 66.0

92.0 64.0 68.0 39.0 31.0 33.0 43.0

30.0 54.0 50.0 66.0 65.0 65.0 72.0

43.0 56.0 56.0 43.0 41.0 43.0 53.0

87.0 62.0 66.0 36.0 30.0 22.0 31.0

27.0 53.0 48.0 56.0 55.0 33.0 70.0

39.0 54.0 53.0 41.0 37.0 24.0 41.0

C 1 C 2 C 3 C 4 C 5 C 6 C 7

$100/MWh

Recall(%)

Precision(%)

F1-score(%)

20
22

86.0 77.0 82.0 44.0 26.0 40.0 80.0

72.0 80.0 78.0 85.0 89.0 91.0 81.0

78.0 78.0 80.0 54.0 39.0 55.0 80.0

C 1 C 2 C 3 C 4 C 5 C 6 C 7

$200/MWh

87.0 69.0 74.0 54.0 34.0 38.0 63.0

56.0 73.0 69.0 64.0 84.0 78.0 80.0

67.0 70.0 71.0 50.0 47.0 49.0 70.0

C 1 C 2 C 3 C 4 C 5 C 6 C 7

$300/MWh

82.0 67.0 69.0 42.0 32.0 31.0 53.0

44.0 63.0 60.0 55.0 74.0 60.0 76.0

54.0 62.0 61.0 37.0 42.0 39.0 61.0

C 1 C 2 C 3 C 4 C 5 C 6 C 7

$400/MWh

78.0 56.0 65.0 35.0 33.0 26.0 39.0

37.0 56.0 53.0 42.0 72.0 59.0 71.0

49.0 54.0 56.0 30.0 44.0 35.0 49.0

Figure 2. Each grid corresponds to a heatmap displaying a color representation of the mean per-
formance of each model in the proposed comparative study. The outer (inner) y-axis displays the
four test periods (three evaluation metrics Ei) introduced in Section 3. Likewise, the outer (inner)

part of the x-axis displays the four fixed price spike thresholds τ
(I)
α (seven classifiers Ck) introduced

in Section 3 (Table 1).

Furthermore, Figure 2 shows that in 2020, classifiers Ck tend to perform lower com-
pared to other years. This is more (less) notorious for classifiers C1 to C3 and C7 (C4 to C6).
This may probably be associated with the impact of the COVID-19 pandemic on market
price dynamics during that year. Furthermore, in general, in all years and thresholds τ

(I)
α ,

it is possible to observe that the variations between mean performance metrics are not
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significant for classifiers C2, C3 and C7. In contrast, these variations in mean performance
tend to be significant for classifiers C1 and C4 to C6.

Among all classifiers, C1 tends to show the highest performance to predict the occur-
rence of price spikes in Figure 2, i.e., see mean recall. However, the lower precision of C1
most times may suggest a possible tendency to overestimate predictions of the occurrence
of price spikes. Moreover, in terms of precision, i.e., the capacity of classifier Ck to not over-
estimate the predictions of the occurrence of price spikes, classifier C7 shows the highest
mean precision for most of the cases in Figure 2. Finally, C2 has the highest mean F1-score
most of the time but is not as evident as with the recall and precision cases.

Interestingly, Figure 2 shows that classifier C4, optimized with recall, obtains a higher
average precision than recall for most of the years and thresholds τ

(I)
α . A possible reason for

this is that the explainable model requires, among others, a minimum recall and precision as
hyperparameters to select the best-performing rules (see Appendix A.2). Here, for example,
when optimized with E∗j where ∈ j ={recall}, we use a search range within a minimum
recall (precision) of [0.3, 0.7] ([0.01, 0.02]). Observe we try to set higher limits for recall
than precision, to try to find an optimal rule able to detect as much FN as possible (see (2)
in Section 3.2). However, due to the challenging nature of the imbalance problem, as shown
in Table 2, the rules seem to have difficulties in achieving such a task.

To corroborate our previous assumption, we run a new simulation for C4 using τ
(I)
α ,

where minimum recall is now set using the default hyperparameter, as found in [31], i.e.,
equal to 0.01. Conversely, we set minimum precision to a ‘high’ range, i.e., [0.9, 0.95], to try
to enforce the model to ‘easily’ find a higher recall. However, results from this simulation
are similar to those in Figure 2 for C4, where higher average precision tends to prevail in
most cases. Thus, there may be evidence that empirically shows that in our problem, the
extracted rules used to generate predictions ĉ4, tend to be better, on average, at detecting
FP than FN.

