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Abstract: Circulating tumour DNAs and non-coding RNAs present in body fluids have been under
investigation as tools for cancer diagnosis, disease monitoring, and prognosis for many years.
These so-called liquid biopsies offer the opportunity to obtain information about the molecular
make-up of a cancer in a minimal invasive way and offer the possibility to implement theranostics for
precision oncology. Furthermore, liquid biopsies could overcome the limitations of tissue biopsies in
capturing the complexity of tumour heterogeneity within the primary cancer and among different
metastatic sites. Liquid biopsies may also be implemented to detect early tumour formation or to
monitor cancer relapse of response to therapy with greater sensitivity compared with the currently
available protein-based blood biomarkers. Most colorectal cancers are often diagnosed at late stages
and have a high mortality rate. Hence, biomolecules as nucleic acids present in liquid biopsies might
have prognostic potential and could serve as predictive biomarkers for chemotherapeutic regimens.
This review will focus on the role of circulating tumour DNAs and non-coding RNAs as diagnostic,
prognostic, and predictive biomarkers in the context of colorectal cancer.
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1. Introduction

Colorectal cancer (CRC) is the third most common malignancy with 1.3 million new cases worldwide
and 700,000 cancer-related deaths per year [1]. During the last years, the survival rate of CRC patients
has improved significantly, owing to different treatment strategies including surgery, chemotherapy,
and radiotherapy. CRC development is a multifactorial disease caused by a combination of poor
lifestyle habits such as obesity, smoking, alcohol, and red meat consumption combined with genetic
susceptibility and inflammatory conditions of the digestive tract [2]. Around 85% of CRC cases are
sporadic, with age as the most critical risk factor, whereas nearly 10% of CRC cases are associated
with familiar conditions [3] and hereditary syndromes such as Lynch syndrome (2–5%), familial
adenomatous polyposis (FAP) (<1%), and MYH gene-associated polyposis (<1%) [4].
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The vast majority of CRCs are adenocarcinomas arising from epithelial cells of the colorectal
mucosa [5]. Normally, CRC develops through the gradual accumulation of genetic and epigenetic
changes and a stepwise progression from benign adenoma to malignant adenocarcinoma. This neoplastic
transformation is thought to occur in a timeframe of 10 years [6]. The development of distant metastasis
from primary CRC may happen as early as one year from the emergence of primary CRC [7]. In general,
a time window exists for intervention before metastatic disease progression. Thus, CRC screening and
early diagnosis might offer an option to improve CRC outcomes [6].

Nevertheless, early diagnosis of CRC still represents a major challenge and the currently available
screening methods are invasive (video colonoscopy), require radiation exposure (virtual colonoscopy),
are unpleasant for the patient (stool-based analysis) or expensive, and are not ubiquitously accepted
(capsule colonoscopy), making the global take-up rate low [8]. Furthermore, the currently used blood
biomarkers—carcinoembryonic antigen (CEA) and carbohydrate antigen 19-9 (CA19-9)—have limited
utility owing to low sensitivity and specificity, especially in early stages of the disease, thus these
protein-based assays are used by clinicians mostly for disease monitoring post-surgery [9]. The new
serum methylated Septin-9 assay also showed unexpectedly low sensitivity in stage I CRC and advanced
adenomas [10], highlighting the importance of novel and more accurate tests and methodologies in
this space. The importance of improvements in early detection is underlined by the fact that diagnosis
at early stages results in a five-year survival rate of 90% compared with a survival rate of 13% for
CRC diagnosed in stage IV [11]. Another critical need in managing CRC patients is to detect the
development of acquired resistance to anti-cancer treatment early and to improve the prognosis in
advanced stages of CRC using targeted therapies. Identification of biomarkers for early detection
of CRC as well as biomarkers for therapy success or for detection of acquired resistance is urgently
needed, albeit it is mandatory that they should have high specificity and sensitivity. To reach this
goal, molecular biomarkers such as circulating tumour DNA and non-coding RNAs have been widely
investigated and liquid biopsies might represent the new era for the discovery of biomarkers [12–14].

Herein, we will discuss the challenges of liquid biopsies in comparison with tissue biopsies and
summarise the current status of molecular biomarkers with a special focus on circulating tumour
DNA, microRNAs, and long non-coding RNAs for diagnosis, disease monitoring, and prognosis of
CRC patients.

2. Current Status of Liquid Biopsy in Clinical Setting versus Traditional Biopsy

The concept of liquid biopsy concept was initially described in 1948 [15], but only several
decades later it became possible to use liquid biopsies for clinical purposes (diagnosis, prognostication,
and prediction) (Figure 1).

