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Abstract: Paper materials and works of art on paper such as drawings, watercolors, prints, books,
and manuscripts represent a large portion of museum, archive, and library collections. However,
paper materials are infrequently the subject of technical studies due to inherent limitations in their
analysis such as the fragility of the paper substrate, a lack of suitable sampling opportunities, and
the presence of mixed, but chemically similar cellulosic materials. The application of principal
component analysis (PCA) modeling to specular reflection FTIR data has the potential to provide a
non-invasive means of analysis for major and minor components in paper materials. Using known
study collection objects, PCA models distinguishing paper sizing materials and fiber types based on
specular reflection FTIR data were successfully demonstrated thus providing a plausible alternative
method for the identification of paper materials in collection objects without the need for destructive
testing or sampling of the object.

Keywords: specular reflection FTIR; principal component analysis PCA; paper fiber identification;
paper sizing identification

1. Introduction

Paper materials and works of art on paper represent a large portion of museum,
archive, and library collections, including drawings, watercolors, prints, books, and
manuscripts. Despite their prevalence, paper materials are infrequently the subject of
technical studies due to inherent limitations in their analysis, such as the fragility of the
paper substrate, a lack of suitable sampling opportunities, and the presence of mixed, but
chemically similar cellulosic materials.

There are many potential questions a technical study of paper and works on paper
can answer. It can be useful to understand the composition (furnish) of a paper substrate
in terms of the raw fiber material (cotton, wood, linen, etc.), chemical treatments (gelatin,
starch, or alum sizing), fillers (such as clay), and lignin content (an organic compound
present in certain fibers). This information may inform conservation treatments, stability
predictions, and provenance research. To date, most of these questions have been answered
through invasive or micro-destructive analysis [1], including micro sampling for fiber
identification with polarized light microscopy or chemical spot testing, such as the Biuret
test, which uses aqueous copper (II) sulfate in a basic aqueous solution to detect proteins,
indicating the presence of gelatin. The nature of these tests limits which objects can
be studied.

A non-destructive analysis is always preferential for conservation research of collection
materials [2–4]. Fourier-transform infrared (FTIR) spectroscopy is a particularly suitable
analytical chemistry technique to detect and identify the organic materials present in paper
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and works of art on paper [5–11]. Since the resulting vibrational spectra are cumulative
representations of all materials present, it can be difficult to discern minor peaks among the
bulk cellulose signal, as well as subtle variations within the cellulose signal. These small
differences, however, are significant for material identification and classification; however,
the human eye alone cannot make reliable distinctions in the patterns of the spectra.

With FTIR, identifications are usually made by interpreting individual peaks or com-
paring the spectrum to reference spectral libraries of known compounds. Computers are
used to carry out this pattern matching task; however, the correlation algorithms used
in pattern matching heavily weight the identification matches to the largest peaks in the
spectra. For paper materials, the FTIR spectra are usually dominated by large cellulosic
peaks. Minor chemical components with small peak contributions to the overall spectra,
such as the sizing material used in the paper, end up being ignored by the spectral library
matching algorithms. This means that with straight spectral library matching, all papers
often end up being identified as the same.

This manuscript explores the application of principal component analysis (PCA), a
method of data processing and analysis to determine correlations between measurements.
The data can be processed in a way that ignores the commonalities between the spectra and
highlights the systematic differences. Specifically, here, for instance, the cellulosic spectral
contribution can be ignored and the signal from the materials used for paper sizing can be
highlighted and explored.

The sample set for this research was mainly the Paper and Mediums Study Collection
from Legacy Press compiled by Cathleen Baker (http://www.thelegacypress.com/study-
collection.html, accessed on 1 September 2021). It consists of American and European book
and writing papers from the 18th to the 21st centuries. It has previously been subjected to
fiber analysis and chemical tests for gelatin, starch, and lignin following standard methods
in the field of paper conservation. The known sample set was supplemented with alum
sized papers from Debora Mayer’s personal collection and pure fiber pulp stock samples
from Walter Rantanen.