The mean recall, precision, and F1-score for each classifier Ck using a variable threshold
in τ

(I I)
α are presented in Figure 3. A variable threshold τ

(I I)
α in (1) is estimated using the

spot price observed on the last month of each training period (excluding the validation
period) m, i.e., month 11. Here, using the last month would allow the threshold to include
the most recent possible market information and its impact on the price dynamics.

Observe from Figure 3 that the performance of the classifiers Ck also tends to decrease
as the threshold τ

(I I)
α increases. In general, this occurs on average 88% of the time for all

thresholds, performance metrics, and most test periods.
Figure 3 shows that the classifier with the best mean recall across all thresholds τ

(I I)
α

and test periods is again C1. Moreover, in this case, classifier C5 shows the highest mean
precision most of the time for thresholds τ

(I I)
α . Regarding the F1-score, C3 has the highest

one for most of the cases when compared to other classifiers. Again, we observe that
classifiers C1, and C4 to C6 have a higher variability between mean recall, precision and
F1-score. In contrast, C2, C3, and C7 tend to show a more stable mean performance across
these metrics.

Again, we observe that the classifier C4 has a higher mean precision than recall. Here,
since the hyperparameter search space for minimum recall (precision) is the same regard-
less of the price spike threshold τ

(·)
α , we believe the same idea, as previously explained

for Figure 2, prevails.
General conclusions are derived from Figures 2 and 3. For any threshold type, classifier

C1, i.e., optimized to enhance recall performance, heavily trades-off precision and, therefore,
F1-score. As previously stated, this may be an indication of this classifier overestimating the
class predictions of price spikes. For the generality of this conclusion, we try to investigate
if in our experiment, classifier C4 would behave similarly to C1. That is, if instead of using
C4’s rules to generate the predictions (i.e., see Algorithm 1 in Section 3.4), we use the model,
i.e., as with any machine learning algorithm. We run our experiment for C4 following these
ideas. Results are shown in Table 3.
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Recall(%)

Precision(%)

F1-score(%)

20
19

78.0 61.0 61.0 40.0 23.0 35.0 53.0

39.0 60.0 52.0 59.0 55.0 72.0 67.0

51.0 59.0 55.0 46.0 31.0 44.0 59.0

76.0 48.0 62.0 30.0 24.0 24.0 38.0

29.0 46.0 42.0 34.0 57.0 54.0 52.0

42.0 45.0 47.0 24.0 33.0 32.0 44.0
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67.0 53.0 53.0 29.0 25.0 21.0 40.0
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41.0 49.0 48.0 36.0 33.0 27.0 42.0

55.0 44.0 48.0 41.0 19.0 19.0 39.0

27.0 40.0 44.0 39.0 38.0 40.0 44.0

35.0 41.0 45.0 28.0 24.0 24.0 41.0

Recall(%)

Precision(%)

F1-score(%)

20
21

89.0 66.0 70.0 34.0 25.0 33.0 59.0

36.0 61.0 60.0 67.0 79.0 74.0 77.0

50.0 61.0 62.0 42.0 37.0 44.0 66.0

84.0 61.0 69.0 41.0 37.0 29.0 44.0

30.0 52.0 53.0 69.0 69.0 58.0 70.0

41.0 55.0 58.0 47.0 48.0 37.0 52.0

C 1 C 2 C 3 C 4 C 5 C 6 C 7

+

Recall(%)

Precision(%)

F1-score(%)

20
22

88.0 68.0 75.0 53.0 33.0 40.0 56.0

52.0 72.0 68.0 59.0 74.0 79.0 82.0

65.0 70.0 71.0 46.0 43.0 51.0 65.0

C 1 C 2 C 3 C 4 C 5 C 6 C 7

+ 2

76.0 60.0 58.0 34.0 32.0 23.0 38.0

38.0 58.0 53.0 46.0 63.0 43.0 62.0

49.0 57.0 55.0 36.0 41.0 30.0 46.0

Figure 3. Each grid corresponds to a heatmap displaying a color representation of the mean per-
formance of each model in the proposed comparative study. The outer (inner) y-axis displays the
4 test periods (3 evaluation metrics Ei) introduced in Section 3. Likewise, the outer (inner) part

of the x-axis displays the two variable price spike thresholds τ
(I I)
α (7 classifiers Ck) introduced

in Section 3 (Table 1).