The major application of liquid biopsies in recent years has been focussed on the detection of
circulating tumour DNA and non-coding RNAs (circular RNAs, microRNAs, and long non-coding
RNAs), the latter present as free floating and proteins packed forms or encapsulated in exosomes [12,16].
Another application of liquid biopsy that has been widely investigated is the detection of circulating
tumour cells (CTCs) [17], albeit this application requires a higher volume of sample body fluids, and it
is considered more expensive. Furthermore, the outcomes seem to be highly dependent on tumour
stage as the fraction of CTCs appears to correlate with the tumour stage and increases in advanced and
metastatic CRC [18]. Thus, in general, liquid biopsies might represent an alternative or complementary
method to implement early diagnosis and provide more specific prognosis and therapeutic prediction
to tissue biopsies. The most significant differences including advantages and disadvantages between
liquid and tissue biopsies are summarized in Table 1.
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Figure 1. Liquid biopsies in the management of colorectal cancer (CRC). Disease specific circulating
free DNA (cfDNA), circular RNAs (circRNAs), long-non coding RNA (lncRNAs), microRNAs,
and circulating tumour cells (CTCs) are present in the blood of a colon cancer patient. Analysis
of nucleic-acids isolated from a blood sample can be performed by different molecular biological
methods such as microarrays, NanoString technology, digital droplet PCR (ddPCR), or next-generation
sequencing (NGS).

Table 1. Overview about advantages and disadvantages of the two biopsy forms.

Tissue-Biopsy Liquid-Biopsy

Pros:
It is well established and validated in most routine labs and

at clinical levels pipeline in hospitals.

Pros:
Non-invasive (e.g., urine) or minimal-invasive

(e.g., blood) method

Histology-based diagnosis is possible.

Cons:
It may carry some risks for patients and it is generally more

painful and less accepted as it requires a colonoscopy.

Process is costly and time consuming. Blood sample or urine is cost-effective and fast.

Lack of information about spatial and temporal tumour
heterogeneity.

Opportunity to take serial samples in order to
monitor tumour genomic changes in real time.

Limited to one side in the primary tumour or metastasis
and limited accessibility of tumour tissue during tissue

biopsy increases the possibility of false-negative.

Capture the entire heterogeneity of the tumour
(primary/metastasis).
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Table 1. Cont.

Tissue-Biopsy Liquid-Biopsy

Every tumour has a complex heterogeneity within a
tumour and between primary tumour/metastasis.

Therefore, one tissue sample may not be a true
representation of the molecular tumour profile.

Furthermore, the molecular makeup of the tumour might
change based on emergence of treatment-resistant sub

clones (perhaps already present in fewer numbers in the
primary tumours).

Monitor therapy efficiency and emergence of
resistance at early stage. So, it is possible to

spare the patient unnecessary toxicity of a drug
that no longer has a benefit and detect

appearance of a new molecular target that can
be used for therapy.

Shorter turnaround time for
genotyping mutations.

Important tool and support
for precision oncology.

Cons:
In some tumours (e.g., lung cancers),

diagnosis and subtyping can be
performed only by histology.

Lack of standardization of the techniques.
Lack of approval for diagnostic setting.

One of the most relevant advantages emerging from many reports is that liquid biopsies can
effectively capture tumour heterogeneity, thus appearing as essential tools to monitor treatment
responses as well as genomic variations [19]. This overcomes a disadvantage of tissue biopsies and
enables implementation of theranostics in the clinical settings, resulting in better treatments for cancer
patients [20,21]. However, limitations in liquid biopsies still do exist; for example, the lack of unified
methods and standardization [22], the final diagnosis of cancers still relies on specialised pathological
assessment, and it is only possible with morphological and immune-colorimetric evaluation of validated
markers, thus liquid biopsy cannot be used [23].

In the following, we will discuss the different molecular tumour markers present in liquid biopsies
that can be used as biomarkers for early diagnosis, disease monitoring, and therapy.

3. Biomolecules

3.1. Circulating Tumour DNAs (ctDNAs)

Under physiological as well as pathological conditions (like cancer), cells are constantly cleared
by apoptosis and necrosis. One consequence is the permanent release of DNA fragments into the
circulation [24,25]. The amount of circulating tumour DNA (ctDNA) varies between less than 0.1%
to over 10% of the total circulating cell-free DNA in cancer patients, depending on cellular turnover,
cancer stage, and response to treatment [26,27].

3.2. Circulating Tumour Cells (CTCs)

Besides ctDNAs, intact tumour cells are also released into the circulation by cancer areas from
primary tumours as well as metastatic deposits [28]. The concentration of CTCs in blood is extremely
low and, especially at early stages, often impossible to detect [29,30]. Isolation and detection of CTCs is
still a challenge and special flow through specific devices is in use for capturing the circulating tumour
cells with antibodies directed against tumour cell specific antigens [30]. Because of the fact that the
amount of CTCs in the circulation increases in parallel with the tumour burden, this could become an
accurate method for monitoring cancer growth in real time [31–33].

