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Abstract

:

Ulcerative colitis is a chronic disease characterized by bleeding and ulcers in the colon. Disease severity assessment via colonoscopy videos is time-consuming and only focuses on the most severe lesions. Automated detection methods enable fine-grained assessment but depend on the training set quality. To suit the local clinical setup, an internal training dataset containing only rough bounding box annotations around lesions was utilized. Following previous works, we propose to use linear models in suitable color spaces to detect lesions. We introduce an efficient sampling scheme for exploring the set of linear classifiers and removing trivial models i.e., those showing zero false negative or positive ratios. Bounding boxes lead to exaggerated false detection ratios due to mislabeled pixels, especially in the corners, resulting in decreased model accuracy. Therefore, we propose to evaluate the model sensitivity on the annotation level instead of the pixel level. Our sampling strategy can eliminate up to 25% of trivial models. Despite the limited quality of annotations, the detectors achieved better performance in comparison with the state-of-the-art methods. When tested on a small subset of endoscopic images, the best models exhibit low variability. However, the inter-patient model performance was variable suggesting that appearance normalization is critical in this context.
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1. Introduction


Inflammatory bowel diseases (IBDs) are chronic inflammatory illnesses associated with considerable healthcare costs [1]. Patients experience serious discomfort and long-term complications. The two main subtypes are Crohn’s disease (CD) and Ulcerative colitis (UC) distinguished by disease location and histology findings [2,3]. Diagnosis of IBDs is challenging [4] and involves a multifaceted approach, including clinical examination and specialized tests such as histology and radiology [5]. Advanced imaging techniques, blood tests and biopsies play an important role in confirming IBD and distinguishing CD from UC. The need for repeated testing and ongoing monitoring highlights the ongoing challenges of managing these diseases.



Gastroenterologists often use endoscopic procedures such as endoscopy to visually examine the gastrointestinal tract for signs of inflammation, bleeding, ulcers, or any mucosal damage. In medical practice, colonoscopy [6] and Wireless Capsule Endoscopy (WCE) [7] are the methods of reference for evaluating and monitoring IBD severity in order to make treatment decisions and assess treatment response. Colonoscopy, performed by an experienced clinician for UC, uses a flexible thin hose equipped with a mini-video camera, while WCE, suited for CD, uses an embedded, pill-sized, camera that can be swallowed.



Bleeding and ulcers are common lesions associated with both diseases, UC and CD [8]. Color information is the primary indicator used by specialists to distinguish between mucosal lesions and the surrounding normal or healthy mucosa. Bleeding shows up as dark red areas whereas ulcers appear as white spots on the gut wall, both distributed with diverse shapes and sizes. Currently, experts review manually colonoscopy or WCE videos consisting of 50 k to 120 k frames [9]. This process is a difficult and time-consuming task leading to only considering the characteristics of the most severe lesions.



Automated lesion detection offers significant benefits by improving the severity assessment reproducibility and decreasing the physicians’ burden. Various methods have been proposed to automatically detect bleeding and ulcer lesions, primarily tackling binary classification and segmentation challenges. Some of these methods use color features [10,11,12,13,14], while others combine them with texture information to enhance detection performance [15,16,17]. Recent studies have shown a growing interest in artificial intelligence (AI) offering a universally applicable approach to clinical diagnosis. Specifically, deep learning methods show promise in detecting and localizing endoscopic lesions [9,18].



The presented work focuses on detecting bleeding and ulcers from colonoscopy videos obtained in the context of UC disease during an ongoing collaboration with Bichat-Beaujon Hospital in Paris, France. Although the lesions’ appearance is similar between UC and CD, existing methods are biased to their training set, i.e., to well-delineated video-capsule images ([19,20,21,22,23]) rather than complete colonoscopy videos obtained on the local instruments. Consequently, we built a custom dataset of colonoscopy videos of real patients, called Vatic specific to this collaboration. To streamline the annotation process, we propose a user interface inspired by Vatic software (https://github.com/cvondrick/vatic, accessed on 15 November 2023) [24] allowing the doctors to delineate lesions by bounding boxes instead of precise boundaries.