Table 3. Mean statistical performance Ei for C4 and τ
(I I)
α when the model, and not the extracted rules

are used to generate predictions ĉ4.

Recall (%) Precision (%) F1-Score (%)

τµ+σ τµ+2·σ τµ+σ τµ+2·σ τµ+σ τµ+2·σ

2019 80 80 21 7 27 12
2020 69 62 21 12 26 14
2021 88 93 17 17 25 24
2022 87 74 21 16 31 24

For the sake of preserving space, Table 3 shows the results of the experiment only for
τ
(I I)
α . However, similar results are observed for τ

(I)
α . Observe that, when predictions ĉ4 are

generated using C4 as a model, its performance tends to be biased towards increasing the
recall at the cost of decreasing precision and F1-score; as observed with C1. Thus, in our
experiment, C1’s derived conclusion is extended to C4, only if rules from C4, are not used to
generate predictions.

In contrast, for those classifiers optimized to improve precision and F1-score perfor-
mance, i.e., C2 and C3, and, C5 and C6, the optimal set of hyperparameters appears to be
those decreasing the chances of overestimating (higher precision) the occurrence of a price



Forecasting 2024, 6 129

spike, at the cost of underestimating (lower recall) them. This idea applies to classifier
C7, too.

It is difficult to observe a general tendency for a classifier Ck to have a significantly
better statistical performance for thresholds in τ

(I)
α than those in τ

(I I)
α . Finally, in the

proposed investigation study, observing a single model achieving high performance across
the different error metrics, is challenging. A similar conclusion is derived in [4,8].

4.2. Economic Evaluation of the Occurrence of Price Spike Predictions

Based on the statistical performance of a classifier Ck in Figures 2 and 3, we evaluate
the economic implications of the forecasts ĉk based on the threshold τ

(·)
α in the decision

making of a market participant. This is achieved following (5c) and (6) in Section 3.2. The
example case study evaluates a demand-side management strategy [38] for a 1 MW load
γ. In other words, we quantify the economic value of the forecasts using a one-sided
approach [42]. Finally, this application can be extended to other markets, too.

For each threshold τ
(·)
α and test period, we first quantify the total profit or loss for

operating γ following (6) in Section 3.3. Therefore, for all thresholds in τ
(I)
α , the total profits

B are CAD 299,165; CAD 3,805,565; CAD 7,311,965, and CAD 10,818,365, respectively.
Likewise, for thresholds in τ

(I I)
α , total profits B correspond to CAD 3,192,417 and CAD

6,675,959 respectively. Using these profits as a base comparison, we evaluate if operating
load γ based on forecasts from classifier Ck, represents an economic benefit.

Table 4 shows the total profit (positive) or loss (negative) from the difference between
Πk −B for each classifier Ck and fixed threshold τ

(I)
α . Here, it is shown that load γ benefits

the most using predictions from classifier C7. As referenced from Section 4.1, Figure 2
shows C7 as the model with the highest mean precision performance for most of the cases.
Moreover, as discussed in Section 4.1, C7 benefits from having a more stable mean predictive
performance for all metrics, most of the time. From a practical perspective, it means an
optimal balance between FP and FN predictions in (2) and (3); thus, translating into less
economic damage reflected in Π7.

Table 4. Difference, in thousand CAD, Πk −B for τ
(I)
α corresponding to the total of the test period.

The best results are shown in bolted letter.

(Thousand CAD) C1 C2 C3 C4 C5 C6 C7

τ100 2,210 2,284 2,327 1,460 1,246 1,582 2,328
τ200 939 1,331 1,333 413 850 978 1,419
τ300 277 836 797 −10 713 704 914
τ400 −268 470 388 −98 422 340 593

For example, C7 has a lower total economic loss due to the overestimation of predic-
tions of the occurrence of price spikes for τ400 but not for τ100, τ200, and τ300, being C5 the one
with the lowest economic losses. However, for all thresholds τ

(I)
α , C7 benefits from having

much lower losses than C5 due to the underestimation of predictions of the occurrence
of price spikes. The total sum of these losses i.e., underestimation plus overestimation,
corresponds to −CAD 631,974 and −CAD 1,644,171 for C7 and C5, respectively.

