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Abstract: Structural damage detection is an important issue in conservation. In this research, prin-
cipal component analysis (PCA) has been applied to the temporal variation of modal frequencies
obtained from a dynamic test of a scaled steel structure subjected to different damages and differ-
ent temperatures. PCA has been applied in order to reduce, as much as possible, the number of
variables involved in the problem of structural damage detection. The aim of the PCA study is
to determine the minimum number of principal components necessary to explain all the modal
frequency variation. Three estimators have been studied: T2 (the square of the vector norm of the
projection in the principal component plan), Q (the square of the norm of the residual vector), and the
variance explained. In the study, the results related to the undamaged structure needed one principal
component to explain the modal frequency variation. However, the high damage configurations
need five principal components to explain the modal frequency. The T2 and Q estimators have been
arranged in order of increasing damage for all the performed experimental tests. The results indicate
that these estimators could be useful to detect damage and to distinguish among a range of intensities
of structural damage.

Keywords: historical structure; monitoring; non-destructive inspection; PCA; ambient temperature;
damage configuration

1. Introduction

World Cultural heritage regarding architecture is represented by a wide, rich and di-
verse historical and contemporary construction. Archaeological sites, monuments, historic,
civil and religious buildings and cities are the inheritance from the past generations and a
legacy for the future generations. This heritage enriches the lives of citizens, strengthens
the creative and cultural sectors and enhances social capital. Cultural heritage promotes
sustainable tourism and it is a relevant resource for economic growth. It must be preserved
as a living memory of nations and as a historic document of our past. A range of EU policies
and programs support Europe’s cultural heritage and funding, notably the Creative Europe
program (https://culture.ec.europa.eu/creative-europe, 14 July 2022).

In this context, the surveys oriented to the maintenance and conservation of the
architectural heritage need the support of different techniques and tools of evaluation and
analysis adapted to their specific characteristics.

In the past decade, the term ‘restoration’ has been gradually substituted by the term
‘conservation’, meaning that historic buildings should be preserved for as long a time as
possible. The aim is to keep the genuineness of the building’s architectural features. To
reach this goal, cultural heritage conservation needs a multidisciplinary approach. The
preservation of architectural heritage is a cultural requirement due to the historical value of
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the buildings. The preservation works have increased their economic importance due to
cultural tourism and the cultural background of humanity.

The value and authenticity of architectural heritage cannot be based on fixed criteria
because the respect due to all cultures also requires respect for the cultural context to which
it belongs [1].

The general criteria presented in the recommendations by ICOMOS (International
Council on Monuments and Sites) look at the efficiency of the intervention. In order
to respect the original construction materials and architectural details of the building,
ICOMOS suggests minimum intervention. When the circumstances make it possible,
it is preferable to apply damage evaluation and monitoring procedures based on non-
destructive (ND) prospecting techniques. Between the different ND techniques used
to achieve advanced knowledge of historic masonry buildings, dynamic testing (and
successive modal analysis) can be considered a very effective tool. Dynamic testing is
actually the most reliable ND method to measure experimental parameters related to the
global dynamic behavior of the monitored buildings. In this field, Caselles et al. [2] and
Elyamani et al. [3] studied the dynamic monitoring of the 14th century cathedral of Santa
Maria of Mallorca (Mallorca, Spain), in which the main dynamic parameters of this gothic
unreinforced masonry building are treated. The monitored data were temperature, relative
humidity, wind effect and teleseisms. In further investigations, dynamic analysis [4] is
applied to study the vertical and horizontal forces caused by the bell ringing of the towers.
Beconcici et al. [5] compared the experimental dynamic behavior of a bell tower in San
Miniato (Pisa) with the predicted response obtained by studying numerical models of the
tower. Ramos et al. [6] applied the dynamic monitoring system and modal analysis to the
Clock Tower of Mogadouro and the Church of Jerónimos Monastery in Lisbon for damage
identification in unreinforced masonry structures. Most of the dynamic analysis applied to
historical heritage structures needs a deep knowledge of the architecture and typology, as
some geophysical prospections provide [7–9].