The analysis reported in this manuscript will demonstrate that the PCA model of the
specular reflection FTIR spectra can provide the same information as the chemical tests- if
not even better, providing a plausible alternative method for identification that does not
require destructive testing and can be applied to a wider range of objects.

1.1. Spectroscopy Data Collection Methods

The FTIR spectra for this manuscript were collected using a non-contact specular
reflectance method which avoids any risk of damage to the sample, making the technique
suitable for fragile objects, and yet it provides rich molecular information about the object,
as previously demonstrated by McClelland et al. in the analysis of coatings on historic
salted paper prints [12].

Raman spectroscopy is the other optical vibrational spectroscopy analytical chemistry
technique often used in the analysis of museum and library collections. It is also completely
non-contact and provides similar molecular information to FTIR. However, Raman spec-
troscopy can suffer spectral interference from fluorescence in the object under investigation
and it is, in general, not suitable in the analysis of papers as cellulosic materials tend
to exhibit high amounts of fluorescence. Additionally, Raman spectroscopy uses highly
focused laser light and is therefore not ideal for possibly photosensitive materials.

Attenuated total reflection instruments (ATR-FTIR) have been used extensively in
cultural heritage analytical research; however, the ATR-FTIR requires intimate contact
between the ATR crystal and the material, causing small dents in paper supports. In the
end, different ATR-FTIR approaches all involve either sampling the object or the potential
risk of permanently distorting soft materials such as paper. ATR-FTIR does have the distinct
advantage over specular reflection FTIR of decades of reference spectra already existing
in spectral reference libraries. For instance, a comprehensive library of reference spectra
of ATR-FTIR and Raman spectra for cultural heritage materials has been built through
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the Infrared and Raman User Group (IRUG) [13,14]. The PCA techniques presented here
could certainly be applied to ATR-FTIR or Raman spectral data sets. For this manuscript,
the question was about how much information could be extracted specifically from the
specular reflection FTIR spectra.

Although infrared peak positions are based on the energy of the molecular bonds and
do not change significantly between data collection modes, the peak shape and intensity
will be strongly affected based on the method used. As such, an ATR-FTIR reference
spectrum will not be directly comparable to an external reflectance spectrum. Ideally, a
separate spectral reference library would be available where the reference and sample
materials were scanned using the same type of instrument. A more thorough discussion of
FTIR analysis and applications in cultural heritage can be found in McClelland et al. [12].

1.2. Principal Component Analysis (PCA)

PCA can be applied to many kinds of data, including spectra, and enables the vi-
sualization of relationships that may not be obvious to the eye alone, eliminating bias
imposed by human interpretation. In recent years, PCA has been applied in cultural
heritage research to FTIR spectra of degrading plastics [15], Raman spectra of drawing
media in drawings by the artist Odilon Redon [16], various properties of 19th and 20th
century Chinese papers including pH and tensile strength [17], NMR spectra of 13th-15th
century Italian paper [18], microspectrofluorimetry of lake pigments [19], and FTIR spectra
of archaeological Aztec resins [20]. This list, while not exhaustive, demonstrates the value
of PCA applied to different types of data sets in cultural heritage as non-invasive analysis
and material characterization techniques continue to improve.

A PCA model is generated by organizing the data in a matrix, effectively a table,
where each sample becomes a row and each column a measurement. For FTIR spectra, each
row is an individual spectrum, and each column is the spectral response at a particular
wavenumber. Linear algebra algorithms are then applied to the data matrix to find the
eigenvalues and eigenvectors. The eigenvectors are referred to as the principal components
(PCs). The eigenvalues are referred to as the loadings. In practice, a computer takes care of
all the calculations with relatively little user input needed other than correctly organizing
the data into a table of samples versus measurements.

The PCA model will depend on the samples that were included in the matrix. In
general, the more data available when building the model, the more robust the model will
be. It is usually best to start with a collection of known and well-characterized samples and
then try to apply the model built with the known samples to unknown objects.

