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Abstract: Obesity and related metabolic disorders, including chronic inflammation and enhanced
oxidative stress, are closely associated with the development and progression of colorectal cancer.
Previous epidemiological studies have demonstrated that increased serum uric acid is associated
with the risk for various types of cancer, including colon cancer. This study examined the effects of a
xanthine oxidase inhibitor allopurinol, widely used as a uric acid lowering medicine, on colorectal
tumorigenesis in obese mice. Male C57BL/KsJ-db/db mice were injected with azoxymethane (15 mg/kg
body weight) and then received drinking water containing allopurinol (30 mg/kg body weight) for
fourteen weeks. At the time of sacrifice, allopurinol treatment significantly inhibited the development
of colonic premalignant lesions. In the allopurinol-treated group, cellular proliferation in colonic
mucosa was significantly suppressed, which was evaluated by the expression of proliferating
cell nuclear antigen. Allopurinol also inhibited macrophage infiltration in the adipose tissue and
decreased the serum level of TNF-α. The values of oxidative stress markers were markedly decreased
in the allopurinol-treated group compared to those in the control group. These findings suggest
that allopurinol attenuated chronic inflammation and decreased oxidative stress, preventing the
development of colonic pre-neoplastic lesions in obesity-associated colon tumorigenesis model.
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1. Introduction

Colorectal cancer (CRC) is a serious health concern, with high mortality and an increasing
incidence worldwide [1]. Early detection and treatment as well as the prevention of CRC, including
the use of chemopreventive agents and improvements in lifestyle, especially in patients at high risk for
CRC, have received attention. Obesity and the related metabolic syndrome are known to be major risk
factors for the development and progression of various malignancies, including CRC [2–4]. Metabolic
syndrome comprises pathological conditions, such as high blood pressure, hyperglycemia, elevated
serum triglyceride levels, and dyslipidemia [5].

Uric acid (UA) is the final product of purine nucleotide catabolism. While UA has potent
antioxidant ability [6,7], elevated UA levels cause hyperuricemia, leading to gout. As serum UA
levels increase with alcohol consumption and other dietary factors, hyperuricemia is considered to
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be a lifestyle-related disease. Increased serum UA levels are clearly associated with the prevalence
of metabolic syndrome components, although the association has been debated over many years [8].
In addition, epidemiological studies have demonstrated that serum UA is associated with an increased
risk of cancers, such as colorectal, breast, and prostate cancer [9–11]. Moreover, reducing UA levels
contributes to attenuating oxidative stress and chronic inflammation, which are crucial factors for the
development of CRC [8].

Allopurinol is known as a UA-lowering medicine (Figure 1a) and is widely used for hyperuricemia
and gout. In addition to the effect on UA, the relationship between allopurinol and cancer has been
investigated. A previous clinical trial indicated that using allopurinol improved the prognosis of
patients with advanced CRC [12]. A recent epidemiological study revealed that allopurinol might
decrease the risk of prostate cancer in patients with gout [13], while it was reported that allopurinol
had no alteration on the risk of prostate cancer in a population-based cohort study [14]. In an in vitro
study, allopurinol exhibited a cytotoxic effect on human prostate cancer cells [15].
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Figure 1. The chemical structure of allopurinol and AOM-induced colorectal pre-neoplastic lesions
in the experimental mice. (a) The chemical structure of allopurinol. (b) A representative image of
the β-catenin accumulated crypt (BCAC) stained with hematoxylin and eosin in the colon of the
experimental mice. The epithelium has basophilic cytoplasm and hyper chromatic nuclei. Scale bar,
100 µm. (c) The number of BCACs per colon. Each column represents the mean ± SD. Asterisk
(*) indicates statistically significant difference compared to the azoxymethane (AOM)-treated group;
p < 0.05. NT, no treatment.

