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Abstract: A modest, efficient, and sensitive chemically modified electrode was fabricated for sensing
curcumin (CRC) through an electrochemically polymerized titan yellow (TY) modified carbon
paste electrode (PTYMCPE) in phosphate buffer solution (pH 7.0). Cyclic voltammetry (CV) linear
sweep voltammetry (LSV) and differential pulse voltammetry (DPV) approaches were used for
CRC detection. PTYMCPE interaction with CRC suggests that the electrode exhibits admirable
electrochemical response as compared to bare carbon paste electrode (BCPE). Under the optimized
circumstances, a linear response of the electrode was observed for CRC in the concentration range
2 × 10−6 M to 10 × 10−6 M with a limit of detection (LOD) of 10.94 × 10−7 M. Moreover, the effort
explains that the PTYMCPE electrode has a hopeful approach for the electrochemical resolution of
biologically significant compounds. Additionally, the proposed electrode has demonstrated many
advantages such as easy preparation, elevated sensitivity, stability, and enhanced catalytic activity,
and can be successfully applied in real sample analysis.

Keywords: curcumin; titan yellow; cyclic voltammetry; electrochemical behavior; carbon paste
electrode

1. Introduction

Naturally occurring phytochemical in rhizomes of Curcuma longa or turmeric is poly
phenol curcumin (1, 7 bis [4-hydroxy-3-methoxy phenyl]-1, 6, heptadione-3, 5-dione), com-
monly known for its medicinal properties. In recent years, the primary yellow bioactive
component of turmeric, CRC, has received considerable attention in medicine [1–3]. It is
known for its antiviral, antifungal, antibacterial, antioxidant [4], anti-inflammatory [5], an-
titumor [6] activities without any side effects [7–9]. It also regulates the substitutive typical
pathways in the nervous system and also in the handling of dementia, multiple sclerosis,
and Alzheimer’s disease [10–12]. Yellow-colored CRC is a common food additive used as a
spicy and coloring agent. CRC adulteration with non-permitted colored compounds for
economic gain is recently observed. Excessive usage of these compounds beyond limits
can cause infertility, liver damage, cancer, birth defects, and allergy [13]. Hence, it is very
much essential to develop a suitable procedure to monitor the CRC in the presence of
non-permitted dyes.

The existence of the methoxy group in the phenyl moiety of CRC makes it exhibit
redox properties. In addition, CRC can form stable complexes [14–20] with metallic cations
such as Fe2+, Ni2+, Fe3+, and Co2+ due to its chelating agent property. Medicinal uses
of CRC have created tremendous interest in research and a facile process is essential for
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the reliable determination of the concentration of CRC [21]. Analytical methods such as
flow injection analysis [22], capillary electrophoresis [23], thin layer chromatography [24],
high-performance liquid chromatography [25,26] are already reported for CRC determi-
nation. These methods require complicated sample preparation with a lack of sensitivity.
Electroanalytical method is an extremely sensitive procedure to study the redox of behavior
biologically important molecules in pharmaceutical, food, and biologicals samples. Because
of its simple operation protocol, rapid output with high sensitivity and selectivity. The
method has been adopted for the investigation of different electroactive compounds. CRC
has methoxy polyphenolic and phenolic groups accompanied by alkene, sufficient enough
to become electroactive [27–39]. Existing electrochemical systems for CRC such as carbon
nanotube–carboxymethylcellulose electrode [40], cadmium oxide nano-particles-ionic liq-
uid (1,3-dipropylimidazolium bromide as a binder) modified carbon paste electrode [41]
graphene oxide modified glassy carbon electrode [42] multiwalled carbon nanotube modi-
fied basal plane pyrolytic graphite electrode [43], etc., were reported.

An electro-polymerization of organic dyes is widely reported as a modifier for elec-
trodes such as poly (aniline blue) [44], poly (nigrosine), [45] poly (methyl blue) [46] poly
(thiazole yellow-G), or titan yellow [47], etc. Electro-polymerization of dyes improves the
sensitivity, stability, and conductivity properties of the electrode [48]. It is of great interest
to cultivate a method for CRC determination with simplicity and better sensitivity under
physiological situations and to predict the electrochemical reaction mechanism of CRC. The
electrochemical behavior of CRC at BCPE and PTYMCPE was systematically investigated.
A voltammetric method to determine CRC at the PTYMCPE under physiological conditions
is presented. The probable oxidation mechanism of CRC is shown below in Scheme 1.
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Scheme 1. Structure and oxidation reaction mechanism of CRC.