3.3. Non-Coding RNAs

Non-coding RNAs represent a large family of RNAs that are not coding for known proteins and
form a significant proportion of the human genome [34,35].
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After being considered as “junk” for a long time, it is nowadays well established that non-coding
RNAs play important roles in maintaining cells’ homeostasis and functions. Often, non-coding RNAs
are expressed in a cell- and tissue-specific pattern, and are specifically deregulated in cancer [35].

Non-coding RNAs are a heterogeneous group of RNA molecules in terms of length, structure,
and biological function. They are divided into two categories according to their length: (a) non-coding
RNAs with less than 200 nucleotides are summarized as small non-coding RNAs and include micro RNA,
vault RNAs, small interfering RNA, piwi-interacting RNA, small nucleolar RNA, small nuclear RNA,
transfer RNAs, ribosomal RNAs, endogenous small interfering RNAs, sno-derived RNAs, transcription
initiation RNAs, microRNA-offset-RNAs, circular RNAs, extracellular RNAs, and small Cajal body
RNA; (b) non-coding RNAs with more than 200 nucleotides are called long non-coding RNAs [35–38].
A summary of functionally validated non-coding RNAs can be found in the “ncRNA database”.

Long non-coding RNAs and miRNAs have been established to play a central role in gene
expression control, either as transcriptional or post-transcriptional regulators [39]. In cancer microRNAs
as well as long non-coding RNAs, influence all hallmarks of cancer by limiting the expression of
tumour suppressors and increasing the activation of oncogenic pathways [35,40]. Both groups
of non-coding RNAs also emerge as important mediators in drug-sensitivity and drug-resistance
mechanisms [35,41,42].

3.4. Micro RNAs (miRNAs)

MiRNAs are composed of 18–24 nucleotides and they function as regulators of gene expression at
the translational level [43]. In most cases, miRNAs act as negative regulators of gene expression upon
binding to the 3’-untranslated region (3’-UTR) of the target mRNA, resulting in down-regulating the
protein synthesis rate [44]. Nevertheless, some miRNAs bind to the 5’-untraslated region (5’-UTR) or
to the coding sequence of their target mRNAs [45].

MiRNA expression patterns are tissue-specific and altered miRNAs’ expression, which results
in deregulated proteins’ expression, is observed in the context of virtually any cancer [35,41,46–51].
Deregulated expression of miRNAs is caused by diverse mechanisms such as promoter methylation,
mutations, amplifications, or deletions involving miRNA coding regions, transcriptional regulation by
proteins (e.g., p53 and c-myc), or long-non coding RNAs, as well as down-regulation by mutations
in genes coding for miRNA biogenesis-related enzymes (i.e., Drosha, Exportin 5, Dicer, Argonaute
2) [44,52–54].

In addition to acting within cells, circulating cell-free miRNAs have been detected in body
fluids [55,56]. MiRNAs are either released by passive leakage from lytic cells or actively secreted via
extracellular vesicles (e.g., exosomes), as well as bound to high-density lipoprotein (HDL) [57,58].
Most of the extracellular miRNAs are exported in conjunction with RNA-binding proteins, such as
AGO2 and NPM1, and thus protected against degradation [59–61].

3.5. Circular RNAs (circRNAs)

CircRNAs were first discovered as viroids in RNA viruses [62], but further studies have clearly
shown that circRNAs are also present in eukaryotes, and they have been recently identified as
a further class of non-coding RNAs [63–65]. Compared with linear RNAs, circRNAs are extremely
resistant to RNA exonucleases as their chemical structure consisting of covalent closed-loop structures
missing 3′-polyA tails and 5′-caps provides protection to degradation [66]. Therefore, circRNAs are
extremely stable in body fluids and can be isolated from liquid biopsies [67–69]. Nowadays, it is
widely accepted that circRNAs are important regulators that influence physiological and pathological
processes [70–74] by regulating splicing mechanisms and acting as miRNA sponges [64]. Besides
transcriptional regulation, circRNAs can also regulate protein functions by forming complexes with
proteins and alter proteins’ functions [75,76].
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3.6. Long Non-Coding RNAs (lncRNAs)

LncRNAs are RNA species spanning more than 200 nucleotides in length and represent important
regulators during development and pathological processes [77–81]. Under physiological conditions,
most lncRNAs are expressed at low levels as they are transcribed from promoters with low CpG
dinucleotide contents [82], and an aberrant expression of lncRNAs is observed in several diseases
owing to modulation of the chromatin state [83]. LncRNAs can be localized in the nucleus or
cytoplasm [84,85] and, depending on the subcellular localization, they can directly regulate gene
expression by the following: (a) influencing chromatin modification by binding to chromatin regulatory
proteins; (b) regulating splicing and stability of mRNAs; as well as (c) indirectly in transcriptional and
post-transcriptional gene expression mechanisms, by interacting with other RNAs and proteins [86–88].