Classical machine learning or Convolutional Neural Network (CNN) [9,18] approaches heavily depend on the quality of the training dataset affecting the accuracy of the detector. To address potential shortcomings, we opted for linear models due to their simplicity and ability to provide interpretable results. Following [13,14,19,25,26], we used linear models in convenient color spaces for bleeding and ulcer detection. We also proposed an efficient sampling scheme to explore the set of linear models and reject trivial classifiers, i.e., models that classify all the pixels into the same class. Given the imprecise delimitation of bleeding and ulcer lesions by bounding boxes, we take into account the annotation errors in computing detector sensitivity. Specifically, mislabeled pixels within the bounding box annotations were considered correctly identified abnormal pixels rather than false negatives.



In this paper, we have three main contributions:




	-

	
We first propose a sampling strategy to effectively explore the set of linear models by only considering nontrivial models. This will be done in Section 3.2.3.




	-

	
Then, we introduce performance criteria that can deal with bounding box annotation problems. In Section 3.2.4, we show its effectiveness with the help of some examples.




	-

	
Finally, we study the variability of the detectors across the patients using small subsets of endoscopic images. Our study shows that the models used are not universal and personalized models should be developed for each patient. We illustrate the results in Section 5.









The rest of the paper is organized as follows: in Section 2, we present an overview of the current state-of-the-art methods proposed for UC lesions detection. Then, in Section 3, we describe our proposed sampling scheme to explore the set of linear models. Next, we introduce performance criteria that can deal with bounding box annotation problems. In Section 4, we discuss the results of our proposed approach. Finally, in Section 5 we study the variability of the models among the patients. Some limitations of the study will be provided in Section 6.




2. Related Work


2.1. Automatic Detection of Bleeding


Most of the current methods perform classification in a color space with maximum contrast between bleeding and nonbleeding regions. As bleeding pixels are red, it is natural to consider detection and classification in the RGB colorspace, or direct transformations of RGB [12,13,25,27,28,29].



In 2011, Fu et al. [27] trained a 3-layer perceptron on the ratios (R/G, R/B, R/G + B + R) for each pixel and applied morphological erosion. Later in 2014, the authors extended their approach by working with superpixel regions, and a Support-Vector Machine (SVM) classifier trained on 60,000 pixels [12]. In the same year, Ghosh et al. [25] applied a K-Nearest Neighbors (KNN) classifier to statistical parameters extracted from the R/G histogram. The authors reported that the combination of only three parameters, namely {median, variance, kurtosis} was sufficient to identify bleeding frames with an accuracy of 98.5%. This work was later extended by working on 7 pixels × 7 pixels blocks [13].



Some bleeding detection algorithms work on the histogram bin levels instead of the pixel values [25,28]. Kundu et al. [28] computed Regions of Interest (ROIs) defined by the color ratios   r / b ≥ m   and   r / g ≥ n   computed in the normalized RGB color space, denoted by rgb and applied a KNN classifier to 64 histogram bins in the green channel. The parameters   m = 2.8   and   n = 2   are chosen according to the maximal accuracy of pixel detection compared to the ground truth provided for 65 endoscopic images. In [29], the authors combined the RGB values into a single number with bit concatenation and applied an SVM classifier on the bins of the resulting histogram. In [19], the authors used a similar technique before PCA dimension reduction and classification with KNN.



Other color spaces were also considered in [11,30,31]. In [30], the authors used an SVM classifier with statistical features computed in Luma In-phase Quadrature (YIQ) color space. Deeba et al. [11] merged two SVM classifiers built from statistical features extracted from RGB and Hue-Saturation-Value (HSV) color histograms, respectively. In [31], the authors trained a three-layer probabilistic neural network on statistical features from RGB and Hue-Saturation-Intensity (HSI) pixel intensities. Recently, Pogorelov et al. [15] proposed to consider image texture combined with color information. They used RGB color features and 22 texture parameters extracted from the grey-level co-occurrence matrix. The authors tested many classification methods and found that the SVM classifier performed best.