2. Methods and Materials
2.1. Reagents

CRC (analyte), riboflavin (RF), and titan yellow (TY) were purchased from Moly-
chem, Mumbai, India. Disodium hydrogen phosphate (Na2HPO4), sodium dihydrogen
phosphate (NaH2PO4), and potassium ferrocyanide K4[Fe(CN)6] were obtained from Nice
Chemicals, Cochin, India. Graphite (150 mesh) powder was acquired from Nice Chemicals,
India. The natural food supplement (liquid) was bought from the neighboring general store,
Madikeri, India. One millimeter of natural food supplement liquid was diluted with water
(50 mL) and used for the analysis. No pretreatment is required for the real sample. Other
chemicals of analytical grade were used without any additional refining. The solution of
CRC was prepared in alcohol and other solutions were prepared in distilled water. The
entire investigation was carried out at the normal laboratory temperature (27 ± 2 ◦C).
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2.2. Instrumentation

An electroanalyser of model CHI 6038E (CH Instruments, Inc. Austin, TX, USA) was
used to perform all the electrochemical studies. A conventional three-electrode system was
used for the measurements. PTYMCPE, saturated calomel electrode (SCE), and platinum
wire were, respectively, used as working, reference, and counter electrodes. The surface
morphology of the electrode was examined through field emission scanning electron mi-
croscopy (FESEM) operating at 5.00 kV obtained from DST—PURSE Laboratory, Mangalore
University, Mangalore, India.

2.3. Development of BCPE

Graphite powder was mixed well with silicone oil in the ratio of 60:40 (w/w) in a
mortar and pestle until a consistent paste is produced. A fraction of the paste was packed
tightly in the cavity of a Teflon tube with a 3 mm internal diameter. The electrical contact
was provided by copper wire attached to the paste at the end of the tube. The electrode
surface was smoothened with tissue paper for a uniform surface.

3. Results and Discussion
3.1. Surface Morphology of Developed BCPE and PTYMCPE

The surface morphological investigation of BCPE and PTYMCPE was carried out by
FESEM. Figure 1a,b depicts the morphological characterization of both electrodes. BCPE
surface explores rough, porous, and irregular-shaped arrangements. The surface of the
PTYMCPE discloses a uniform, compact deposition of thin TY coats on the electrode. This
exactly differentiates the electrodes, showing the deposition of the modifier on BCPE.
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Figure 1. FESEM images of BCPE (a) and PTYMCPE (b).

3.2. PTYMCPE Preparation

Figure 2 represents the CV cycles (10 cycles) for electro-polymerization of TY [49] on
the surface of carbon paste electrode (CPE). Electro-polymerization is carried out in the
potential range between−0.25 V and +1.75 V in 0.1 M PBS for 10 cycles at pH 7.0 containing
1 × 10−4 M TY solution. The 10 polymerization CV cycles afford the optimum peak current
response with improved sensitivity for the redox reaction of CRC. So, 10 CV cycles are
chosen as optimum for the polymerization of TY on the CPE. The resultant plot represents
that the decrease in current with the increase in the number of CV cycles. This indicates
the conversion of the monomer of TY into the polymer film of TY on the CPE surface.
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at pH 7.0 for 10 cycles with a sweep rate of 0.1 V/s.

3.3. Electrochemical Behavior of K4[Fe(CN)6] at PTYMCPE

The electrochemical behavior of PTYMCPE was investigated using 0.1 mM K4[Fe(CN)6]
as a standard electrochemical redox probe (Figure 3). The cyclic voltammogram devel-
oped indicates that the redox peak currents of PTYMCPE (solid line) are higher than the
BCPE (dotted line). The PTYMCPE shows a pair of redox peaks with anodic peak cur-
rent (Ipa) = 2.95 µA, cathodic peak current (Ipc) = 2.21 µA and in case BCPE Ipa = 0.89 µA,
Ipc = 0.64 µA. This has shown the excellent catalytic activity of PTYMCPE as compared
to BCPE.