In order to analyze the dynamic testing results, without any previous knowledge of
the building behavior, principal components analysis (PCA) is a powerful technique. It
reduces the size of the data without losing information by removing linear correlations
among the data. This fact implies the compression of the data by reducing the number
of dimensions; they are represented in terms of the minimum number of variables, while
the most important information remains in the data set. In those cases exhibiting a great
number of variables, PCA is very advantageous due to its capacity to analyze a high
dimension of data [10]. PCA is also a powerful tool for classifying damage. Tibaduiza
et al. [11] demonstrated that the damages could be classified in the undamaged model and
damaged models. PCA is also very useful to detect damages in undamaged and damaged
configurations of a steel truss [12]. PCA was also used to find similarities between the
mortars used in the unreinforced masonry of Hagia Sophia (Istanbul, Turkey) and those
used in contemporary churches [13].

An example of using PCA is the study of the effect of environmental changes, such
as ambient temperature and humidity, among other effects, on the structural vibration
properties of surveyed and monitored buildings. The principal components analysis
(PCA) technique does not require the measurement of environmental parameters because
they are taken into account as embedded variables [14]. The main idea of the method
is to eliminate the contribution due to the environmental conditions by removing the
correlations among the data. This fact implies the compression of the data by reducing the
number of dimensions; they are represented in terms of a minimum number of variables
while preserving most of the information present in the data set. Regarding the interaction
between the temperature and the dynamic behavior of the structures, an interesting example
of the implementation of PCA is the study of the correlation between the thermal changes
in the stone masonry walls and the modal parameters of the Mallorca Cathedral (Mallorca,
Spain) [15].
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Caselles et al. [16] established that temperature variations in the range of 8 ◦C to 16 ◦C,
depending on the specific monitored building, allow one to establish the building’s degree
of damage by applying the PCA methodology. Rodellar et al. [17] explored the use of
two estimators based on PCA, including T2 and Q-statistic values, to detect and distin-
guish damage in two different structures: a steel sheet and the turbine blade of an aircraft.
Nguyen et al. [18] surveyed the Champangshiel Bridge in Luxembourg with the purpose
of identifying the damage by studying and comparing several damage estimators: Kernel
Principal Component Analysis approach (KPCA), Novelty (NI) and T2. Ge Zhang et al. [19]
proposed and analyzed new estimators aiming at damage detection: Length of the Eigen-
vector (LEV) and Directional Angle of the Eigenvector Variation (DAEV). Golinval [12]
considered two estimators based on PCA, using the subspace angle indicator and the
Proper Orthogonal Modes (POM), in order to detect damages. They were applied to a
structure submitted to a harmonic excitation. They are global indicators, and they include
all the structural modal information.

It is worth mentioning that the main idea of this article is that by only knowing the
minimum number of the principal component of the Q and the T2 to explain the modal
frequency variation, it could be able to detect structural damage. With this methodology,
damages are detected by looking for the inflexion point of the graph between estimators
versus PC used (Caselles et al., 2021 [7]). The more principal components are needed, the
more damaged the structure is. This is an interesting idea because it is not necessary to
know the undamaged configuration as most of the previous studies needed.

2. Methodology
2.1. Principal Component Analysis

PCA is a multi-variate statistical method also known as proper orthogonal decomposi-
tion. PCA has been applied in structural dynamic studies, modal analysis and parameter
identification, or model updating of non-linear systems [14]. Principal component analysis
is a statistical technique that allows the reduction of the dimension of data (the number of
variables) while trying not to lose information. It is a type of synthesis of information. The
new variables or principal components are a linear combination of the original variables
and they are able to explain the data.

The matrix of data is X (n × k dimension). The new data Z, the principal component,
is calculated as follows:

Z = XA, (1)

where A is a square matrix (k × k dimension), where the columns of the matrix are the
eigenvector of the matrix X′X (the covariance matrix).