A strong interaction between lncRNAs and miRNAs exists in RNA regulation processes [35,89–91].
LncRNAs can act as miRNA decoys by sequestering miRNAs or lncRNAs can compete with miRNAs for
specific binding sites in the non-coding regions of mRNAs and preventing the transcriptional repression
caused by miRNA [35,89,91]. Furthermore, some lncRNAs can be processed into miRNAs [35,89–91].

Altered lncRNA expression has been observed in cancer and changes in lncRNAs expression can
be detected in body fluids like urine and blood [92–95]. LncRNAs are released either encapsulated in
exosomes or inside apoptotic bodies and they are bound to RNA-binding proteins [96,97]; therefore,
they are resistant to RNase degradation [93,98].

4. Techniques and Methods for Analysing Nucleic-Acids in Liquid Biopsy

4.1. Microarray

This method has been used in many studies for screening purposes, in the evaluation of known
nucleic-acid sequences panels. Several commercially available microarrays for detecting the expression
of ctDNA, circRNAs, miRNAs, and lncRNAs have often been used for genome-wide analysis expression
of differences between normal and pathological samples [99–104]. However, all these microarrays
have the limitation that an amplification step is always necessary before chip-based measurement
takes place.

4.2. Nanostring nCounter

NanoString nCounter technology on the contrary is another high-throughput screening method
for nucleic acid sequences (genes, miRNAs, DNA) that directly detects the gene target expression
levels without any enzymatic amplification reaction. NanoString nCounter allows counting molecules
in a given sample directly using barcoded target 5′-end sequence-specific probes for capturing and
purification as well as a barcoded 3′-end target sequence-specific fluorescent-labelled probe for
detection [105–107]. Many reports have shown in the last years how nanostring technology can be
used in order to detect, for instance, miRNAs panels in plasma/serum of patients for diagnostic or
disease recurrence control in CRC and other cancers [108,109]. The limitation of this technology is
the requirement of validation of the hits identified with orthogonal technologies like qPCR, ddPCR,
immunohistochemistry, and florescence in-situ hybridization [110–112].

4.3. Digital-Droplet PCR (ddPCR)

A new generation of PCR called ddPCR has emerged in the last years allowing absolute quantification
of nucleic acid molecules encapsulated in discrete, volumetrically defined, water-in-oil droplet partitions.
The nucleic acid template sample is randomly distributed into these partitions, such that some droplets
contain no nucleic acid template and others contain one or more copies of the template defined
by a Poisson distribution [113–115]. As an end-point measurement, following PCR amplification
in single droplets, ddPCR requires neither parallel amplification of any housekeeping gene for
normalization nor the need of standard curves’ generation for detection and quantification [113,116–120].
On the basis of its high sensitivity, ddPCR is often used for identification of rare or low-level
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mutations in cancer [25,119,121,122] and as an independent method for verification of next-generation
sequencing [123]. The detection is limited to only a few hotspots per reaction, and this is a bottleneck
of ddPCR technology.

4.4. Next Generation Sequencing (NGS)

Several different sequencing platforms are currently available for NGS (e.g., Ion Torrent’s PGM,
Pacific Biosciences’ RS, and Illumina platforms) and the preparation of sequence libraries is specific to
each platform [124,125]. RNA must be reverse-transcribed into cDNA [126] and then cDNA is used in
the following steps, which are also mandatory for using DNA as starting material. The pre-processing
can be subdivided into several steps. Extracted genomic DNA is randomly fragmented into a
library of small DNA sequences (fragment size is platform-specific and varies between 100 bp and
20 kbp) [127,128]. Specific adapters (still platform-specific) are ligated to the fragments at the 3′ and
5′ends. Depending on the sequencing platform, the libraries must be pre-amplified prior to sequencing
or can be used directly without any amplification step [124,129,130]. In last years, NGS has become the
gold standard for sequencing of gene-panels given its high-throughput and sensitivity. The ability
of sample pooling has also allowed a reduction of costs, making it highly attractive for diagnostic
purposes. This has increased its application for the analysis of gene panels for cancer genome profiling
or whole genome or exome sequencing in liquid biopsy.

5. Liquid Biopsy and Biomarkers

Several studies have tried to identify molecular biomarkers for diagnostic and prognostic purposes
using primary lesions as starting material and correlate this information with clinical assessment
and disease stage [131,132]. Most of the studies involved the investigation of classical mutation
pattern in CRC, as described by Vogelstein, thus with the use of markers like APC (Adenomatous
polyposis coli; mutation rate 80%), KRAS (Kirsten rat sarcoma; mutation rate 40%), BRAF (v-raf
murine sarcoma viral oncogene homolog B1; mutation rate is between 8 and 10%), and TP53 (tumor
protein 53; mutation rate 60%) [133]. Therefore, mutations in APC, BRAF, KRAS, and TP53 have
been the focus of investigations and their potential as prognostic and predictive factors in early as
well as advanced cancers has been evaluated in order to potentially identify subgroups of patients
with common characteristics [134,135]. Early studies focused only on protein biomarkers mainly
based on immunostaining of known deregulated proteins using cancer tissues [136], but recently,
genetic DNA-based biomarkers have been introduced into the diagnostic settings [137]. Nevertheless,
more complex cancer heterogeneities become evident, thus this approach might be hampered by the
lack of necessary sensitivity in capturing this complexity. Another issue that needs to be addressed is
given by the scenario where the assessment of primary cancer does not necessarily reflect the same
mutational burden observed in metastatic deposits [7,138].