3.4. Electrocatalytic Oxidation of CRC at PTYMCPE Using CV, DPV and LSV

CV is an effective tool to examine the electrochemical behaviour of analytes. The
electrochemical behavior of CRC at BCPE (dotted line) and PTYMCPE (solid line) in pH
6.5 PBS is shown in Figure 4a. The presence of phenolic hydroxyl and methoxy phenol
functional groups on the molecular structure of the CRC makes it oxidize electrochemically.
BCPE locates the CRC anodic peak (Epa) and cathodic peak (Epc) at 0.212 V and 0.156 V,
respectively, with current responses of Ipa = 0.13 µA and Ipc = 0.08 µA. The potential
difference of the reversible peaks was found to be 0.056 V. On the modification of the
electrode with poly (TY), the voltammogram has shown enhancement in peak currents.
The values of Epa and Epc were found at 0.239 V and 0.116 V and the potential difference
found was 0.123 V. In addition, there was an increase in peak currents (Ipa = 0.91 µA,
Ipc = 0.97 µA) detected due to the enhancement in the reversibility of the electron transfer
procedure and the greater surface area of the layer. This proposes an effective oxidation
reaction of CRC at PTYMCPE.
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Figure 4b describes the responses of DPV for the electrochemical reaction of 1 × 10−5 M
of CRC at PTYMCPE (solid line) and BCPE (dotted line). The peak potential (Ep) for the
CRC oxidation at PTYMCPE was detected at 0.170 V with a peak current of 1.66 µA and
the peak potential of CRC at the BCPE was at 0.163 V with a peak current of 0.18 µA. The
peak current enhancement was observed at PTYMCPE. The CRC (1 × 10−5 M) behavior
at PTYMCPE (solid line) and BCPE (dotted line) using LSV are illustrated in Figure 4c. It
was observed from the response of the electrodes that the peak potential for the reaction of
CRC at PTYMCPE was at 0.229 V with a peak current of 0.84 µA and that of BCPE was at
0.216 V with a peak current of 0.13 µA. Therefore, enhanced CRC detection was observed
significantly at PTYMCPE. This shows that the polymer-modified electrode increases the
electrochemical performance of the analyte considerably.

3.5. Effect of Solution pH on PTYMCPE

The electrochemical behavior of CRC in 0.1 M PBS is studied at different pH (5.5
to 8.0) at PTYMCPE surface through LSV (Figure 5a). It has been shown that the peak
potential and electrocatalytic peak current depend on the pH of the solution. Additionally,
it is evident from Figure 5b that the shift of the peak potential (Ep) towards the negative
potential with the rise in pH may indicate that the protons are involved directly in CRC
oxidation, obeying the following equation: Epa (V) =−0.0678 pH + 0.6846 (R = 0.993). Slope
0.067 (experimental) ≈ 0.059 (theoretical) shows the transfer of equal number of proton
and electron in the reaction [50,51]. It is observed that the peak current of CRC reaches its
highest value at pH 6.5 and then gradually decreases with an increase in pH (Figure 5c).
Hence, pH 6.5 is considered the optimum pH for the determination of CRC. In addition to
this, the anodic peak potential (Epa) of CRC at PTYMCPE shifts towards lower negative
values with the increase in the pH of the buffer solution.
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3.6. Scan Rate Effect towards Electrocatalytic Oxidation of CRC

The scan rate influences the electrocatalytic oxidation of the CRC on the PTYMCPE
were investigated by LSV; the results are shown in Figure 6. It illustrates the influence
of scan rate on electrocatalytic oxidation of CRC on PTYMCPE. Figure 6a shows that the
anodic peak current increases linearly with increasing scan rate in the range from 0.1 V/s to
0.225 V/s. In addition, the plot of anodic peak current (Ipa) against the scan rate is shown
in Figure 6b. It is evident from the graph that the current varies linearly with the scan
rate. The linear regression equation is Ipa (µA) = 0.264 + 4.96 v (V s−1) with a correlation
coefficient of 0.99. This confirms that the electrochemical behavior of CRC at the modified
electrode was adsorption-controlled.
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3.7. Electrochemical Response of RF at PTYMCPE

Figure 7a depicts the LSV plot of current versus the potential for RF. The dashed line
in the graph corresponds to the voltammogram of RF at BCPE and the solid line in the
graph depicts the voltammogram obtained at PTYMCPE. Fortunately, the absolute values
of the peak current received for the probe are larger at PTYMPCE than at the BCPE. The
results indicate that the PTYMCPE holds a huge surface area and exceptional catalytic
activity on the electrode surface.
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The scan rate effect on the electrochemical response of RF was studied in the range
from 0.100 V/s to 0.250 V/s; the outcome is shown in Figure 7b. It is seen that, with the
increase in the scan rate, the peak current gradually increases along with the scan rate. The
rapport between the scan rate and the peak current is derived and the results show that
the peak current is proportional to the scan rate in the range 0.100 V/s to 0.250 V/s. It
indicates that the reaction taking place due to the electron transfer of RF on PTYMCPE was
adsorption controlled.