In the present study, we focused on serum UA levels in the rodent CRC model and agents
against hyperuricemia. A useful preclinical model has been developed in C57BL/KsJ-db/db (db/db) mice,
which have a leptin receptor mutation and display hyperphagic obesity following the injection of
colonic carcinogen azoxymethane (AOM) [16–18]. As db/db mice exhibit hyperuricemia [19], this mouse
CRC model appears to be suitable to investigate obesity-related colorectal carcinogenesis accompanied
by hyperuricemia. In this study, we investigated the effects of allopurinol on the development of
colorectal premalignant lesions β-catenin accumulated crypts (BCACs) [20,21] in the obesity-related
colorectal carcinogenesis model described above.
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2. Results

2.1. General Observations

As shown in Table 1, the body weight of the mice treated with AOM/allopurinol was significantly
lower than that of the mice treated with AOM alone. The relative kidney weight of the mice treated
with AOM/allopurinol was significantly higher than that of the mice treated with AOM alone at the
end of the experiment. There was no significant difference among all the groups in terms of relative
liver weight and relative white adipose tissue weight. During the experiment, there were no clinical
symptoms in any of the groups. Histopathological examination did not show toxicity of allopurinol in
the liver, spleen, or kidney.

Table 1. General observations of the experimental mice.

.5
Group

.5
Treatment

.5
Number of

Mice

.5 Body
Weight (g)

Relative Weight (g/100 g Body Weight) of:

Liver Kidneys Adipose
Tissue a

1 No treatment 6 41.4 ± 12.5 b 6.9 ± 1.2 1.4 ± 0.5 5.1 ± 1.0
2 AOM 12 46.8 ± 2.3 4.9 ± 0.3 d 1.0 ± 0.1 5.9 ± 0.6
3 AOM/allopurinol 12 39.6 ± 3.8 c 4.9 ± 0.3 d 1.2 ± 0.1 5.6 ± 0.5
4 Allopurinol 6 34.0 ± 3.0 5.2 ± 0.7 1.3 ± 0.2 6.3 ± 0.7

a White adipose tissue. b Mean ± SD. c Significant difference compared to Group 2 (p < 0.05). d Significant difference
compared to Group 1 (p < 0.05). AOM, azoxymethane.

2.2. Serum Parameters

The serum concentrations of alanine aminotransferase (ALT), free fatty acid (FFA), triglyceride,
and UA in each group are listed in Table 2. The serum levels of ALT, FFA, and UA in the mice treated
with AOM/allopurinol were significantly lower than those in the mice treated with AOM alone. In this
study, allopurinol administration had no adverse effect on the serum parameters in the experimental
mice. Lowered UA levels in the allopurinol-treated group were expected as the agent works as a
xanthine oxidase inhibitor. As increased serum UA was reported to be associated with the exacerbation
of steatohepatitis [22], decreased levels of ALT were thought to be related with reduced UA levels in
the groups administered allopurinol.

Table 2. Serum parameters of the experimental mice.

Group Treatment ALT (IU/L) FFA (µEQ/L) Triglyceride (mg/dL) UA (mg/mL)

1 No treatment 11.3 ± 7.5 a 246.2 ± 129.0 6.5 ± 2.3 8.5 ± 2.0
2 AOM 15.7 ± 4.5 340.1 ± 59.0 5.0 ± 2.4 7.4 ± 0.5
3 AOM/allopurinol 9.9 ± 2.9 b 249.6 ± 65.7 b 4.5 ± 2.0 2.2 ± 2.0 b,c

4 Allopurinol 5.7 ± 3.4 299.5 ± 75.7 5.0 ± 1.8 1.5 ± 0.8 c

a Mean ± SD. b Significant difference compared to Group 2 (p < 0.05). c Significant difference compared to Group 1
(p < 0.05). AOM, azoxymethane; ALT, alanine aminotransferase; FFA, free fatty acid; UA, uric acid.

