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Abstract: In this work, we studied dispersion correction, adsorption and substitution of chalcogen
dopants (O, S, Se and Te) on the surface of graphene using density functional theory. The results
reveal that a single oxygen atom is more preferred for adsorption onto the graphene surface than the
other dopants, with an adsorption energy of −0.84 eV. The preference of this dopant is evidenced
by a greater charge transfer of 0.34 electrons from the graphene surface to the oxygen. The substi-
tutional doping of oxygen is energetically more favourable than the doping of other atoms. While
nitrogen activation is enhanced by the adsorption, the activation is not significant with the doping of
chalcogen atoms.
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1. Introduction

Graphene is one of the allotropes of carbon, consisting of a two-dimensional mono layer
of carbon atoms with sp2 hybridization [1–4]. Due to its remarkable mechanical, thermal,
chemical and electrical properties, graphene is considered to be a versatile material with
many applications in areas such as electronics, optics and energy storage systems [5–13].

The doping of graphene with hetero atoms (n-type or p-type impurities) has been
shown to be an efficient way of altering its electrochemical performance and electronic
properties [14–17]. The doping of B led to a significant charge transfer, and a negatively
charged graphene surface was identified as a host material for adsorbing pollutants such
as heavy metals [18–21]. Si-doped graphene has many potential applications, including
serving as a catalyst for the reduction of CO2 [22–24]. Using N-doped graphene, signifi-
cant improvement has been achieved in the properties of fuel cells, Li-ion batteries and
super capacitors [25–27].

Non-metal dopants such as S, P, F and I are reported to be promising catalysts for
oxygen reduction reactions [28–32]. While there are many experimental studies available in
the literature on doped graphene, a significant amount of theoretical work based on density
functional theory (DFT) has also been reported [33–36].

In this study, we use spin-polarized DFT together with dispersion correction to ex-
amine the structures of chalcogen atoms (O, S, Se and Te) adsorbed and substitutionally
doped graphene surfaces. Furthermore, activation of nitrogen molecules on the surfaces of
adsorbed and doped graphene is studied.

2. Computational Methods

All calculations were performed using a plane wave DFT simulation code VASP
(Vienna ab initio simulation program) [37]. Kohn–Sham (KS) equations are solved using
plane wave basis sets and projected augmented wave (PAW) potentials [38]. A plane wave
basis set with a cut-off of 500 eV was used in all calculations. The generalized gradient
approximation (GGA) as formulated by Perdew, Burke and Ernzerhof (PBE) [39] was used
to describe the exchange-correlation term. All structures were relaxed with the aid of
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a conjugate gradient algorithm [40]. In all relaxed configurations, forces on the atoms
were smaller than 0.001 eV/Å. A supercell with dimensions of 25.5 Å × 14.75 Å × 30 Å
was used to ensure that adjacent dopants or molecules do not interact each other. A
4 × 4 × 1 Monk-horst [41] k-point mesh was used to optimize all configurations. Bulk
diamond and graphite were optimized using 8 × 8 × 8 and 8 × 8 × 4 k point meshes,
respectively. A semi-empirical method describing dispersive interactions was used as
modelled by Grimme et al. [42]. Bader charge analysis [43] was used to calculate the
charges on the dopants and C atoms on the graphene. Adsorption energy of a molecular
nitrogen interacting with the atoms adsorbed or doped graphene surface was calculated
using the following equation:

Eads = EN2@M.Graphene − EM.Graphene − EN2 (1)

where EN2@M.Graphene is the total energy of a molecular nitrogen adsorbed or doped on
the surface of metal doped on the graphene surface, EM.Graphene is the total energy of a
metal-doped graphene surface and EN2 is the total energy of molecular nitrogen.

3. Results
3.1. Validation of Simulation Parameters

First, we performed full geometry optimization calculations on diamond, graphite,
bulk S8, bulk Se and bulk Te to obtain equilibrium lattice constants and compare them with
corresponding experimental values [44–48] (see Table 1). There is good agreement between
experimental and calculated values, showing the efficacy of the PAW potentials used in
this study. In Figure 1, the density of states (DOS) is shown. Graphene is a semiconductor
as reported in previous studies [49], in agreement with the present simulation.