In current clinical settings, several blood-based tests are used for CRC detection, monitoring
recurrence, and prognosis. These tests detect the tumour markers carcinoembryonic antigen (CEA),
carbohydrate antigen 19-9 (CA19-9), or septin-9 (SEPT9) [139–142]. Nevertheless, it is well established
that they all have several weaknesses in regard to specificity and sensitivity. CEA, for instance,
is elevated in patients with different gastrointestinal cancers [143] and is also not suited for early
detection of CRC owing to a low sensitivity (5–10%) [144]. However, over-expression of CEA is in use
for monitoring CRC and as a prognostic factor [145]. CA19-9 is not specific for a tumour type, cannot
be detected in early state of cancer disease, and is also less sensitive than CEA [143,146] in diagnostic
setting. Another biomarker test is based on SEPT9 methylated DNA in serum. Despite having only
70% sensitivity, but 90% specificity for CRC [147,148], it is currently the most sensitive and specific
diagnostic tool for early detection of CRC [149].

Beside these proteins used in diagnostic setting, some other proteins carried by extracellular
vesicles (e.g., exosomes) have recently gained attention and seem to be directly involved in the
carcinogenesis of CRC [150–154]. Even if this field is in its early infancy, it is worth mentioning that
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Frizzled-10 protein (FZD-10), a receptor for the Wnt pathway, is present in exosomes isolated from
colorectal cancer cell lines. SiRNA-based experiments demonstrated a role of FZD-10 containing
exosome for cancer cell viability and establishment of metastatic sites [152]. FZD-10 is also present at a
higher level in extracellular vesicle of CRC patients compared with healthy volunteers. In addition,
the level of FZD-10 protein in extracellular vesicles seems to depend on the stage of CRC disease and
FZD-10 expression returned to the one observed in the control group after successful treatment of the
cancer patients. Therefore, FZD-10 is currently discussed as a new prognostic and diagnostic cancer
marker [153,155]. Nevertheless, FZD-10 in extracellular vesicles is not CRC-specific and is also found
to be elevated in patients with cholangiocarcinoma, hepatocarcinoma, and gastric cancer [152,153].

To overcome the limitations of protein markers in diagnostic settings, further DNA- and RNA-based
biomarkers, present in liquid biopsies, have been evaluated as potentially new prognostic and predictive
markers [137,156–160]. Using minimal invasive approaches could significantly improve the diagnostic
and offer new therapeutic possibilities for CRC patients by improving cancer monitoring, as outlined
in the following sections.

5.1. Circulating Tumour DNAs (ctDNAs)

The promising value of ctDNAs for stratification of cancer patients was underlined by the FDA
approval for an EGFR (epidermal growth factor receptor) mutation test based on liquid biopsy in
2016 [161]. This test is used to select non-small cell lung cancer patients who could benefit from EGFR
inhibitor therapy [161]. Similarly to this test, detecting KRAS-mutations in CRC patients using liquid
biopsies as starting material could be a potential tool to select patients to tailored therapies [162].
This is supported by the fact that around 40% of all CRC patients have KRAS-mutations, and thus
will not benefit from an anti-EGFR antibody therapy, which is often used for CRC treatment [163].
Unfortunately, this test is not yet approved for clinical use, although recently, the FDA approved
a similar test for the detection of SEPT9 promoter region methylation in serum samples from CRC
patients [149]. The methylation of SEPT9 promoter is accepted as a specific biomarker and is in clinical
use for early detection of CRC [147,148]. Compared with the CEA biomarker, which is in clinical
use, ctDNA analysis has been proven to be a more accurate predictor of CRC relapse, albeit only in
a research setting [164]. So, not surprisingly, several studies proved that the overall amount of all
circulating DNA (ctDNA and cell-free DNA) in CRC patients correlates with disease-free survival and
overall survival. This correlation was found in all CRC tumour stages and was irrespective of the
use of adjuvant chemotherapy [165–173]. In addition, ctDNA reflects tumour heterogeneity with an
overall accuracy of 97% when compared with corresponding tissue biopsies, but it seems to be even
superior to tissue biopsies in some cases [174].