2.3. AOM-Induced Colorectal Pre-Neoplastic Lesions in the Experimental Mice

Colorectal pre-neoplastic lesion BCAC [20,21] developed in the colons of AOM-injected mice.
Representative optical microscopic images of AOM-induced BCACs are shown in Figure 1b. The total
number of BCACs was significantly lower in the mice treated with AOM plus allopurinol than in
mice treated with AOM alone (Figure 1c), indicating that allopurinol might inhibit the development of
colorectal premalignant lesions in AOM-injected db/db mice.
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2.4. The Expression Levels of mRNAs in Colonic Mucosa of Experimental Mice

The effects of allopurinol on the mRNA expression levels of specific molecules, such as insulin-like
growth factor-1 (Igf1), IGF-1 receptor (Igf1r), IGF-binding protein-3 (Igfbp3), and proliferating cell
nuclear antigen (Pcna), were examined by quantitative real-time reverse transcription-polymerase chain
reaction (qRT-PCR) analysis. While there were no significant differences among the experimental groups
with respect to the levels of Igf1, Igf1r, and Igfbp3, the levels of Pcna were markedly downregulated
following allopurinol treatment in AOM-injected mice (Figure 2a). A previous report demonstrated
that IGF/IGF-1R signaling is essential for obesity-related CRC development [23,24]. The results from
the present study demonstrate that allopurinol had no significant effect on this pathway.
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Figure 2. Effects of allopurinol on the IGF/IGF1R axis and cellular proliferation in the colonic mucosa
of the experimental mice. (a) The mRNA expression levels of Igf1, Igf1r, Igfbp3, and Pcna in the colonic
mucosa were analyzed by quantitative real-time RT-PCR with specific primers. Each column represents
the mean ± SD. Asterisk (*) indicates the statistically significant difference between the groups; p < 0.05.
(b) Evaluation of cellular proliferation in colonic mucosa of the experimental mice using an antibody
for proliferating cell nuclear antigen (PCNA). Representative images are shown. Scale bars, 100 µm.
AOM, azoxymethane; n.s., not significant; IHC, immunohistochemistry. NT, no treatment.

2.5. Cellular Proliferation in Colonic Mucosa of Experimental Mice

Treatment with allopurinol markedly decreased PCNA in colon mucosa evaluated by
immunohistochemistry (Figure 2b). This finding, together with the result of the Pcna mRNA expression
level described above, might indicate that allopurinol significantly inhibited cellular proliferation in
the colonic mucosa of AOM-injected db/db mice, leading to the suppression of the development of
premalignant lesions.
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2.6. Immunohistochemistry for F4/80 in Adipose Tissue of the Experimental Mice

Immunohistochemical staining for F4/80 was performed to evaluate the chronic inflammation
associated with the infiltration of macrophages in white adipose tissue. Compared with mice
treated with AOM alone, the number of F4/80 positive cells was 0.31-fold lower in mice treated with
AOM/allopurinol (Figure 3), suggesting that allopurinol administration attenuated inflammation in
adipose tissue.
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Figure 3. Effect of allopurinol treatment on macrophage infiltration in the adipose tissue of the
experimental mice. (a) A representative picture of immunohistochemical staining for F4/80 in the
adipose tissue of the experimental mice. F4/80-stained cells are indicated by arrow heads. Scale bar,
100µm. (b) The number of F4/80-positive cells per unit area was counted. The values are expressed as the
mean ± SD. Asterisk (*) indicates the statistically significant difference compared to the azoxymethane
(AOM)-treated group; p < 0.05. IHC, immunohistochemistry; NT, no treatment.

2.7. Serum Levels of TNF-α in the Experimental Mice

Chronic inflammation in the adipose tissue is known to contribute to the increased production
of tumor necrosis factor-alpha (TNF-α). Serum levels of TNF-α was analyzed by enzyme-linked
immunosorbent assay (ELISA) (Figure 4a). Previously, serum TNF-α levels were reported to be
significantly elevated in the AOM-administered db/db mice compared to the no treatment db/db
mice [25]. The TNF-α levels were significantly lower in the AOM/allopurinol group than in the
AOM group. Because TNF-α is considered an essential tumor promoter in inflammation-related
tumorigenesis [26], the administration of allopurinol might contribute to the suppression of colonic
neoplasms by decreasing the TNF-α levels.
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Figure 4. Effects of allopurinol on serum TNF-α levels and oxidative stress in the experimental mice.
(a) Serum concentrations of TNF-α were determined by ELISA. (b) Serum levels of derivatives of
reactive oxygen metabolite (d-ROM) and biological antioxidant potential (BAP) were evaluated and
the ratio was compared as a relative value. Each column represents the mean ± SD. The asterisk
(*) indicates the statistically significant difference compared to azoxymethane (AOM)-treated group;
p < 0.05.