The principal component, Zi, of the eigenvalue λi can be written as:

Zi = Xai, (2)

where ai is the column ith in the matrix A.
The covariance and the variance of the new variable are calculated as:

Cov (zi, zj) = a′j X′X ai = a′j ai = 0, (3)

Var(Zi) = λ i, (4)

Usually, the principal components are arranged in decreasing order of the explained
variance. Using only the first principal components that explain most of the total variance
is enough to have good results with a lower number of variables. In theory, if all original
variables are linear-dependent, then only one principal component will be required to have
exact results. The variance explained for the first principal component will be 100%. In
practice, the uncertainties in the data measurement process make it impossible to have
a perfect correlation. If the variation of the variables is greater than the measurement
uncertainties, the variance introduced by the error of the measurements is very low and
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the PCA results are adequate. However, in the opposite case, the variance explained by
each PCA is partly produced by the measurement uncertainty, and therefore the variance
explained by the first principal components will be lower than the expected variance. In
fact, the cumulative variance explained by the discarded components has to match with the
expected variance of the random errors. On the contrary, if the errors are random, then the
amount of explained variance of the discarded principal component has to be statistically
constant. Therefore, if the cumulative variance is plotted with the principal component
number, the obtained curve presents an inflexion point from the first principal component
discarded, and the slope of the curve must be statistically constant [16].

2.2. Estimators: T2 and Q Results

To estimate the degree of damage, the estimators T2 and Q are computed by applying
the following formulas:

T2
k = ∑r

i=1 XiPkλ
−1
k Pt

kXt
i , (5)

Qk =
r

∑
i=1

RiRt
i =

r

∑
i=1

((Xi − PkPt
kXt

i)
(
Xi − PkPt

kXt
i
)t
), (6)

where i is the number of principal components used, the matrix P (k x r dimension)
is composed by the r first eigenvectors of the matrix X′X (covariance matrix) placed in
columns. The variable X is the matrix of the data, λi are the eigenvalues of the matrix X′X.
R is the residual matrix.

Formulas (5) and (6) have a geometric interpretation. The first step is to define the
space made by the r first eigenvector of the matrix X′X. In Figure 1, this space is the plan ∆.
The second step is to compute the projection (XPP′, red lines in Figure 1) of the matrix X in
the space (∆) defined previously. These steps are repeated for r = 1, 2, . . . (one principal
component, two principal components, . . . ) in order to obtain a graph with the estimator
values versus PC number used.

Figure 1. Geometric interpretation of Principal Component Analysis.

Finally, T2 is the squared of the vector norm of the projection in the plan weighted by
the inverse of the eigenvalue. The T2 values are calculated for each subspace r = 1, 2, 3, . . .
(One principal component, two principal components . . . ).

Q is the square of the norm of the residual vector (R). R is the subtraction between
the data vector and its projection in the space made by the r first eigenvector (the sub-
traction between the vectors X and XPP′). The Q values are calculated for each subspace
r = 1, 2, 3, . . . (One principal component, two principal components . . . ).

In practice, the X matrix is composed of all the modal frequencies (in rows) obtained
for each temperature test (in columns). Appling PCA to the X matrix, the eigenvectors and
eigenvalues are obtained. P matrix is made with only the r first PC eigenvectors choose.
For each dimension of the space (r) a P matrix and, Q and T2 estimator values are obtained.
Where r varies from 1 to the maximum number of eigenvectors.
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2.3. The Scaled Structure and the Experimental Setup

A reduced steel model structure has been used to apply a set of different experimental
tests, which are aimed at studying the behavior of the modal frequencies under thermal
ambient variations. The scaled steel structure has been modified so that the undamaged
and different damaged configurations have been considered in the experimental tests.
Numerical models representing the damaged and undamaged structure configurations
have been designed and calibrated to complement the experimental tests. The structural
model consists of six columns and 35 beams made of steel (Figure 2a). The columns are
continuous L shaped 20 mm × 20 mm × 2 mm profiles, and the beams are 20 × 10 mm
rectangular shaped bars. The length of each beam is approximately 72 cm for the two-bay
frames, and 77 cm for the one-bay ones. Approximately 4.5 kg of lead weight was added in
the middle of each beam representing the permanent loads. These added loads consisted
of eight 200 mm × 50 mm × 3 mm lead thick plates connected to the model with a steel
plate and four bolts.

Figure 2. (a) Scaled steel model structure with the number nodes (green); (b)The added load, the ball,
schema representing the structure, the monitored nodes (green), and the heaters.

In order to obtain an adequate excitation of the scaled model, a dense medicinal
ball is used to hit the base of the structure. The resulting excitation is obtained under
different thermal conditions. The temperature has been controlled by using monitored
heaters, which are able to increase the ambient temperature to 30.6 ◦C. For lowering the
temperature until 19.0 ◦C, an air-conditioning system was used.

