Supplementary Materials

In situ monitoring of growth of vertically stacked h-

BN/graphene heterostructures on Ni substrates and their

interface interaction

Wei Wei^{1,2}, Guanhua Zhang³, Jiaqi Pan¹, Yi Cui^{1,*}, Qiang Fu^{2,*}

- ¹ Vacuum Interconnected Nanotech Workstation, Suzhou Institute of Nano–Tech and Nano-Bionics, the Chinese Academy of Sciences, Suzhou 215123, China; wwei2018@sinano.ac.cn (W. W.); jqpan2018@sinano.ac.cn (J. P.); ycui2015@sinano.ac.cn(Y. C.)
- ² State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, the Chinese Academy of Sciences, Dalian 116023, China; qfu@dicp.ac.cn (Q. F.)
- ³ State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, the Chinese Academy of Sciences, Dalian 116023, China; zhanggh@dicp.ac.cn (G. Z.)

* Correspondence: ycui2015@sinano.ac.cn; qfu@dicp.ac.cn

More initial XPEEM results of vertical stacked h-BN/graphene heterostructures growth on Ni substrates

Figure S1 Initial XPEEM images at C 1s and N 1s core levels with binding energies of 285.1, 399.0, and 398.6 eV (hv = 500 eV) at the surface segregation temperature of 650 °C. The distribution of

related elements with the certain chemical state displays bright contrast.

Figure S2 Initial XPEEM images at C 1s core levels with binding energies of 285.1 and 284.5 eV, and N 1s core levels with binding energies of 398.6 and 397.9 eV at the surface segregation temperature of 600 °C. The distribution of related elements with the certain chemical state displays bright contrast.