3.2. Adsorption of N2 on the Graphene

A single nitrogen molecule was allowed to adsorb on the surface of pristine graphene.
Three different configurations were considered (see Figure 2). In all cases, adsorption is
endoergic with respect to the N2 molecule, indicating that the molecule is more stable in
the gas phase than on the graphene surface. This is evidenced by the longer C-N bond
distances (3.00–3.10 Å). Furthermore, Bader charges on the N2 molecules show that there is
no charge transfer between N2 molecule and graphene. However, both the N2 molecule
and graphene surface are slightly polarized. Exoergic adsorption energies are calculated
in all cases with respect to the gas phase N atom. This is due to the exothermic formation
energy of the N2 molecule from gas phase N atoms.

3.3. Adsorption of N2 on the Graphene Adsorbed with O, S, Se and Te

Next, chalcogen dopants were allowed to interact with pristine graphene. Three
different initial configurations (66, C and H) were considered (see Figure 3). In configuration
66, the dopant atom is on the top of the C-C bond. The atom is on the top of a carbon in
configuration C. In configuration H, the top of a hexagonal ring is occupied by a dopant
atom. All initial configurations were allowed to relax. The relative energies of all dopants
with respect to their most stable configuration (66) are shown in Table 2.

The results show that the most favourable position for all dopants is the 66 position
(see Table 2). Other configurations exhibit slightly higher energy.

Relaxed structures showing the chalcogen atoms adsorbing on the 66 position of
graphene is given in Figure 4a–d. Charge density plots associated with the interaction of
dopant atoms with graphene are shown in Figure 4e–f.

Table 3 reports the adsorption energies, Bader charges on the dopants and C-X bond
distances in the most stable (66) configurations. In all cases, adsorption is exothermic,
meaning that adsorbed configurations are stable. The strongest adsorption is due to the
highest electron negativity of O (3.44) compared to other dopants [50]. This is further
confirmed by the most negative Bader charge on O and the shortest C-O bond distance.
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Adsorption decreases with decreasing electronegativity, decreasing Bader charge and
increasing C-X bond distance (see Figure 4).
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Table 1. Calculated and experimental lattice parameters of diamond, graphite, bulk S8, bulk Se and bulk Te.

Diamond [FM
¯
3M] [44]

Expt Calc |∆| (%)

a = b = c (Å) 3.567 3.573 0.31

α = β = γ (◦) 90.0 90.0 0.00

Graphite [P63mc] [45]

a = b (Å) 2.468 2.469 0.04

c (Å) 8.685 8.686 0.01

α = β (◦) 90.0 90.0 0.00

γ (◦) 120.0 120.0 0.00

Bulk S8 [F d d d] [46]

a (Å) 10.437 10.624 1.79

b (Å) 12.845 13.068 1.74

c (Å) 24.369 24.799 1.76

α = β = γ (◦) 90.0 90.0 0.00

Bulk Se [P 31 2 1] [47]

a = b (Å) 4.052 4.122 1.73

c (Å) 5.038 5.172 2.67

α = β (◦) 90.0 90.0 0.00

γ (◦) 120.0 120.0 0.00

Bulk Te [P 31 2 1] [48]

a = b (Å) 4.456 4.413 0.96

c (Å) 5.921 5.942 0.35

α = β (◦) 90.0 90.0 0.00

γ (◦) 120.0 120.0 0.00

Table 2. Relative energies of three different configurations (66, C and H) of each dopant.

Atoms
Relative Energy (eV)

66 C H

O 0.00 +0.01 +0.02

S 0.00 +0.03 +0.05

Se 0.00 +0.01 +0.02

Te 0.00 +0.01 +0.02

Table 3. Calculated adsorption energies, Bader charges on the dopant atoms and C-X bond distances
in the most stable configuration—66.