The test consists of exciting the structure by hitting its base at different ambient
temperatures in the laboratory. Therefore, after finishing each test, the temperature is
increased or decreased and a new test is undertaken. The objective was to monitor the
structure by repeating the test but at different ambient temperatures. As commented above,
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the test is performed by using a 2 kg ball and hitting the base of the structure (Figure 2b).
The kinematic response of the structure is therefore analyzed by recording, with a set of
accelerometers, the acceleration time history of the nodes (Figure 3a,b). The impact force
and its corresponding momentum are homogeneous for all the tests because the ball is
raised to the same height in each test. Regarding the emulation of the damage conditions of
the structure, the impact procedure is performed for five different structure conditions. A
first test is performed on the undamaged structure, and four additional tests are undertaken
on the structure modified with different damaged configurations. As described above,
for each damaged configuration, a range of different ambient temperatures is applied.
Then the acceleration is monitored on some specific nodes. The test procedure consists of
hitting the structure once every minute. Ten tests were applied successively for each fixed
ambient temperature. During the laboratory experiments, the temperature is controlled
with a thermometer. However, in order to measure the actual temperature of the structure,
a thermographic image was taken by an infrared camera. The joints (Figure 3a) are two
vertically positioned bolts at the ends of the beams.

Figure 3. The scaled model and the experimental setup (a) Longitudinal (blue circle) and transversal
(red circle) distribution of accelerometer; (b) Location of the nodes (green) and the accelerometers
(red and blue).

2.4. Monitoring the Frequency Variation under Temperature Control

The experimental setup involves 12 Brüel & Kjaer accelerometers (model 4371) placed
in the nodes located in positions 1 to 6 (Figures 2b and 3b). In Figure 3b, the two directions
of the accelerometer are detailed in each monitored node with red and blue arrows. The
direction of the arrow indicates a positive direction. Accelerometers in positions 1, 4, 8, 10
and 12 were placed in the longitudinal direction (X), while in the transverse direction (Y),
the accelerometers were located in positions 2, 3, 5, 7, 9 and 11 (Figure 3b).

The frequency variation was studied by modifying the structure in order to generate
five different damaged configurations. So, an initial undamaged configuration, where the
end nodes of the beams are considered as fixed; and four damaged configurations obtained
by relaxing the bolts located at the nodes of the beams (four different pattern maps of
relaxed bolts where used). The following tests were performed:
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Test 1: Structure without damage. In this test, all the bolts of the structure were
tightened with the maximum torque (5.1 Nm).

Test 2: Medium damage in two nodes. In this test, the structure has a damage in the
connections of the nodes in positions 3 and 8, in the longitudinal and transversal beam of
the third floor. In this test, the bolts in connections 3 and 8 were relaxed until a torque of
2.5 Nm was reached.

Test 3: High damage in two nodes. In this test, the structure has damage in the
connections of the nodes in positions 3 and 8, in the longitudinal and transversal beam of
the third floor. In this test, the bolts in the connections 3 and 8 were released (Torque 0 Nm).

Test 4: High damage in three nodes. In this test, the structure has damage in the
connections of the nodes in positions 3, 8 and 2, in the longitudinal and transversal beam of
the third and fourth floors. In this test, the bolts in the connections 3, 8 and 2 were released
(Torque 0 Nm).

Test 5: High damage in four nodes. In this test, the structure has a damage in the
connections of the nodes in positions 3, 8, 2 and 7 in the longitudinal and transversal beam
of the third and fourth floors. In this test, the bolts in the connections 3, 8, 2 and 7 were
released (Torque 0 Nm).

The PCA is properly applied with a minimum number of data that have enough rank
variation of the variables. To ensure this procedure, it is necessary to have a minimum
number of experiments and a range of temperatures, which are controlled with a thermal
camera [16].

For each monitored damaged configuration, the temperature was measured by a
thermal camera (Figure 4a). The post-process signal treatment and analysis were carried
out with the Infrec Analyser program. For each test, the temperature is controlled with the
help of electric stoves, in the case of increasing the heat, and to lower the temperature with
the help of an air conditioning device, as commented above. Table 1 shows the temperature
range applied in the five tests.

Figure 4. (a) Thermal image of the scaled structure for test 1 at 20.5 ◦C; (b) Phase, Coherence and
ESD of Channels 1 and 2 for test 1 at 20.5 ◦C between 0 and 18 Hz.
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Table 1. Temperatures applied in the five tests.