From Figure 7c, the peak current is varied with the increase in the scan rate. A linear
relationship between the scan rate and the peak current is established, and a straight line is
obtained with the linear regression equation Ipa (µA) = −4.899 + 69.3171 v (V/s), R = 0.999.
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3.8. Simultaneous Separation of CRC and RF

The simultaneous detection of CRC with RF has been carried out at PTYMCPE and
BCPE through DPV. The electrochemical cell containing PBS of pH 6.5 was filled with
the mixture of the solutions of CRC (1 × 10−5 M) and RF (1 × 10−4 M) for DPV analysis.
Figure 8 shows DPV separation of CRC and RF at PTYMCPE (solid line) and BCPE (dashed
line). PTYMCPE identifies CRC at 0.1729 V and RF at −0.493 with good current sensitivity.
However, BCPE traces CRC at 0.090 V and RF at −0.480 V with low current signals.
Therefore, PTYMCPE separates CRC and RF in a mixture as compared to BCPE.
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3.9. Calibration Curve and Detection Limit of CRC

The relationship between the concentration and the oxidation peak current of the CRC
was studied at PTYMCPE using CV. Different concentrations of CRC and the peak current
relation at optimized conditions (pH 6.5, v = 0.1 V/s) are shown in Figure 9a,b. The current
response linearly varies with the concentration of CRC in the range of 2.0 × 10−6 M to
1.0 × 10−5 M (first linear) and 1.0× 10−5 M to 4× 10−5 M (second linear). Linear regression
equations are Ipa(A) = 6.936 × 10−7 + 0.02598 C (M), correlation coefficient 0.993 and Ipa(A)
= 8.91× 10−7 + 0.0043 C (M), correlation coefficient 0.98 for the first and second linear,
respectively. The LOD is calculated by the formula LOD = 3S/N, whereas the quantification
limit (LOQ) is determined by LOQ = 10S/N. Where S is the standard deviation of five
blank current values (five blank measurements were performed without analyte), N is the
slope from the calibration curve [52]. The values for LOD and LOQ are 10.94 ×10−7 M
and 36.37 × 10−7 M, respectively, for the first linear from 2.0 × 10−6 M to 1.0 × 10−5 M.
The second linear LOD and LOQ becomes 6.59 ×10−6 M and 2.19× 10−5 M. The LOD
calculated during the work has been compared with the different electrodes reported
and is presented in Table 1 [53–59]. The proposed sensor provides a lower LOD (lower
concentration range) as compared to GCE [53], PVCAMPE [56], RGO/CPE [57], SPCE [59]
and a higher LOD as compared to SDSMCCPE [54] and PGAMCNTPE [55]. The proposed
sensor is a low-cost, simple and comparable LOD with a wide linear range.
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Table 1. Comparison of the performance of modified electrodes for the determination of CRC.

Electrode Method LOD (M) Linear Range (M) Reference Real Samples

GCE CV 4.1 × 10−6 9.9 × 10−6 to 1.07 × 10−4 [53] Spices

SDSMCCPE DPV 2.7 × 10−8 2 × 10−7 to 1 × 10−6 and 1 ×
10−6 to 4.5 × 10−6 [54] Natural food

supplement

PGAMCNTPE DPV 2.79 × 10−8 4 × 10−7 to 6× 10−6 and
6 × 10−6 to 10 × 10−6 [55] Natural food

supplement
PVCAMPE DPV 5.0 × 10−6 10 × 10−6 to 70 × 10−6 [56] Spices
RGO/CPE DPV 3.18 × 10−6 10×10−6 to 6000 × 10−6 [57] Human blood serum

HMDE DPAdS —- 0.495 × 10−6 to 27.6 × 10−6 and
0.96 × 10−6 to 48.4 × 10−6 [58] —

SPCE AdSV 4.9 × 10−6 2.2 × 10−6 to 2.8 × 10−4 [59] Mixed analyte systems

PTYMCPE CV
10.9 × 10−7 2 × 10−6 to 10 × 10−6

This work
Natural food
supplement6.59 × 10−6 10 × 10−6 to 40 × 10−6

GCE: glassy carbon electrode, SDSMCCPE: sodium dodecyl sulphate modified carbon composite paste electrode, PGAMCNTPE: poly
(glutamine) modified carbon nanotube paste electrode, PVCAMPE: poly (vanillin-co-caffeic acid) modified platinum electrode, RGO/CPE:
reduced graphene oxide/carbon paste electrode, CV: cyclic voltammetry, DPV: differential pulse voltammetry. DPAdS: differential pulse
adsorptive stripping voltammetry, HMDE: hanging mercury drop electrodes, SPCE: screen-printed carbon electrode, AdSV: adsorptive
stripping voltammetry.