The PCs can be thought of as a new basis set that is a better description for the original
data set. A familiar example of using a different basis set to better describe the real-world is
the use of longitude and latitude to describe positions on the surface of the earth, rather than
Cartesian (x, y, z) coordinates from the center of the earth. The PCs are a new coordinate
system that is made up of a linear combination of the different weightings of each of the
measurements in the original data matrix that best describe the variance in the data. The
different weightings are called the loadings. The PCs are numbered based on the amount of
variance they represent, so PC 1 will represent more variance than PC 2 and so on. Variance
is the statistical measure of how much spread the data set has along a specific PC. The total
number of PCs will vary based on the complexity of the data set, and all PCs may not be
significant. It is certainly possible to overfit the data and model the noise in the data set.

The PCA models also generate a Q residual value, which represents how well that
sample fits to the model, and a Hotelling T-squared value that shows how far from the
center of the model a particular sample lies. Looking for samples with high Q residuals
and T-squared values is usually an easy way to spot outliers in the data set.

Prior to building a model, it is usually necessary to preprocess the sample data. Pre-
processing treatment of raw data can have a significant effect on the strength of the model,
since PCA models work best with linear relationships. Preprocessing the data describes any
process applied to the data prior to modeling, including normalization, variable centering,
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mathematical operations, and scaling. This treatment removes extraneous variation, for ex-
ample, signal artifacts from the instrument, and linearizes relationships between variables.
Spectral data can usually be improved with baseline corrections and mean centering the
data. In FTIR, there is often a baseline offset from light that is scattered out of the optical
collection path. This scattering usually has a weak wavelength dependence leading to a
sloping baseline on the data. On paper media, the roughness of the paper contributes to
the baseline offset as light is scattered out of the optical collection path of the microscope.
Since the baseline shape does not contain chemical information about the object, it can be
fitted to a polynomial and subtracted from the spectra. Mean centering is a data processing
technique where the average (mean) of the entire data set is subtracted from each individual
spectrum in the data set. This has the effect of suppressing what is the same between all
the spectra and highlighting what is different.

2. Materials and Methods
2.1. Specular Reflectance FTIR Spectroscopy

This research employed a Bruker LUMOS FTIR microscope with a liquid nitrogen
cooled mercury cadmium telluride (MCT) detector from 4000 to 600 cm−1 in specular
reflectance mode at the Harvard Center for Nanoscale Systems (CNS). The technique
is fully non-contact, and the system allows for multiple points in the analysis area to
be selected and scanned. The microscope and camera allowed the close examination
of the analysis area and documentation of the visual appearance. Thirty points were
collected from each sample (fifteen each from two areas of the paper) to ensure statistical
representation within the data model. Each point of data was collected from the default area
size of 125 × 126 microns and was the average of 16 scans at 4 cm−1 spectral resolution.
The background was taken against the built-in gold reference mirror on the instrument
sample stage. Data collection was carried out using the accompanying Bruker OPUS
software. Spectra were baseline corrected in Opus using the rubber band method.

2.2. Sample Material and Classification

Areas for spectral analysis were selected based on an absence of stains, foxing, print,
ruling, or other visual irregularities. Spectra were collected from known papers from
a range of sources. The Legacy Press Paper and Mediums Study Collection was the
primary source of reference material. The collection, released in 2016 and compiled by
Cathleen Baker, contains 42 examples of book paper and 21 examples of writing paper
made from the 18th–21st centuries in Europe and North America. The papers were subject
to chemical tests by Baker for protein (Biuret test), starch (iodine-potassium iodide), and
lignin (phloroglucinol). The fiber content was assessed by Integrated Paper Services, Inc.
The results of these investigations were included with the collection which enabled data
correlation with the FTIR spectra. The decision to use the Legacy Press Collection of papers
was made because it is a curated collection of papers that many art conservation labs have
and can be referenced and studied by other researchers. Using known collections allows a
comparison of test results and adds to the shared understanding of these papers, which are
studied in art conservation training programs. This project took advantage of the testing
already conducted for sizing, lignin, and fiber composition which is recorded with the
collection. No additional testing was performed on these papers, such as filler content.