2.8. Systemic Oxidative Stress Levels of the Experimental Mice

In the previous study, systemic oxidative stress was evaluated in db/db mice, and the stress was
markedly enhanced in the AOM-administered mice compared to no treatment mice [25]. In our
study, to investigate systemic oxidative stress, tests for the reactive oxygen metabolite (d-ROM) and
biological antioxidant potential (BAP) were performed, and the ratio of d-ROM/BAP was calculated and
compared (Figure 4b). The ratio, indicating the degree of oxidative stress [27], was markedly lower in
the AOM/allopurinol group than in the AOM alone group, suggesting that allopurinol administration
attenuated systemic oxidative stress in AOM-treated db/db mice.

3. Discussion

Increased serum UA, namely, hyperuricemia, is associated with an excess cancer risk and
mortality, although UA is theoretically thought to be protective against cancer owing to its antioxidant
properties [6]. Furthermore, hyperuricemia increases cancer prevalence and mortality among patients
with cancer. In addition, obesity and diabetes are associated with chronic inflammation, cancer, and
hyperuricemia, suggesting that UA may represent an important link between these disorders and
cancer development [28]. In the present study, we demonstrated that the xanthine oxidase inhibitor,
allopurinol, which is widely used for lowering serum UA levels, markedly suppressed the development
of colorectal pre-neoplastic lesions induced by AOM in obese db/db mice. The anti-tumorigenesis action
appeared to be caused by the attenuation of chronic inflammation and a reduction in oxidative stress.

Chronic inflammation is one of the most important mechanisms in the development of
obesity-associated CRC. Remarkably, the enhancement of inflammation in adipose tissue is considered
essential for linking obesity and CRC development and progression [29]. During the early phase of
systemic inflammation, macrophage infiltration into white adipose tissues occurs as a representative
condition. In the meantime, TNF-α is produced from the adipose tissue and affects various organs
as a pro-inflammatory cytokine [30]. In our study, the infiltration of macrophages in adipose
tissue, evaluated using immunohistochemistry for F4/80, was significantly inhibited following the
administration of allopurinol. In addition, serum levels of TNF-α, analyzed using ELISA, were markedly
reduced in allopurinol-administered mice, which might be owing to the attenuation of inflammation
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in adipose tissues. These results might indicate that attenuating inflammation in the adipose tissue by
reducing macrophage infiltration is crucial to suppress the development of colonic malignant lesions.

Obesity and the related chronic inflammation were often accompanied by increased oxidative
stress. Oxidative stress is enhanced by the excess generation of reactive oxygen species [31], which are
derivatives of molecular oxygen, including superoxide and hydrogen peroxide, and can induce
mutagenic changes and damage DNA repair functions, leading to carcinogenesis [32,33]. In the present
study, allopurinol administration significantly decreased the levels of oxidative stress markers and
the ratio of serum d-ROM/BAP in AOM-treated mice. This finding appeared to indicate that the
attenuation of oxidative stress played a vital role in suppressing the development of premalignant
lesions in the colorectum of experimental mice. While UA is known to possess antioxidant effects [6],
the mechanisms by which allopurinol, a UA-lowering agent, attenuated systemic oxidative stress were
not revealed in the present study. The altered condition following allopurinol treatment is consistent
with a previous report showing reduced oxidative stress by this agent [34].

In this study, we also focused on the effects of allopurinol on the lipid metabolism in the
experimental mice. The weights of adipose tissue tended to be heavier in groups 2–4 than that of the
no treatment group, but there were no statistically significant differences. The results demonstrated
that the serum FFA level in the AOM/allopurinol-treated group was significantly lower compared to
that of the AOM-treated group, while there was no marked difference in the level of FFA between the
allopurinol-treated group and the no treatment control group. Although a previous study demonstrated
that the serum UA concentration was correlated with serum triglyceride [22], in our study there was no
significant difference in the serum triglyceride levels among the groups in spite of a marked decrease in
UA levels by allopurinol treatment. According to a previous retrospective study, allopurinol modestly
decreased serum triglyceride levels, but did not affect cholesterol [35], while a systematic review with
meta-analysis demonstrated that allopurinol had no improvement effect on serum lipid levels [36].
These findings indicate that allopurinol may have no significant effect on lipid metabolism, or at least
in humans.