3.10. Stability, Repeatability and Reproducibility

Stability, repeatability, and reproducibility studies are the main parameters to assess
the feasibility of a developed sensor. The study of reproducibility (n = 4) was performed
by changing PTYMCPE at each time for CRC (1.0 × 10−5 M) detection in 0.1 M PBS of
pH 6.5. The relative standard deviation (RSD) for reproducibility was originated to be
4.74%. The stability of the developed electrode was examined by running 40 cycles for
CRC (1.0 × 10−5 M) detection at laboratory temperature, as shown in Figure 10. A total
of 95.2% of its primary response CRC was retained, even after 40 cycles; this indicates
excellent stability of the prepared electrode. The repeatability (n = 4) of the electrode was
evaluated by utilizing the PTYMCPE for the CRC (1.0 × 10−5 M) fresh solutions, with an
RSD of 2.73%. This has shown the exceptional repeatability of the developed electrode.
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Figure 10. Cyclic voltammogram for the study of steadiness of CRC (1 × 10−5 M) at PTYMCPE in
0.1 M PBS (pH 6.5) for 40 cycles.

3.11. Analytical Applications of the PTYMCPE in Real Sample Analysis

Natural food supplement (liquid) was purchased from the local general store and
1 mL of sample is diluted 50 mL of distilled water. A measure of 1.0 mL diluted sample
was added to an electrochemical cell containing 0.1 PBS of pH 6.5 and then subjected to
voltammetric analysis at a scan rate of 0.1 V/s. During analysis, CRC was not detected in
diluted natural food supplement solution. Consequently, the standard addition method
was utilized for CRC analysis. CRC recovery was in the range of 96.59 % to 102.18%. The
voltammetric data and table for CRC analysis in natural food supplement are shown in
Figure 11 and Table 2.

Surfaces 2021, 4 FOR PEER REVIEW  12 
 

 
Figure 10. Cyclic voltammogram for the study of steadiness of CRC (1 × 10−5 M) at PTYMCPE in 0.1 
M PBS (pH 6.5) for 40 cycles. 

3.11. Analytical Applications of the PTYMCPE in Real Sample Analysis 
Natural food supplement (liquid) was purchased from the local general store and 1 

mL of sample is diluted 50 mL of distilled water. A measure of 1.0 mL diluted sample was 
added to an electrochemical cell containing 0.1 PBS of pH 6.5 and then subjected to volt-
ammetric analysis at a scan rate of 0.1 V/s. During analysis, CRC was not detected in di-
luted natural food supplement solution. Consequently, the standard addition method was 
utilized for CRC analysis. CRC recovery was in the range of 96.59 % to 102.18%. The volt-
ammetric data and table for CRC analysis in natural food supplement are shown in Figure 
11 and Table 2. 

 
Figure 11. Cyclic voltammograms for CRC (spiked) analysis in natural food supplement in 0.1 M 
PBS of pH 6.5 with a scan rate of 0.1 V/s. 

Figure 11. Cyclic voltammograms for CRC (spiked) analysis in natural food supplement in 0.1 M
PBS of pH 6.5 with a scan rate of 0.1 V/s.



Surfaces 2021, 4 202

Table 2. CRC assessment in natural food supplement.

Trial No. Amount of CRC
Added (µM)

Amount of CRC
Detected (µM) Recovery (%)

1 0.0 0.0 –
2 4.0 3.86 96.5
3 6.0 5.97 99.5
4 8.0 8.17 102.1

4. Conclusions

CPE tailored with TY can be successfully employed for the determination of CRC
by electroanalytical technique. Sensor materials were characterized using FESEM and
electrochemical methods. The proposed PTYMCPE yields improved sensitivity (0.025
A/M), LOD of 0.10 µM. Additionally, the proposed sensor has good cyclic stability (40
cycles), reproducibility and repeatability towards CRC detection, and a good recovery rate
(95.5–102.1%) in natural food supplements with any pretreatment. Moreover, the sensor
is efficient in separating CRC and RF in a mixture. The advantages of the electrode are
simple cleaning and restoration of their surface before the series of measurements. These
results show that PTYMCPE is useful for CRC analysis in food supplements and other
real samples.
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