Few reports examined ctDNA in CRC patients with primary or acquired resistance to EGFR
blockade and emergence of mutated KRAS clones in blood was observed during treatment [175].
Recently, sequential ctDNA profiling was used in a phase II clinical study to monitor acquired resistance
to cetuximab in RAS wild-type CRC patients. This study demonstrated the potential of liquid biopsies
in combination with a mathematical framework model of tumor evolution for an individualized
forecast of cancer progression, thus providing a novel opportunity for adaptive personalized therapies
based on ctDNA analysis [122]. Other reports demonstrated that ctDNA analysis is able to monitor the
emergence of resistant KRAS mutated clones for up to 10 months before radiographic confirmation of
disease progression [176,177]. In another study in a phase II trial, the amount of RAS mutated ctDNA
was determined in metastatic CRC patients under regorafenib therapy. The decrease of RAS mutant in
plasma within 8 weeks of treatment was associated with better progression-free survival and overall
survival. Combination of ctDNA analysis with radiological assessment was able to predict duration
of anti-angiogenic response to regorafenib, thus suggesting that this result could be used to improve
patient management in the future. This study adds further importance to the need for ctDNA markers
owing to a lack of predictive biomarkers and potential toxicities related to regorafenib treatment [178].
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Selection of CRC patients who could benefit from a HER-2-targeted antibody-therapy was
addressed in another study, where a HER-2 high copy number variation was determined using cfDNA
from blood with an elevated accuracy (97%) in 28 out of 29 patients. While these findings will need to
be verified in larger study cohorts, they still provide a strong indication that copy number variation
analysis based on ctDNA could predict the benefit from HER-2-targeted therapy [179].

Furthermore, detection of ctDNA following surgery might be an indicator of minimal residual
disease, thus anticipating clinical and radiological assessment of recurrence [171,180]. In a large
prospective study based on 230 CRC patients with resected stage II cancer, ctDNA from mutated genes
was detected post-surgery in 14 patients. At follow-up, radiological recurrence was verified in 11 (79%)
of these patients. From patients without any detectable post-operative ctDNA, disease recurrence
was identified in 9% of them [170]. Similar results were obtained in a prospective study with 130
stage I-III CRC patients. Plasma was collected pre- and post-surgery and ctDNAs were analysed by
NGS. Longitudinal ctDNA analysis identified 14 of 16 (87.5%) CRC patients that relapsed. In this
study, all patients who have had ctDNA in their blood after adjuvant chemotherapy relapsed. Thus,
ctDNA analyses predicted recurrence up to 16.5 months before radiographic confirmation of disease
progression. Furthermore, in 82% of ctDNA-positive relapse samples, new actionable mutations have
been identified that would enable further personalized treatment of the patients [181].

5.2. Circulating Tumour Cells (CTCs)

Detection of CTCs in body fluids of colorectal cancer patients still represents a big challenge and an
intense area of work as CTCs are only present in body fluids at a very low level [182]. This limitation has
been exploited and resulted in a FDA-approved microfluidic device [183] for capturing and concentrate
circulating tumour cells. The process is based on magnetic particles coated with antibodies targeting
the epithelial cell adhesion molecule (EpCAM), antigen that is over-expressed in different tumours
including CRC [184]. According to several studies, the number of circulating tumour cells has the
potential to monitor therapy success and indicate potential resistance against a given therapy [185–187].

An increasing amount of circulating tumour cells in patients’ blood is associated with poor
prognosis in CRC and, for instance, it has been suggested that if three or more circulating tumour cells
are present in 7.5 mL of blood, patients have a reduced overall survival [188,189]. Moreover, circulating
tumour cells are an important source for molecular characterization of chemotherapy resistant
clones [185–187,190–194], and thus represent an important tool for personalized treatment approaches.

5.3. MicroRNAs (miRNAs)

During recent years, miRNAs have been evaluated and proposed as promising new biomarkers
for diagnostic purposes, for monitoring therapy success, and for detection of drug resistance towards
treatment [195]. A significant number of studies are related to miRNA expression in tissue, but in the
following, only studies based on liquid biopsies will be summarized.