Likewise, Table 4 shows that C1 has a high economic loss when the threshold is τ400.
Nevertheless, we also observe that there is a profit for the other thresholds for C1. However,
to contrast with the ideas based on observations from Figure 2, our numerical results
show that C1 has the highest economic losses due to FP among all classifiers Ck for τ100,
τ300, and τ400. These losses represent −CAD 134,032; −CAD 463,566, and −CAD 555,493,
respectively. For τ200, the highest loss is for C4 (i.e., −CAD 379,676), but just CAD 2,182
higher than C1. In contrast, C1 has the lowest economic losses due to FN (i.e., −CAD 42,190;
−CAD 43,450; −CAD 36,212 and −CAD 26,892, respectively) across all thresholds. Thus,
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as previously mentioned, C1 shows a tendency to trade off high levels of recall with low
levels of precision.

In regards to C4, Table 4 shows negative economic impacts in τ300 and τ400. Figure 2
shows that C4 has a tendency that, on average, benefits precision over recall, however,
this is not restrictive for all the periods. For instance, take C4 when τ400 in Table 4. Here,
our results show that in August 2022, C4 incurs a big economic loss associated with the
overestimation of the occurrence of price spikes. Moreover, the recall is high but precision
is low in this period. Thus, negatively affecting the total Π4 −B.

Table 5 shows the economic results of operating load γ using a variable threshold
τ
(I I)
α . These results are also obtained as the difference between (5c) and (6) introduced

in Section 3, i.e., Πk −B.

Table 5. Difference, in thousand Canadian dollars (CAD), Πk −B for τ
(I I)
α corresponding to the total

of the test period. The best results are shown in bolted letter.

(Thousand CAD) C1 C2 C3 C4 C5 C6 C7

τµ+σ 998 1,316 1,325 858 879 1,139 1,392
τµ+2·σ 261 810 799 −65 721 325 910

It is also possible to observe from Table 5 that the best economic results for both
thresholds in τ

(I I)
α , correspond again to classifier C7. From Figure 3, we show C5 as the

model with the highest precision most of the time. However, the variability between
metrics in terms of average performance is higher when compared to C7. For instance, the
economic impact due to FP is less (bigger) for C5 (C7). Conversely, losses due to FN are
smaller (bigger) for C7 (C5). The total of these losses represent −CAD 640,739 and −CAD
289,672 for C5 and C7, respectively.

Evidence from Table 5 shows that, when thresholds are variable, the higher trade-
off between recall and precision in Figure 3 does not necessarily translate in the highest
economic losses for model C1. However, numerical evidence from our results shows that
C1 has the highest (lowest) economic losses due to FP (FN) for each threshold in τ

(I I)
α , i.e.,

the total in −CAD 761,344 (−CAD 50,193), respectively.
Again, we investigate reasons for C4 having a negative impact, i.e., observe τµ+2·σ.

Here, for example, during May 2019 and December 2020, C4 profits Π4 are affected by the
negative economic impact due to overestimation of the occurrence of price spikes. These
balances are observed to significantly trade off good recall against a bad precision score
in these months. Thus, negatively impacting the difference Π4 − B, and hence the total
accounted for τµ+2·σ.

In general, results from Tables 4 and 5 show that classifiers C2, C3, C5, C6 and C7
consistently generate predictions that economically benefit the operation of load γ when
compared to the blind operation benchmark B, using threshold τ