The alum sized papers were artists papers from the 1970s with 100% rag fiber content
(cotton) from Debora Mayer’s collection, and included Lenox 100 (Rising Co., Housatonic,
MA, USA), Fabriano 5 watercolor paper (Fabriano, Italy) and BFK Rives printmaking paper
(Rives, France).

The first step in the project was to take fiber samples of high cellulose content (fibers
with no or extremely low lignin content) and determine if they could be readily separated
using this model. The fiber groups first tested were pure pulp stock reference materials
including cotton linter fibers, cotton textile fibers, rayon fibers, softwood bleached (BL)
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kraft fibers, softwood bleached (BL) sulfite fibers, and softwood high alpha pulp fibers. The
samples were provided by Walter Rantanen, SGS-IPS Testing.

The samples were assigned classes, the term used for a group of known samples that
are the same chemically. Initial modeling was carried out with the data from the 21 writing
paper samples because there was more variability in the test results than in the results for
the book paper samples. A positive result for gelatin (G), starch (S), or lignin (L) was used
for the model’s classes. For example, the SL class all tested positive for starch and lignin
but not gelatin. The N class had a negative result for all three chemical tests.

The writing paper samples, results, and classes are given in Table 1. Manufacture dates
and sample letters are from the notes accompanying the collection. The number of samples
in each class is: N (1), L (1), S (3), SL (1), GS (7), GL (6), GSL (2). There were unfortunately no
samples that tested positive for gelatin only. Figure 1 shows an average spectrum for each
class prior to preprocessing. The most obvious difference in spectra is the proteinaceous
amide I and II peaks from 1550 to 1650 cm−1 for the GL, GS, and GSL classes. In the -OH
stretching region from 3000–3400 cm−1, the slope of the GS spectrum is shallower than that
of the other classes. The remaining variance across the spectra is less distinct and difficult
to characterize by peak position and shape alone, hence the application of PCA. With data
science classification techniques, such as PCA, it is not necessary to try to parse and assign
each peak in a spectrum. The shape of the spectra can be viewed as a wholistic signature
of a paper’s specific chemical composition. Spectral processing techniques such as the
Kubelka-Munk or Kramers-Kronig transforms are not necessary if the PCA model is built
with data that is collected in the same method as the data from the unknown objects.

Table 1. Chemical test results and model classification for Paper and Mediums Study Collection
writing paper.

Chemical Test Results

Writing Paper Publication Date Gelatin +/− (G) Starch +/− (S) Lignin +/− (L) Model Class *

A 1790–1816 + − + GL

B 1980s + + − GS

C ca. 1819 − − + L

D 1950s? + + − GS

E 1952? − + − S

F 1995 − − − N

G 1995 − + − S

H 2004 − + − S

I 2001 − + − S

J ca. 1829 + − + GL

K 1760? + − + GL

L 1900? + + − GS

M early 19th c.? + − + GL

N unknown; 18th c.? + − + GL

O unknown; 19th c.? + − + GL

P 1900? + + − GS

Q ca. 1835 + + − GS

R early 1900s? + + − GS

S 1830s? + + + GSL

T ca. 1877 + + − GS

U mid-20th c.? + + + GSL

* G (gelatin), S (starch), and L (lignin) indicate classification based on a positive test result for that material; N
indicates negative for all tests.
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Figure 1. Average spectra of writing paper data by class before preprocessing. The similarity between
the different spectra makes it hard for the human eye to distinguish the differences. Correlation
matching functions used in spectral library software will also struggle to find the differences. Classifi-
cation techniques, such as PCA, make it not necessary to try to parse and assign each individual peak
in the spectrum. The shape of the spectrum can be viewed wholistically as a signature for a paper’s
particular chemical composition.

Of the 10 positive listings for lignin, only one was a moderate test result (Paper C).
The other 9 were noted as slight or very slight test results.

2.3. Modeling

Modeling was carried out using the Solo software from Eigenvector Research Incor-
porated. The spectra were imported into the software and class assignments entered, first
based solely on the results of the sizing in the paper. A second model was made including
the known information about the sizing and the fiber types. A range of preprocessing
conditions were tested to optimize the predictive capability of the model. The order of
preprocessing steps does affect the outcome of the resultant model.