Temperature (◦C)

TEST 1 20.5 to 30.6
TEST 2 19.4 to 29.5
TEST 3 19.9 to 29.9
TEST 4 19.0 to 28.5
TEST 5 19.2 to 29.1

Figure 4a shows the image obtained with the thermal camera for test 1 at 20.5 ◦C. The
colored picture indicates a heterogeneous distribution of the temperature. The upper part
of the structure reached a higher temperature while the bottom of the structure remained
cooler. For all tests, the same point is used to measure the temperature (highlighted circle
in Figure 4a) and is located at the intermediate height of the structure.

3. Results

This section presents the results of the frequency variation with temperature. The
authors developed the software for the treatment and post process of the accelerometer
records. The autospectra were obtained by averaging 10 windows of each channel and each
test. The two last graphics included in Figure 4b shows the channel 1 and 2 energy spectral
density (ESD) of the test 1 (undamaged configuration) with 20.5 ◦C (performed 24 July 2019).
In these two graphics, the peaks of the second mode (2.703 Hz) are signposted. The ESD for
this mode in the first channel is 2.506·105 m2/s/Hz and 5.048·103 m2/s/Hz for the second
channel. The second graphic shows the coherence between the two channels. For the
peak (mode 2) related to the 2.703 Hz frequency, the calculated coherence is 0.9955, which
indicates a good linear dependency between both channels. Consequently, this indicates
that the peak is generated by the same effect. Finally, the first graphic in Figure 4b is the
phase of the cross spectrum. For the second mode, the second channel has a phase lag of
−3.066 rad when compared to the first one. Therefore, both channels are in opposite signs.

In longitudinal accelerometers, higher modes present a non-symmetric peak related
with a non-linear behavior (red circle in Figure 4b).

3.1. Peak Picking: Frequency Patterns

The ESD of the different experiments presents a similar pattern. In the spectrum, the
peaks are selected to create the matrix X for each test where the PCA theory is applied. In
our study, 13 modal frequencies have been correctly detected by the peak picking method
for all damaged and undamaged configurations. Table 2 shows the frequencies for only
the ten first modes and the 13 temperature tests for the undamaged configuration of the
structure. Only the first 13 modal frequencies were chosen because the upper frequencies
show clear non-linear behavior. For each damaged test, the selected modal frequencies
are ordered in the same way for all temperature tests. In the matrix X, each column
corresponds to the frequency modes from 1 to 13 and each row correspond to tests with
different temperatures.

In ESD, the frequency peak patterns are similar between channel 1 and 2 for modes
2 to 13. However, mode 1 only appears in the longitudinal channel (Figure 4b). It is also
important to highlight that, for the tests performed on high damaged configurations and
for all the temperatures in the range of study, the first mode, which is orthogonal to the
direction in which the structure is excited, was not clearly detected and, consequently, it
has not been used in the PC analyses.

Table 3 presents the frequency decay of the damaged tests (test 2, 3, 4 and 5) when
comparing to the results with the undamaged configuration (test 1).
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Table 2. First ten modal frequencies for the undamaged test in the thirteen different temperature tests.

Frequencies (Hz)

Test Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8 Mode 9 Mode 10

1 2.641 2.703 3.781 7.672 9.281 9.609 12.14 13.33 15.22 17.67
2 2.641 2.687 3.781 7.687 9.281 9.609 12.09 13.34 15.25 17.67
3 2.656 2.703 3.797 7.687 9.281 9.625 12.17 13.36 15.28 17.69
4 2.656 2.703 3.797 7.703 9.281 9.625 12.19 13.36 15.28 17.70
5 2.641 2.703 3.797 7.703 9.281 9.625 12.17 13.37 15.27 17.70
6 2.656 2.703 3.797 7.703 9.297 9.640 12.22 13.37 15.31 17.72
7 2.656 2.703 3.797 7.703 9.297 9.640 12.19 13.36 15.23 17.70
8 2.656 2.703 3.797 7.703 9.297 9.640 12.22 13.36 15.27 17.72
9 2.656 2.703 3.797 7.687 9.297 9.640 12.20 13.3 15.27 17.72

10 2.656 2.703 3.797 7.687 9.297 9.640 12.22 13.3 15.27 17.70
11 2.656 2.703 3.797 7.672 9.297 9.640 12.20 13.28 15.25 17.72
12 2.656 2.703 3.797 7.672 9.297 9.640 12.23 13.27 15.27 17.72
13 2.656 2.703 3.797 7.672 9.297 9.640 12.22 13.27 15.31 17.72

Table 3. Frequency decay of damaged tests when comparing with the undamaged configurations test.