(·)
α . Moreover, these

results demonstrate that, in price spike occurrence forecasting, a higher performance in one
statistical error metric, would not necessarily translate into a high economic benefit [35],
e.g., C1 in our study. Likewise, in contrast to [8], who concludes that a false negative of
the probability of occurrence of a price spike would be more detrimental for an energy
retailer than a false positive, our results suggest that a balance between recall and precision,
with some bias towards the latter, brings higher economic benefits for the proposed case
study, i.e., see C7. This conclusion extends to C2 and C3, whose results are also competitive.
Moreover, based on C7’s performance, our results are better aligned to those in [35]. Here,
the authors show the spike prediction confidence (i.e., precision) translates as beneficial
in the cost-benefit analysis for the supply bids of a market participant in the Australian
market. Finally, we agree with [35], who emphasizes the importance of integrating the
price spike forecasting method with the decision-making process.
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4.3. The Trade-Off between Performance and Explainability

In recent years, interpretable AI in energy forecasting has started to capture the
attention of researchers. The goal is to enhance the acceptability of AI models with the
industry stakeholders [5,29]. Additionally, interpretability allows for the comparison
between expert knowledge and model decisions. This is particularly important, for example,
in the engineering field [43]. However, the methodological trade-offs between a model’s
performance and interpretability [43] remain as a challenge. Here, to the best of our
knowledge, the economic impact of this trade-off on a market’s participant has not been
explored yet in price spike occurrence forecasting.

In this investigative study, we quantify the trade-off between model predictive perfor-
mance and interpretability. Results in Tables 4 and 5 show that, for the proposed case study,
C7 is the model that brings the highest profits with respect to Π7 −B, among all models Ck

and thresholds τ
(·)
α . Moreover, among the explainable classifiers C4 to C6, C5 and C6 tend to

be competitive across thresholds τ
(·)
α in Π5 −B and Π6 −B.

Table 6 shows the economic trade-off between the model’s performance and inter-
pretability for the demand-side management case in this study. For the sake of showing
the idea behind this trade-off in price spike forecasting, we are comparing the best non-
interpretable performing model, i.e., C7, against a competitive interpretable model, i.e., C5.

Table 6. The total profits and differences, in thousand Canadian dollars (CAD), for the best per-
forming not interpretable model C7 and the interpretable model C5 across all test periods and

threshold τ
(·)
α types.

(Thousand CAD) τ100 τ200 τ300 τ400 τµ+σ τµ+2·σ

C5 1,545 4,655 8,025 11,240 4,072 7,397
C7 2,627 5,225 8,226 11,411 4,585 7,586

C7 − C5 1083 569 202 171 513 189

For the demand-side management application, the economic differences between C7

and C5 displayed in Table 6 for each spike threshold τ
(·)
α , represent the trade-off due to the

lost of C5’s statistical forecasting performance. These differences indicate that, if one would
pick using human-interpretable decision rules from C5 to predict the occurrence of price
spikes at any selected threshold τ

(·)
α , the cost of it would have been C7 − C5 for each case,

respectively. Finally, observe from Tables 4 and 5 that forecasts from C5 would still have
economically benefited the operation of load γ.

Predictions ĉ5 are made using decision rules from the explainable model introduced
in Appendix A.2. Here, we show an example of a decision rule used to generate forecasts
ĉ5 during July 2022 using τ200 [21]. We select this period because it corresponds to the
Summer season, where price spikes are likely to occur due to the high demand associated
with extreme temperatures [8,57].

Thus, the decision rule used to generate the class price spike forecasts is pool_price_lag_1 >
379 AND wind_7d_forecast_lag_24 > 26 . This predictive rule has a recall, precision, and
F1-score of 53.6, 87, and 66.3%, respectively. Observe that this rule has a cardinality of two,
and is the best-performing rule selected from the semantic deduplication process introduced
in Appendix A.2. In other words, two features from the total in X ∈ R (i.e., see Section 3)
have been found by Skope Rules [31] as relevant, to generate one-hour-ahead forecasts of
the occurrence of price spikes during July 2022 using threshold τ200.

5. Conclusions

An investigation study involving the statistical and economic performance analysis
of the forecasts of the occurrence of electricity price spikes was proposed in this paper.
Here, a set of different fixed and variable electricity spike thresholds were used. Moreover,
interpretable and non-interpretable classification- and regression-based price spike models
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were trained using data from Alberta’s power market. We investigated the impact that
using various statistical error metrics on the hyperparameter optimization process of the
models, had on predicting the occurrence of these spikes. The final forecasts were evaluated
using the same set of statistical metrics, and also by quantifying their economic impact
using a demand-side management strategy. We compared against a simple economic
benchmark. Finally, we quantified the so-called trade-off between the model’s performance
and interpretability using an interpretable and a non-interpretable model.