For spectral data, sources of variation that can obscure information of interest include
measurement noise, baseline variation, and environmental CO2 to name a few. These
signals are often referred to as clutter and they make the modeling less robust. A strong
model will show clustering within an assigned class, while individual classes are reasonably
separated within the model space. Proper preprocessing can help minimize the clutter and
tighten the clustering of the classes by just keeping the variance of interest in the data set
and ignoring the variance that is not of interest.

For these spectra, the baselines were first corrected in OPUS using the rubber band
method. Next, in Solo, a multiplicative signal correction (MSC) was applied as a weighted
normalization treatment to remove magnitude variability. The MSC algorithm also per-
forms a baseline removal, but better results were obtained using the OPUS baseline removal
tool prior to importing the data into Solo. The weighted normalization treatment deter-
mines the weighting scale factor by regressing a measured spectrum against a reference
spectrum calculated from the mean of the data, then correcting the spectrum using the
slope and intercept of the fit. MSC can be applied to the mean or the median of the data.
For this project the MSC (mean) algorithm was used.
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Next, generalized least squares weighting (GLSW) was applied to the data. GLSW
is a decluttering treatment where the data are weighted by the inverse square root of the
clutter covariance. The weighting factor can be adjusted, with lower thresholds going
further into the features from minor components. A GLSW threshold of 0.05 was found to
give the tightest clustering of the classes with this data set. The GLSW algorithm shrinks
the clutter dimensions without fully removing them, so any actual variance caught in the
clutter calculation will still have some representation in the model. It does not account for
magnitude difference, so it should be applied after a normalization process such as MSC.

“Clutter” is variance in the data that is not relevant to the question at hand. For
example, in this case, the fiber type information would be “clutter”, since the question was
about whether there was gelatin, lignin, or starch in the object. The same FTIR data could
be arranged into classes based on the fiber type and then the gelatin, lignin, and starch
signals would be the “clutter”.

Finally, the data were mean centered. Mean centering is a treatment where the mean of
the data set is subtracted from each column of the matrix. This allows the model to capture
variance around the mean of the data, emphasizing differences while eliminating repetitive
information from the model. A similar treatment, class centering, where the mean of each
class is subtracted from that particular class, can also be applied. The suitability of class
centering depends on whether there is additional variance within a class, effectively a
“sub-class”. This is the case with the paper samples since there are spectral contributions
from the fiber content that are not accounted for by the classifications for the chemical tests.
As such, mean centering is the best choice for this data set and generates a better model
than class centering [21].

In summary, the full preprocessing treatment for the data was rubber band base-
line correction in OPUS and in Solo MSC (mean), GLSW (clutter source x-block classes,
threshold 0.05), and mean centering preprocessing.

3. Results and Discussion
3.1. Lignin Determination

Of the writing papers in the Legacy Press collection, aside from paper C, all the
positive occurrences of lignin were listed as slight or very slight. In most instances this
would be from the unbleached portion of flax/hemp fibers used, which sometimes show
up as dark flecks or fiber bundles in paper. The PCA models had trouble distinguishing
the reported slight variation in lignin, and this may be due to the heterogeneity of the fiber
distribution in the papers and the sampling area (125 × 126 microns) used for the FTIR
capture. While 125 microns is a common analysis area for FTIR microscopy, it is a small
area for collecting a representative sample of heterogenous fiber composition in paper. It is
likely that the sample area for FTIR capture was too small to detect the slight variation in
lignin content. Further investigation of the lignin content of the papers is left for future
work with a different reference set of papers and different sample area parameters.

3.2. Paper Sizing Material Determination

A PCA model was built to explore if the paper sizing material could be determined
from the specular reflection FTIR data of a variety of historic writing papers. Paper sizing
are materials added to the paper to enhance certain desired properties of the paper. Some
common sizing materials are gelatin, starch, and alum. The FTIR signal from the sizing
is usually very small compared to the signal from the cellulose fibers in the paper. The
gelatin and starch sized papers were from the Legacy Press Collection. The alum sized
papers were from Debora Mayer’s personal collection. Figure 2 shows the PCA model of
the reference papers using the information about the sizing material. By and large, the
different groups separate out nicely. The slight overlap between the gelatin size papers and
the gelatin and starch sized papers is probably partly due to unaccounted for variance from
the different fiber types in the papers and differences in the amount of the gelatin content
between the papers.
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Figure 2. PCA model built on specular reflection FTIR data and known paper sizing material
information for classification.