The IGF/IGF-1 receptor signaling is known to contribute to colorectal carcinogenesis in obese and
diabetic mice [23,24]. As allopurinol treatment exhibited no significant alteration in the gene expression
associated with the IGF/IGF-1 receptor axis, the preventive effects of this agent were presumably
through the attenuation of both oxidative stress and chronic inflammation. The present study, however,
did not investigate the protein levels of IGFs, IGF receptors, and their related molecules. In addition,
it was not examined in detail how allopurinol affects stress-related pathways, which might be one of
the main mechanisms to inhibit colon tumorigenesis. These are considered the limitations of this study.

In summary, the present study demonstrated the chemopreventive effects of allopurinol on
early-phase obesity-related colon tumorigenesis. As the risk of CRC is increased by obesity and related
metabolic disorders, targeting obesity-associated abnormalities, including chronic inflammation and
oxidative stress, might be a potential preventive and therapeutic strategy for obese patients with CRC.
Allopurinol is considered a possible and practical candidate for this direction because it has been
widely used in clinical practice without severe adverse effects for patients with metabolic syndrome.
Further studies should be performed to investigate the effects of allopurinol, directly or indirectly,
on oxidative stress and inflammation, as well as to examine the chemopreventive effects of CRC
development in clinical trials.

4. Materials and Methods

4.1. Animals and Care Conditions

Thirty-six male db/db mice were obtained from Japan SLC Inc. (Shizuoka, Japan) and were used
for experiments after acclimatized rearing for a week. The animals were cared for and humanely
maintained at the Gifu University Life Science Research Center in accordance with the Institutional
Animal Care Guidelines. The mice were housed in cages with free access to a basic diet CE-2 obtained
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from Oriental Yeast (Tokyo, Japan) and sterilized tap water. The bedding was changed once a week.
The environmental conditions inside the room were maintained at a humidity of 50% ± 20% and a
temperature of 23 ± 1 ◦C; a 12 h alternating light/dark cycle was followed.

4.2. Chemicals and Administration Methods

AOM was obtained from Wako Pure Chemical Co. (Osaka, Japan). AOM was intraperitoneally
injected once weekly for 1–4 weeks after starting the experiment. The dose was formulated by diluting
AOM with ultrapure water to obtain a final dose of 15 mg/kg body weight. The model, AOM-induced
colorectal carcinogenesis in db/db mice, used in this study, was established and reported in 2004 for
the examination of obese- and diabetes-related colorectal carcinogenesis [37], and has been used in
a number of researches [16–18,25,38–40]. Allopurinol was obtained from Wako Pure Chemical Co.
(Osaka, Japan) and was dissolved in ultrapure water to obtain a final dose of 30 mg/kg body weight.
These solutions were poured into their respective bottles and exchanged twice a week.

4.3. Experimental Procedure

At 5 weeks of age, the mice were randomly divided into four experimental groups and treated as
follows: no treatment (group 1, n = 6), AOM alone (group 2, n = 12), AOM plus allopurinol (group 3,
n = 12), and allopurinol alone (group 4, n = 6). The mice in groups 2 and 3 were intraperitoneally
injected with AOM (15 mg/kg body weight) once weekly for 1–4 weeks after starting the experiment.
At 9 weeks of age, the mice in groups 3 and 4 received drinking water containing allopurinol until
the end of the experiment. Allopurinol was administered via drinking water at a dose of 30 mg/kg
body weight. At 22 weeks (after the 14 week allopurinol treatment) of age, all mice were euthanized
for analysis. This experimental protocol was approved by the Committee of Institutional Animal
Experiments of Gifu University (the authorization code 30-7 on 5 April 2018).