Simulation results showed that hyperparameter optimization with recall tends to con-
trol underestimation but not overestimation of the occurrence of price spikes. Conversely,
if precision or F1-score are used, this trade-off tends to be better balanced. This tendency
was observed, in general, regardless of the price spike threshold. The economic results
from the demand-side management case study further confirmed this balance as optimal.
In general, these results reflected that is better to avoid an excessive overestimation of
the spiky predictions, without heavily sacrificing their underestimation. Finally, in the
proposed investigative methodology, interpretability has a high cost for the example study
case. In general, we argue that interpretability adds additional difficulties to the already
challenging task of predicting price spikes. However, we recognize that interpretability is
an active field of research, and the exploration and integration of more robust interpretable
methods could be a future research path in electricity price spike forecasting.

One limitation of this research work is that we did not conduct experiments using
different cut-off probabilities for the classification-based models. Thus, we let this as future
work, along with experimenting with different ensembles of models, which have proven
to be competitive in electricity price forecasting. Finally, the statistical evaluation metrics
in this study follow those commonly used by some other works in price spike forecasting,
however, we recognize that alternative metrics can be worth investigating for this task.
Therefore, we leave this as a path for future research.
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Appendix A

Appendix A.1. Extreme Gradient Boosting

Extreme Gradient Boosting (XGBoost) [50] is a scalable model designed from the
theoretical foundations of gradient boosting [58]. XGBoost has been enhanced based on
different optimized stages, i.e., algorithmic and system-based. This means XGBoost is
efficient in terms of accuracy, parallelization, and memory handling to allow scalability.
Here, we present a general derivation of the algorithm following [50].

An ensemble of boosted decision trees TN for n = 1, ..., N is trained using dataset
{Xk, yk} ∈ D where {Xk, yk} ∈ R with p features and K instances, to generate a prediction
using a set of additive models (A1).

https://www.aeso.ca/
https://www.aeso.ca/
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ŷk =
N

∑
n=1

fn(xk), fn ∈ T (A1)

Each tree estimator fn in (A1) has S leafs, with ws leaf weights and d decision paths.
Moreover, the loss of prediction ŷk in (A1) is minimized and quantified using a training
loss function l.

L = ∑
k

l(ŷk, yk) (A2)

XGBoost [50] adds a new term to (A2) such that it controls the complexity of each
estimator fn using the additive form introduced in (A1). Overall, the objective of XGBoost
would be to minimize the total loss L.

L = ∑
k

l(ŷk, yk) + ∑
n

Ω( fn) (A3a)

Ω( f ) = γS +
1
2

λ||ws||2 (A3b)

In (A3a), the objective is to minimize L following an additive procedure. The loss
l(ŷk, yk) allows the model to better approximate the underlying distribution of the training
data D. Here, the training loss l(·) in (A3a) may take different forms depending on the
task, i.e., regression or classification. Likewise, in (A3b), γS controls tree complexity
(i.e., prunning), and the regularization term λ||w||2 helps in preventing model overfitting.

Additive training requires the model fr at round r, i.e., a new boosted tree that
minimizes (A3a) using the information from ŷ(r−1), i.e., the model’s output from the
previous round. Thus, based on (A1) and (A3a), ŷ(r−1) is integrated to the optimization at
round r [50].

L(r) =
K

∑
k=1

l
(

yk, ŷ(r−1)
k , fr(xk)

)
+ Ω( fr) (A4)

Observe from (A4) that a model fr is greedily added to minimize objective L(r). Here,
authors in [50] propose second-order Taylor expansion approximation to estimate the
solution of the optimization problem in (A4). Hence, (A4) is expressed in terms of the first
and second derivatives of the function fr.

L(r) ≃
K

∑
k=1

(
l(yk, ŷ(r−1)

k ) + gk fr(xk) +
1
2

hk f 2
r (xk)

)
+ Ω( fr) (A5)

In (A5) the first order derivative of the loss function is given by the gradient
Gk = ∂

y(r−1)
k

l(yk, ŷ(r−1)
k ). Likewise, the second order derivative of the loss function for

the approximation in (A5) is given by the Hessian Hk = ∂2
y(r−1)

k

l(yk, ŷ(r−1)
k ). Moreover,

in (A5) the constant term l(·) can be removed from the optimization objective. Similarly, the
first and second derivatives can be expressed in terms of weight ws, i.e., the instance set
Im = {k|d(xk) = m}. The regularization term introduced in (A3b) containing w2

s can also be
factorized to the second derivative term [50].