To test the model against a museum collection object, the paper that the photographs
are mounted on in Alexander Gardner’s Photographic Sketch Book of War (object number
2013.6.1), published in 1866 were used (Figure 3). The selection of this object was mainly
due to the fact that specular reflection FTIR data had already been collected from it by the
authors for another research project. Measurements from the blank paper area on the right
edge of pages 68, 78, 96, and 97 are plotted in Figure 4. It unfortunately does not fall very
neatly into any of the reference categories. This shows some of the limitations of the model
based solely on the sizing material information.

3.3. Paper Fiber Determination

The papers in the Legacy Press collection do have different fiber types and fiber
mixtures and this is a variable in the signal that was not taken into account by the model
built on just the chemical tests. This led to the question of whether the specular reflection
FTIR data had enough information to distinguish the different types of cellulosic material.

The reference materials of pure pulp stock were provided by Walter Rantanen of
SGS-IPS testing, and include cotton linter fibers, cotton textile fibers, rayon fibers, softwood
bleached (BL) kraft fibers, softwood bleached (BL) sulfite fibers, and softwood high alpha
pulp fibers. Somewhat surprisingly, the different cellulose fiber types neatly split out into
different groups (Figure 5). Even extremely similar fibers such as cotton linters (short fibers
of the cotton boll) and cotton textile fibers (lint, the long cotton fibers commonly used in
textiles) separated in PCA space.
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Figure 4. Plotting photograph mounting paper in Alexander Gardner’s Photographic Sketch Book of
War (Harvard Art Museum object number 2013.6.1), dark grey circles, plotted against the PCA model
of paper sizing.
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Encouraged by this result showing that different types of cellulose fibers can be clearly
distinguished with specular reflection FTIR and principal component analysis, the Legacy
Press writing paper data and alum sized papers were reclassified using the chemical tests
and the paper fiber information (Figure 6). The potential lignin content was ignored again
for reasons previously discussed. The starch wood paper (writing paper I) is far from the
others in PCA space. Leaving pure wood fiber paper out of the model allows the data of
the more similar papers to be more clearly plotted. This observation argues for developing
a hierarchical model in the future. The hierarchical model can be thought of as a flow chart
with different decision points. The first model would be used to determine the main fiber
type family (wood, cotton, etc.) and the subsequent models would be used to determine
the sizing materials and mixture of the fibers.
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Some of the classes are adjacent or slightly overlapping in PCA space, but there are
surprisingly clear groups for the different mixtures that range from one to five components.
In very broad strokes, PC1 picks up mostly on the variance due to gelatin content and PC2
picks up on variance due to bast content. While the confidence ellipses of the different
fiber mixtures are slightly overlapping, multiple measurements from an object can give
more confidence in the assignment of an unknown sample to a specific class. Spectra
from the Gardner album do not align neatly with any one reference group, but appear to
contain elements of gelatin, bast, cotton, starch, and flax (Figure 7). The fact that an almost
unlimited number of specular reflection FTIR measurements can be taken from multiple
positions on a collections object is a clear advantage. Other data science techniques such as
a support vector machine discriminant analysis (SVMDA) may be a better choice for data
that has such close boundaries, but exploration of that will be left for future work.
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Figure 7. Plotting photograph mounting paper in Alexander Gardner’s Photographic Sketch Book of
War (Harvard Art Museum object number 2013.6.1), dark grey circles, against the model based on
sizing material and fiber type. The mounting pages 68, 78, 96, and 97 now clearly fall in the cotton
paper sized with starch classification area.