4.4. Histopathological Examination

At the end of the experiment (22 weeks of age), all mice were euthanized for histopathological
analysis. The liver, kidneys, spleen, white adipose tissue, and colorectum were excised. The colorectum
was dissected longitudinally and fixed on filter paper in 10% buffered formalin for more than 24 h.
It was further divided into the rectum portion (approximately 1 cm in length, oral side from the
dentate line) and the colon portion. Each portion and the other tissues were paraffin embedded,
stained with hematoxylin and eosin, and histologically analyzed. Immunohistochemical staining
was performed for PCNA and was performed in colon mucosa using the labeled streptavidin-biotin
method (LSAB kit; Dako, Glostrup, Denmark) as described previously [16,27]. Primary antibodies
for PCNA were obtained from Santa Cruz Biotechnology (1:100 dilution, sc-7907; Dallas, TX, USA).
Immunohistochemical staining for F4/80 was also performed to examine macrophage infiltration in
adipose tissues, according to a previous study with a primary antibody (1:100 dilution, ab111101;
Abcam, Cambridge, United Kingdom) [17].

4.5. Clinical Chemistry

Blood samples were collected from the inferior vena cava of the mice at sacrifice after a 12 h fasting
period. The serum was centrifuged from whole blood and used for chemical analyses. Serum alanine
aminotransferase (ALT), free fatty acid (FFA), triglyceride, and UA levels were determined by a
commercial laboratory (SRL, Inc., Tokyo, Japan). To investigate the systemic oxidative stress, d-ROMs
and BAP were evaluated using FREE Carpe Diem (Diacron International s.r.l., Grosseto, Italy)
in accordance with the manufacturer’s protocol. Serum TNF-α levels were measured using the
Mouse TNF-α ELISA Kit (AKMTM-011, Shibayagi Co. Ltd., Gunma, Japan) in accordance with the
manufacturer’s protocol.
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4.6. Extraction of mRNA and Quantitative Real-Time RT-PCR Analysis

The expression levels of mRNA in the colon mucosa of the experimental mice were examined
using qRT-PCR analysis. Total RNA was isolated from the scraped colonic mucosa of all experimental
mice using the PureLinkTM RNA Mini Kit (Invitrogen, Carlsbad, CA, USA), according to the
manufacturer’s instructions. Complementary DNA (cDNA) was amplified from the total RNA of
each sample using a High Capacity cDNA Reverse Transcription Kit (Applied Biosystems, Foster City,
CA, USA). The primers used for the amplification of Igf1, Igf1r, Igfbp3, Pcna, and 18s were previously
reported [17,41] or as follows: Igf1r forward, 5′-GAG AAT TTC CTT CAC AAT TCC ATC-3′ and reverse,
5′-CAC TTG CAT GAC GTC TCT CC-3′ and Pcna forward, 5′-CTA GCC ATG GGC GTG AAC-3′ and
reverse, 5′-GAA TAC TAG TGC TAA GGT GTC TGC ATT-3′. Real-time PCR was performed in a
LightCycler (Roche Diagnostics Co., Indianapolis, IN, USA) with SYBR Premix Ex Taq (TaKaRa Bio,
Shiga, Japan) as previously described [42]. The expression levels of these genes were normalized to 18s
gene expression levels.

4.7. Statistical Analysis

The results are presented as the mean ± standard deviation. The Tukey–Kramer multiple
comparison test was performed to compare each experimental group. The Mann–Whitney U test was
performed between the two groups when a specific p-value was required, or for the re-test for the
presence or absence of a significant difference between the two groups. All differences were considered
significant at p < 0.05.

5. Conclusions

The preventive effects of the UA lowering agent allopurinol on the development of obesity-related
CRC were demonstrated in this study. The mechanisms appeared to be the attenuation of chronic
inflammation and oxidative stress by allopurinol administration. The risk of CRC is higher in obese
individuals and in those with related metabolic abnormalities, including chronic inflammation and
oxidative stress. Therefore, the use of allopurinol for CRC chemoprevention can be an effective strategy
in patients with obesity.
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