Atom (X) Electronegativity of X [50] Adsorption Energy (eV) Bader Charge on X (|e|) C-X (Å)

O 3.44 −0.84 −0.34 2.84

S 2.58 −0.55 −0.29 3.14

Se 2.55 −0.42 −0.26 3.25

Te 2.10 −0.35 −0.19 3.49
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All doped configurations are still semiconductos (see Figure 5). However, p-states of
dopant atoms are dispersed in the gap and the top of the valence band.
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Interaction of the N2 molecule on the surface of atoms adsorbed onto graphene is
next considered next. Relaxed structures are shown in Figure 6. Table 4 reports the
adsorption energies, Bader charges on N2 and adsorbed atoms, and the shortest bond
distances. Calculations show that adsorption energies are positive, meaning that adsorption
is unfavourable. Lower positive adsorption energies are calculated for O and S. This is
reflected in the shorter O-N and S-N bond distances. In the case of Se and Te, Se-N and
Te-N bond distances are longer than the O-N and S-N bond distances. This is reflected in
the larger positive adsorption energies.

In the case of O and S, N-N bond distances are elongated significantly compared to
that calculated for the gas phase N2 molecule (1.10 Å). Activation of N ≡ N is very small
for Se and Te.

Table 4. Calculated adsorption energies, Bader charges on the N2 molecule and adsorbed atoms (X),
and bond distances (C-X and N-N).

Configuration Adsorption Energy (eV)
Bader Charge (e)

C-X (Å) N-N (Å)
X (X=O, S, Se and Te) N2

O +0.65 −0.31 +0.04, +0.13 2.76 1.195

S +0.44 +0.14 −0.04, −0.14 2.87 1.182

Se +1.26 −0.04 −0.01, −0.02 2.17 1.115

Te +1.68 +0.08 +0.18, −0.26 2.42 1.119



Surfaces 2022, 5 233Surfaces 2021, 4 FOR PEER REVIEW  6 
 

 
Figure 6. Relaxed structures of N2 interacting with (a) O, (b) S, (c) Se and (d) Te adsorbed onto the 
graphene. 

In the case of O and S, N-N bond distances are elongated significantly compared to that 
calculated for the gas phase N2 molecule (1.10 Å). Activation of N ≡ N is very small for Se and 
Te. 

Table 4. Calculated adsorption energies, Bader charges on the N2 molecule and adsorbed atoms (X), 
and bond distances (C-X and N-N). 

Configuration Adsorption 
Energy (eV) 

Bader Charge (e) 
C-X (Å) N-N (Å) 

X (X=O, S, Se and Te) N2 
O +0.65 −0.31 +0.04, +0.13 2.76 1.195 
S +0.44 +0.14 −0.04, −0.14 2.87 1.182 
Se +1.26 −0.04 −0.01, −0.02 2.17 1.115 
Te +1.68 +0.08 +0.18, −0.26 2.42 1.119 

3.4. Doping of O, S, Se and Te 
Next, we considered the substitutional doping of chalcogen dopant atoms to enhance 

the degree of adsorption. Figure 7 shows the relaxed structures. The doped O forms a 
trigonal planar structure. The calculated substitution energy of O is 7.43 eV (Table 5). This 
indicates that the C-O bond is weaker than the C-C bond, as evidenced by the longer C–
O bond length. This is partly due to the higher electronegativity of O than that of C. In the 
defect-free graphene, the C-C bond length is 1.41 Å. The C-O bond length is 0.06 Å longer 
than the C-C bond length in the pristine graphene (Figure 7a). The Bader charge analysis 
shows that the O atom gains 1.25 electrons from adjacent carbon atoms, leading to its 
higher electronegativity (3.44) than that of C (2.55) [50]. The valance band is occupied by 
the p states of O (see Figure 8a,e). Conversely, all other atoms form a trigonal pyramid 
structure in their relaxed structures (see Figure 7b–d). Substitution energy and C-X bond 
distance increase with increasing electronegativity. Bader charge analysis shows that 
there is a charge transfer from doped atoms to the nearest neighbour C atoms. Both S and 
Se exhibit similar +3.77 Bader charge, showing significant charge transfer. DOS plots show 
that p states of S, Se and Te are mainly occupied in the band gap region. Charge density 

Figure 6. Relaxed structures of N2 interacting with (a) O, (b) S, (c) Se and (d) Te adsorbed onto
the graphene.