L̃(r) =
S
∑
s=1

[
ws

(
∑

k∈Im

Gk

)
+

1
2

w2
s

(
∑

k∈Im

Hk + λ

)]
+ γS (A6)

For a fixed d(x) decision path, the optimal weight w(∗)
s can be found in expression

(A6) by taking the derivative with respect ws.
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w(∗)
s = − ∑k∈Im Gk

∑k∈Im Hk + λ
(A7)

Optimal w(∗)
s in (A7) is substitute in (A6) such that Lr(∗) is found.

Lr(∗) = −1
2

S
∑
s=1

(∑k∈Im Gk)
2

∑k∈Im Hk + λ
+ γS (A8)

Expression in (A8) computes the quality of the information contained on path d.
However, the number of paths d can be infinite, thus, the tree should be grown greedily [50].
Here, the tree starts from a depth of zero and new branches are added iteratively while
quantifying the change on the objective based on left and right splits, respectively, i.e., IL
and IR such that I = IL ∪ IR.

Lr(∗) =
1
2

[ (
∑k∈IL

Gk
)2

∑k∈IL
Hk + λ

+

(
∑k∈IR

Gk
)2

∑k∈IR
Hk + λ

+
(∑k∈IGk)

2

∑k∈IHk + λ

]
− γ

(A9)

Appendix A.2. Skope Rules

Skope-rules [31] is an interpretable model that uses an ensemble of bagged trees [52]
to build decision rules. For example, a classification task learns from data {X, y} ∈ D.
Here, an ensemble of bagged trees TN for n = 1, ..., N is learned using different sampled
datasets from D. Thus, a bagged estimator would consist of Tn(Dn) [52].

Skope-rules extracts decision rules from an estimator Tn. Here, a splitting node in the
bagged tree can be seen as a rule [59]. This idea is based on some of the principles from the
theory in rule ensemble learning, thus, a conjunctive rule rn in Tn, adopts the form [60,61]:

rn(x) = ∏
k∈Xn

I(xk ∈ skn) (A10)

In (A10), Xn are the features in Tn. Likewise, I(·) is an indicator function on the
different splitting nodes that equals to 1 for the realization of feature xk under a subset of
values skn (e.g., numerical or categorical), and 0 otherwise [60,61]. The number of rulesR
from the ensemble of trees TN can be expressed as [60]:

R =
N

∑
n=1

2(tn − 1) (A11)

Observe that in (A11), tn corresponds to the number of terminal nodes at the nth tree
in the ensemble. Moreover, let Op and Or be the out-of-bag (OOB) [62] precision and recall.
Skope-rules thresholds those rules inR based in Op and Or with the objective of extracting
high-performing rules [31,59].

Finally, the selected high-performing rules are sorted by their F1-score. Here, semantic
deduplication is applied to alleviate rule redundancy while trying to keep the diversity of
the rule sets [59].

Appendix A.3. Lasso Estimated Auto-Regressive Model (LEAR)

The LEAR model [30] (initially presented in [63]) corresponds to the autoregressive
time-series statistical family of models [1]. It consists of a rich parameter linear model that
includes exogenous features while allowing the incorporation of seasonal effects [63].

y =
m

∑
j=1

ϕjXj + ϵ (A12)
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The general form of the model in (A12) [63] considers each feature Xj and its corre-
sponding coefficient ϕj. Moreover, following [30], the model in (A12) is estimated using the
least absolute shrinkage and selection operator, i.e., LASSO [64].

ϕ̂ = arg min
ϕj

(
RSS + λ

m

∑
j=1
|ϕj|

)
(A13)

In (A13) [30], RSS = ∑(y− ŷ)2, i.e., the residual sum of squares. Moreover, λ ≥ 0
corresponds to the LASSO penalty, a hyperparameter that controls the regularization
applied to the coefficients ϕj.
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