Frequency Decay (%)

TEST 2 ≤0.1
TEST 3 0.5 to 5
TEST 4 1.7 to 7
TEST 5 2.6 to 10.3

The standard deviation of the modal frequencies in the undamaged configuration
test is lower than 0.016 Hz for the first six modes, and lower than 0.05 Hz for upper
modes, while the frequency resolution is 0.016 Hz. Moreover, the standard deviations
of the measured frequencies in test 2 (medium damaged configuration) are lower than
the resolution (0.016 Hz) for the first six modes and the 10th and 13th modes, and they
are lower than those obtained for the undamaged configuration of test 1 (21% lower on
average). In the case of test 3 (high damage in two nodes), the standard deviations are
lower than 0.016 Hz for the first six modes and for the 10th mode, and lower than the
standard deviation obtained in the undamaged configuration test 1 (98% lower on average).
In the case of high damage in three nodes (test 4), the standard deviations are lower than
the frequency resolution for the first six modes and for the 10th mode, and they are slightly
lower (6.73% lower on average) than those obtained in the undamaged configuration test.
Finally, the standard deviation of the frequency data for test 5 (high damage in four nodes)
is greater than the resolution frequency in almost all modes (only the first and fourth modes
have lower standard deviations). In this test, the average of the standard deviation is higher
than that obtained in the undamaged configuration tests (276%).

3.2. The Variance Explanined Results

The variance explained is studied for all the damaged configuration tests. Each
principal component is associated to a percentage of variance explained. Figure 5 represents
the cumulative variance explained vs. the number of principal components used for each
of the damaged tests.
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Figure 5. Cumulative explained variance (%) vs. principal component number.

The test that has the highest cumulative variance explained for almost all the principal
component numbers chosen is the high damaged configuration test 3 (damage in two
nodes). The test that has the lower explained cumulative variance is the high damaged
configuration test 4 (damage in three nodes). For the undamaged configuration test, three
principal components are enough to explain 95% of the data variance and have a flat curve
slope. The medium damaged configuration test 2 (damage in two nodes) also needs three
principal components before the change of the curve slope in order to explain 95.5% of the
total variance. Test 3 (high damage in two nodes) and test 5 (high damage in four nodes)
also needed three principal components in order to explain 98% of the data variance. Test 4
(high damage in three nodes), the only damage configuration that includes an asymmetric
damage distribution pattern, needed four principal components to make the cumulative
variance curve flat and explain 97% of the variance of its data.

To properly apply the proposed methodology, enough of a temperature range is
needed in order to assure the frequency variations are higher than the frequency resolution.
Otherwise, the variance obtained by PC analysis mainly reflects the random error produced
by the lack of resolution.

The evolution of the principal components with the temperature for the undamaged
configuration test shows a minimum of 9 degrees of temperature range to assure the
stability of the cumulative explained variance of the PC (Figure 6). Similar results occur in
the other tests.
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Figure 6. Thermal variation of the cumulative variance for the first four principal components used
for the undamaged configuration test.

3.3. Q Results

For each damaged configuration test, the Q value is computed as explained in
Section 2.2 Equation (6). Figure 7 shows the results of Q values vs. principal component
number related to the damaged configuration tests performed in this study.

Figure 7. (a) Q values vs. principal component number for all damaged tests. (b) Q values vs.
principal component number for tests 1 and 2.
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The undamaged configuration test (test 1) shows the lower Q values for all the princi-
pal component number, while the test with higher Q values, is the high damaged configu-
ration test 5 (damage in four nodes).

The Q values derived from the tests are ordered according to the increasing damage
level (Figure 7a). The Q values in the undamaged and medium damaged configurations
(tests 1 and 2) are smaller than those calculated for the high damage configuration structures
(tests 3, 4 and 5). The Q values of the high damaged configuration test 5 (damage in four
nodes) are higher than those of the high damage configuration test 4 (damage in three
nodes). In addition, the Q values of the high damage configuration test 4 (damage in three
nodes) are bigger than the high damage configuration test 3 (damage in two nodes).