4. Conclusions

The application of PCA modeling to specular reflection FTIR spectral data has the
potential to provide a non-invasive means of analysis for major and minor components in
paper materials. Relative to the bulk cellulose signal, the presence of components such as
gelatin, starch, and lignin are fairly minimal and may be difficult to detect from examining
individual peaks alone. Traditional methods for detecting these materials involve wet
chemical tests (Biuret, iodine, phloroglucinol) that are ultimately destructive and not
applicable to museum and collection objects. Taking these two primary concerns into
consideration, a PCA model of non-contact specular reflectance FTIR spectra was tested as
an alternative method for the wet chemical tests.

The models demonstrated here, generated from the Legacy Press Paper and Mediums
Study Collection, demonstrate the effectiveness of the method. Preprocessing is a significant
part of making a robust PCA model, and the conditions are dependent on the type of data
being modeled. In this instance, MSC, GLSW, and mean centering were found to be the
most useful for minimizing similarity (bulk cellulose) and emphasizing variance within
the specular reflectance FTIR spectra. Classifications for the calibration data were made
based on the notes accompanying the collection, which came from chemical tests carried
out by collection compiler Cathleen Baker and the fiber type analysis from Integrated Paper
Services, Inc.



Heritage 2022, 5 1971

Pure fiber pulp stock samples were tested. The ability to distinguish different sources
and processing of cellulosic material was demonstrated.

Including the fiber types and chemical test data produced a more precise classifications
model for the paper study collection. The photograph mounting paper used by Alexander
Gardner in Gardner’s Photographic Sketch Book of War was compared to two different
PCA models. The first model only included information about the paper sizing. The
second model included sizing and fiber type information. The second model provides a
much clearer identification of the paper Gardner used. The data from multiple pages lands
neatly in the cotton/bast paper sized with starch area of the second PCA model, allowing a
positive identification with reasonable confidence. The fiber composition result with the
PCA model matches the results obtained by traditional fiber analysis performed by Debora
Mayer using broken fragments from the edge of a page. The cotton fibers were identified
based on the presence of extinction bands visible in cross-polarized light microscopy. Since
the specular reflection FTIR measurement is completely non-sampling and non-contact,
several points on multiple pages could be investigated.

Based on this demonstration, PCA modeling of non-invasive specular reflectance FTIR
is a viable method for detecting the presence of minor chemical components within the bulk
cellulose matrix of the paper without risking harm to the object. Differences in fiber types
can also be distinguished. Since fiber identification also traditionally requires sampling
and examination by optical microscopy, this is another place where PCA modeling of FTIR
spectra has the potential to provide information for objects that would otherwise not be
suitable for analysis involving sample removal. In the analysis of fiber composition of
papers, use of PCA modeling with specular reflectance may better approximate industry
standards on sampling paper to achieve representative results, all nondestructively, in con-
trast to traditional methods of removing samples for examination using optical microscopy.
This is a practice changer for art conservators and other museum and library professionals
in the analysis of collections.

As data science techniques become more widely accessible to the non-specialist, more
information about objects can be determined. While the commercial Solo software by
Eigenvector Research, Inc. was used here, similar data analysis could be carried out using
free software packages such as python or R.

More complex models should be developed for general paper analysis. Since wood
fibers land so far from cotton, bast, and flax fibers in PCA space, a hierarchal model should
be used to first distinguish general fiber type, and then a more refined model to distinguish
specific fiber mixture and sizing materials. The ability to build robust models depends on
having relevant well-characterized reference materials to collect data from.

Future directions for this research include expanding the papers analyzed to papers of
known fiber mixtures, including percentages along with processing chemistry and modern
sizing agents, and broadening the scope of papers to study to include non-western papers
such as Indian, Islamic World and East Asian papers to understand how the techniques
outlined might be applied to papers from around the world. It is also hoped that once paper
supports are better understood, the techniques might be used to study media that has been
difficult to analyze because there is so little material present. This might include, for exam-
ple, drawing inks on old master drawings. The use of principal component analysis and
specular reflection FTIR may open new avenues for the study of artists’ materials, allowing
a deeper understanding of materials that were traditionally very difficult to analyze.
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