CRC patients are characterised by a high-level expression of miR-92 and miR-29a in plasma.
These miRNAs could be suitable biomarkers for screening tests and might represent a diagnostic tool for
early detection of CRC [196–198]. A signature of significantly up-regulated miRNAs (miR-17, miR-18a,
miR-18b, miR-181a, miR-125a, miR-320c) in plasma of CRC patients has been published. In this study,
miRNA screening was performed comparing a pool sample of plasma from 30 CRC patients against a
pool of plasma from 10 healthy individuals. Differentially expressed miRNAs were then verified in
a larger training cohort of CRC patients by real-time PCR analysis. Finally, the diagnostic potential
of this miRNA signature was verified in an independent validation cohort. The specificity of this
miRNA signature for CRC was guaranteed by including healthy volunteers in both cohorts [199]. Some
miRNAs of this signature were already proposed earlier in another study [200], where over-expression
of miR-125a and miR-320c has been observed in CRC; therefore, co-evaluation of these miRNAs
has been suggested as a possible biomarker combination for early-stage detection of CRC. For CRC
diagnostic purposes, addition of miR-125a to CEA resulted in a better diagnostic model compared with
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CEA alone [200]. In another study, miR-96 and miR-149 were found to be down-regulated in plasma
from CRC patients compared with a healthy control group. The CRC specificity of the deregulated
miRNAs expression was underlined by the fact that expression returned to the one observed in the
control group after surgical intervention within two months [201]. Very recently, miR-23a and miR-301a
were found to be up-regulated in CRC patients compared with healthy individuals. Moreover, in this
case, both miRNAs seem to be CRC-specific as they are significantly down-regulated after surgical
intervention [202]. Furthermore, miRNAs’ expression could be used to discriminate between metastatic
and non-metastatic CRC patients. A high expression of miR-200c in serum from CRC patients can be
used as a predictive biomarker for the presence of local and distant metastasis [203]. Using miR-320d
as a biomarker, patients with metastatic cancer have been detected with a sensitivity of 62% and a
specificity of 65%. Combined analysis with CEA, this increased the sensitivity and specificity to 63% and
91%, respectively [204]. All these examples highlight the potential of miRNAs as diagnostic markers
for difficult to diagnose early stages of CRC, as well as in metastatic disease settings. Furthermore,
miRNAs can be used in addition to the currently used biomarker CEA and by combining them, and the
specificity as well as the sensitivity of CRC diagnosis is significant increased.

Other studies addressed the role of miRNAs as prognostic markers. In different studies, up-regulated
expression of miR-21, miR-193a, miR-203, miR-1290, miR-1229, and miR-17/92 cluster has been
connected to poor prognosis of CRC patients owing to metastasis, post-treatment relapse, and poor
overall survival [203,205–213], and it would be of interest if a combined miRNA signature could
represent a robust prognostic tool. On the contrary, two down-regulated miRNAs (miR-4772-3p and
miR-6869) have also been identified as prognostic CRC biomarkers. The reduced expression of both
miRNAs was correlated with a high risk of tumour recurrence and death of patients [214,215]. Patients
with a low serum level of miR-6869 had a poor three-year survival rate [215], whereas miR-4772 was a
better predictor of recurrence than tumour location and lymph node metastasis [214]. Another report
showed that a significant up-regulation of tumour-derived miR-27a and miR-130a in plasma of CRC
patients correlates with tumour grade and stage as well as poor overall survival [216]. Furthermore,
both miRNAs might be used for identification of CRC by comparison with healthy individuals; miR-27a
had a sensitivity of 82% and a specificity of 91%, while miR-130a had a sensitivity of 70% and specificity
of 100% [216]. In regard to disease-free survival and overall survival of CRC patients, the serum level
of miR-548c and miR-6803 appears to be predictive. An increase in miR-6803 and reduced level of
miR-548c are poor prognostic markers, especially in later stages of the disease and in cases where liver
metastasis is present [217,218].

Serum of patients with resistance to 5-fluoruracil and oxaliplatin treatment is characterised by an
up-regulation of miR-21, miR-96, miR-1229, and miR-1246 compared with respective chemo-sensitive CRC
patients [219]. CRC patients receiving mFOLFOX6 (5-fluorouracil, leucovorin, and oxaliplatin)-based
chemotherapy have an increased blood level of miR-125b when they become resistant to this therapy,
resulting in shorter progression-free survival [220]. In contrast, patients with partial response to
mFOLFOX6 treatment have a significantly lower miR-125b level post-treatment in comparison with
pre-treatment and patients with stable disease had no change in miR-125 expression. These differences
between the patients’ groups can be detected within one-month post-treatment [220]. Therefore,
miRNAs might represent an accurate tool for prediction of therapeutic success and resistance.

5.4. Circular RNAs (circRNAs)

The evaluation of circRNAs in the context of liquid biopsies is still in its infancy and is mostly
restricted to the observation of different expression levels between pathological and physiological
conditions without any molecular analysis of the mechanisms. CircRNA microarray assay, based on
plasma samples from four CRC patients and healthy controls, revealed circ-0082182, circ-0000370,
and circ-0035445 as up-regulated in CRC and as possible diagnostic markers [221]. Although this
finding has been confirmed by qPCR, it is desirable to analyse a larger patient cohort before this
panel could become a diagnostic tool and a non-invasive biomarker panel for early CRC. Three other
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circRNAs (circ-CCDC66, circ-ABCC1, and circ-STIL) have been found to be down-regulated in plasma
of CRC patients compared with healthy controls [222]. The predictive power of these three circRNAs
appears to be higher compared with the currently used protein biomarker CEA and CA19-9 [222].
In serum of CRC patients, a 14-fold increased level of circ-0004771 was present compared with
patients with benign intestinal diseases and healthy volunteers. The sensitivity and specificity of
these levels in differentiating CRC patients from healthy donors were 80.91% and 82.86%, respectively.
The CRC specificity of circ-004771 is further underlined by the fact that the level significantly decreased
post-operatively and upon CRC treatment [223]. Another study on serum found an increased expression
of circ-0001649 in patients with CRC after surgery [224]. Evidence from in vitro assays shows that
over-expression of circ-0001649 inhibited proliferation, migration, and cell invasion [225], but the
type of action of circ-0001649 and circ-0004771 in CRC is still unknown. Another report has instead
evidenced that up-regulation of circ_0007142 could be used as an indication for lymphatic metastasis
and differentiation of CRC [226].