In tests 3, 4 and 5 (structures with high damaged configurations), the Q values increase
monotonically after the fifth principal component. The fifth principal component is the
inflexion point (Figure 7a). However, for the tests 1 and 2 (undamaged and medium
damaged structures), Q values increase monotonically since the first principal component.
Therefore, in these two cases, only one principal component is needed to reach the inflexion
point (Figure 7a).

Although tests 1 and 2 do not indicate a significant shape difference (Figure 7a), when
increasing the resolution of the graphic in Figure 7b, it is evidenced that Q values in
the undamaged configuration structure (test 1) are smaller than the medium damaged
configuration structure (test 2). Not only the Q values are sensitive enough to evaluate
the difference between the high damaged, medium damaged and undamaged tests, but it
can also differentiate the medium damage configuration (damage in two nodes) from the
undamaged configuration structure.

For all the performed tests, when the principal components increase, the Q values de-
crease, because when the space projection is bigger, the projection is a better approximation
of X, therefore, the residual vector is smaller.

3.4. T2 Results

For each of the damaged tests, the T2 value is computed as explained in Section 2.2
Equation (5). Figure 8 shows the T2 values graphic vs. principal component number for
each of the damages.

For all the tests, when the number of principal component increases, the T2 values
also increase, because when the projection space is bigger, the projection is a better approxi-
mation of X. The shape of the T2 graphic has an opposite shape from the Q graphics.

The T2 values of the tests are arranged in increasing order of damage (Figure 8a). The
T2 values in the undamaged and medium damaged structures (tests 1 and 2) are smaller
than the three high damaged structures (tests 3, 4 and 5). The T2 values of the high damage
four nodes structure (test 5) are bigger than the high damage in three nodes structure
(test 4). In addition, the T2 values of the three nodes high damage structure (test 4) are
bigger than the two nodes high damage structure (test 3).

In tests 3, 4 and 5 (high damaged structure), the T2 values increase monotonically
after the fifth principal component. The fifth principal component is the inflexion point
(Figure 8a). However, for the tests 1 and 2 (undamaged and medium damaged structure),
the T2 values increase monotonically since the first principal component. Thus, in these
two cases, only one principal component is needed to reach the inflexion point (Figure 8a).

When increasing the resolution of the graphic (Figure 8b), it can be observed that
T2 values in the undamaged structure (test 1) are bigger than those obtained for the medium
damaged structure (test 2).
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Figure 8. (a) T2 values vs. principal component number for all damaged tests. (b) T2 values vs.
principal component number for tests 1 and 2.

4. Conclusions

Although the variability of the modal frequencies has not been great enough compared
with the resolution error, Q and T2 estimators seem to be more sensitive than the cumulative
standard deviation. The results obtained in this study point out the importance of ensuring
enough frequency variation to have good results. The results show the importance of
studying the stability of the cumulative variance explained. There are two ways to increase
the variance stability: increase the range of temperature or increase the resolution.

Although the estimator of the variance explained is not entirely conclusive, the T2 and
Q estimators point out that the high damaged structures (tests 3, 4 and 5) need 5 principal
components to explain the modal frequency variation with temperature. However, the
undamaged and the medium damaged structures (tests 1 and 2) only need one princi-
pal component.

The Q estimator is arranged according to the damage intensity (Figure 7a). The Q
estimator is sensitive enough to establish that values in the undamaged structure (test 1)
are smaller than those calculated in the medium damaged structures (test 2).

The T2 estimator is sorted according to the intensity of the damage (Figure 8a). How-
ever, the T2 estimator seems not to be sensitive enough because T2 values in the undamaged
structure (test 1) are bigger than the medium damaged structure values (test 2). The main
causes that may explain these results are the reduced resolution and the short range
of temperatures.

The results indicate that the behavior of these estimators could be useful to detect
damage and to distinguish among a range of intensities of damage in structures with
different configurations. Moreover, it seems to be possible to predict a high damaged
configuration by only knowing the minimum number of the principal component of the Q
and the T2 to explain the modal frequency variation.
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