3.4. Doping of O, S, Se and Te

Next, we considered the substitutional doping of chalcogen dopant atoms to enhance
the degree of adsorption. Figure 7 shows the relaxed structures. The doped O forms a
trigonal planar structure. The calculated substitution energy of O is 7.43 eV (Table 5). This
indicates that the C-O bond is weaker than the C-C bond, as evidenced by the longer C–O
bond length. This is partly due to the higher electronegativity of O than that of C. In the
defect-free graphene, the C-C bond length is 1.41 Å. The C-O bond length is 0.06 Å longer
than the C-C bond length in the pristine graphene (Figure 7a). The Bader charge analysis
shows that the O atom gains 1.25 electrons from adjacent carbon atoms, leading to its
higher electronegativity (3.44) than that of C (2.55) [50]. The valance band is occupied by
the p states of O (see Figure 8a,e). Conversely, all other atoms form a trigonal pyramid
structure in their relaxed structures (see Figure 7b–d). Substitution energy and C-X bond
distance increase with increasing electronegativity. Bader charge analysis shows that there
is a charge transfer from doped atoms to the nearest neighbour C atoms. Both S and Se
exhibit similar +3.77 Bader charge, showing significant charge transfer. DOS plots show
that p states of S, Se and Te are mainly occupied in the band gap region. Charge density
plots show the electron distribution around the doped atoms and the nearest neighbour C
atoms as observed in the Bader charge analysis.

Table 5. Calculated substitution energies, Bader charges on the doped atoms, and bond distances (C-X).

X in X@Graphene (X = O, S, Se and Te) Electronegativity of X [50] Substitution Energy (eV) C-X (Å) Bader Charge on X (e)

O 3.44 7.43 1.46 −1.25

S 2.58 8.33 1.74 +0.46

Se 2.55 9.77 1.89 +3.77

Te 2.10 11.06 2.06 +3.77
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DOS plots show that p states of S, Se and Te mainly occupy the band gap region (see
Figure 8). Charge density plots show the electron distribution around the doped atoms and
the nearest neighbour C atoms as observed in the Bader charge analysis.

3.5. N2 Adsorption onto the Surface of Doped Graphene

Finally, the doped surface structures were considered for the adsorption of chalcogen
atoms. The relaxed structures are shown in Figure 9. In the case of doping with O, exoergic
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adsorption energy (−0.07 eV) is calculated (see Table 6). Other dopants exhibit endoergic
adsorption energies. Activation of the N2 molecule is very small, as evidenced by the very
small elongation in the N ≡ N bond length. A very large positive adsorption energy of
5.65 eV is calculated for Te, meaning that this dopant is highly unfavourable.
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Table 6. Calculated adsorption energies, Bader charges on the N2 molecule, and adsorbed atoms (X)
and bond distances (C-X and N-N).

Configuration Adsorption Energy (eV)
Bader Charge (e)

N-X (Å) N-N (Å)
X (X = O, S, Se and Te) N2

O −0.07 +0.18, +0.08, +0.08 −2.04, +2.04 3.03 1.12

S +0.07 −0.10, −0.17, −0.27 −0.10, +0.10 3.16 1.11

Se +0.27 −0.37, −0.23, −0.28 −0.01, +0.01 3.38 1.11

Te +5.65 −0.37, −0.23, −0.40 −0.16, −0.31 3.47 1.14

4. Conclusions

In this study, we report the structures and energetics of chalcogen atoms adsorbed
and doped onto graphene using DFT simulations together with dispersion. We show that a
single oxygen atom exhibits stronger adsorption than the other dopants. The adsorption
energy is calculated to be −0.84 eV. Such strong adsorption is evidenced by the charge
transfer (0.34 e) from the graphene surface to the oxygen. The most favourable atom for
doping substitutionally on the surface is the oxygen. The adsorption enhances the nitrogen
activation. Substitutional doping has no significant effect on nitrogen activation.
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