5.5. Long Non-Coding RNAs (lncRNAs)

So far, research on lncRNAs has been less extensive compared with studies involving miRNAs.
Nevertheless, it is well established that lncRNAs could be useful biomarkers for CRC [227].
Three lncRNAs (HOTAIR, CRNDE, and RPPH1) were found to be up-regulated in blood with prognostic
and diagnostic benefit for CRC patients [228–230]. Of special interest is lncRNA HOTAIR, as its
expression level correlates directly with tumour stage and overall survival of cancer patients [228,231].
Therefore, detection of lncRNA HOTAIR in blood of CRC patients could serve as an additional
prognostic marker [228], but some caution is necessary because an increased amount of lncRNA
HOTAIR is also observed during the course of other diseases, for example, gastric and pancreatic cancer,
thus its specificity still needs to be investigated [232,233]. LncRNA CRNDE is higher expressed in serum
from CRC patients compared with patients with benign colorectal disease or healthy controls [229].
LncRNA CRNDE expression might be connected to lymph node metastasis and is indicative of a low
overall survival in CRC. In addition, the prognostic value of lncRNA CRNDE appears to be better
than CEA, with a sensitivity of 70% versus 37% and a specificity of 94% versus 89% [229]. LncRNA
RPPH1 expression can also be used as a prognostic factor. Expression of lncRNA RPPH1 is significantly
elevated in plasma of CRC patients in advanced stages, and decreases post-surgery [230]. A high
level of lncRNA RPPH1 in CRC is an indicator of poor overall survival and poor disease-free survival,
and this lncRNA could be a better prognostic marker than CEA and CA19-9 [230].

LncRNA UCA1 has been shown to be down-regulated in serum of CRC patients compared with
healthy volunteers [234]. In this study, identification of cancer patients from the healthy control group
was possible with 100% sensitivity and 43% specificity [234].

The aforementioned studies demonstrate clearly the potential prognostic and diagnostic use of
lncRNA isolated from liquid biopsies, and that they could potentially be more robust and reliable
predictors compared with the currently used biomarkers CEA and CA19-9.

6. Conclusions and Perspectives

Early detection and non-invasive management of CRC are clear areas of unmet clinical need.
The potential benefit of an early detection of CRC is underlined by the fact that the five-year survival
rate is around 90% for patients diagnosed at early stage compared with 13% for patients diagnosed
at stage IV [11]. Liquid biopsies offer a minimal invasive method for gaining access to CTCs and
ctDNAs as well as lncRNAs, circRNAs, and miRNAs. All of these molecules can be used as prognostic
and diagnostic markers, often with better specificity and sensitivity when used alone, compared
with CEA and CA19-9, or they might also add value to the protein biomarkers currently in use.
Before introducing these new nucleic acids-based biomarkers into the clinic, some standardizations
of the methods and platforms are necessary [22]. In particular, the down-stream processes, such as
the isolation process of material from the liquid biopsies and the sensitivity of detection methods
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(such as ddPCR or NGS), must be addressed and solved before liquid biopsies can be used as an
important tool in clinical routine for (early) diagnosis and prognosis of CRC patients. Nevertheless,
it is already proven that liquid biopsies and especially non-coding RNAs (lncRNAs and miRNAs) will
be a great support in precision oncology and personalised medicine in the near future. In general,
liquid biopsy has the potential to bring molecular diagnostic tests and targeted therapies together in a
highly synergistic way. Liquid biopsies open the door for longitudinal analyses and offer the ability
to routinely test patients frequently over prolonged periods of time. Compared with tissue biopsy,
it facilitates routine screening and monitoring of patients throughout the whole treatment; therapy
response and advent of resistance as well as changes in the molecular basis of the disease can be
monitored in real time. The liquid biopsy approach has reduced workflow and turnaround time when
compared with tissue biopsy. Last, but not least, liquid biopsy has the potential to support the analysis
of a greater number of validated biomarkers, which will give much greater depth of support to clinical
decision making. Up to now, liquid biopsies are mostly associated with oncology, but liquid biopsies
have the potential to also become a useful tool for analyzing molecular variations in the context of
other complex multifactorial diseases.
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