2.2. Automatic Detection of Ulcers


Ulcers show as pinkish white, which explains why most methods focus on detecting bright pixels [14,32]. In [32], the authors trained an SVM classifier on statistical features in RGB and CIElab (Lab) spaces and concluded that (L, a, G) channels give the best detection performance. The authors later extended their work in [14] with more colorspaces (RGB, HSV, YCbCr, CMYK, YUV, CIElab, XYZ) and found that (Cr,Y,B) is the best features combination.



Ulcers also appear as rough surfaces which can be detected based on texture features [16,17,26]. In [17], the authors proposed to combine color (S from HSV and M from CMYK) and Leung-Malik filters [33] with an SVM classifier. In [26], the authors applied an SVM classifier to statistical moments of the Contourlet transform and Log Gabor filter in HSV and YCbCr color spaces. In Yeh et al. [16], the textural features were obtained from the Grey Level Co-occurrence Matrix. Different combinations of the number of features, feature selection algorithm, and classification algorithm were compared, and the best combination was obtained with decision trees, with 40 features selected by the ReliefF method.





3. Materials and Method


3.1. Colonoscopy Videos Dataset


From Vatic dataset [34], we used 5 videos (768 pixels × 576 pixels) containing both bleeding (1629 frames) and ulcer (1760 frames) annotations for training, for a total of 4349 frames (see Table 1). Each video was annotated by gastroenterologists with the help of the Vatic software [24]. For further information on the annotation process, please refer to [34].




3.2. Proposed Method


Our proposed method involves several steps outlined in Figure 1. First of all, we remove all black pixels surrounding the informative pixels. Next, we compute the color histograms of healthy pixels. We thus propose an effective sampling method to explore the linear models. We also adjust the computation of the sensitivity criteria to encounter mislabeled pixels occurring during the annotation process using bounding boxes. Finally, we optimize the performance of the detectors utilizing the Youden index [35]. In what follows, we detail the process by showing some examples.



3.2.1. Image Preprocessing


Due to the camera’s field of view, only an octagonal portion of the image is actually recorded in the endoscopic video, and the outer portions are set to black (see Figure 2). Additionally, some embedded textual information should be removed prior to bleeding or ulcer detection. Therefore, we detect pixels with small grey-level variance and grow the detected region with morphological dilation (5 × 5 square structuring element). Additionally, some unannotated areas are bright because of light shining on wet spots (specular reflection), so we remove the pixels   1  { Y > c }   , with   c = 150   chosen by visual inspection.




3.2.2. Definition of Bleeding and Ulcer Detectors


We previously pointed out that in colonoscopy videos, bleeding shows up as red patches and ulcers as pinkish-white patches on the gut wall (Figure 3). As previous authors [13,19,25] have shown that the R/G ratio is relevant (it leads to 11% overlap in [13]) to detect bleeding, we consider linear classifiers in the (R,G) subspace, i.e.,   { a R + b ≥ G  for   ( a , b )  ∈  R 2  }  . Similarly, following [14,26], we consider linear classifiers in the (Cr,Y) subspace obtained using Cr and Y channels from YCbCr and CMYK color spaces respectively, i.e.,   { a C r + b ≤ Y  for   ( a , b )  ∈  R 2  }   to detect ulcer lesions. This corresponds to finding a straight separation line between the histograms of normal and lesion pixels. Let’s take the example of endoscopic figures in Figure 3. The best bleeding detector should lead to a minimum overlap ratio between normal (Figure 3c) and bleeding pixels (Figure 3e) in the (R, G) color space. On the other hand, the best ulcer detector should lead to a minimum overlap ratio between normal (Figure 3d) and ulcer pixels (Figure 3f) within the (Cr, Y) color space.




3.2.3. Proposed Sampling Strategy


The model search process consists in exploring all the linear models of the color spaces (R, G) and (Cr, Y) for bleeding and ulcer detection respectively. In Figure 4, we give the histograms of normal pixels of the training dataset (Table 1). For each histogram, we plot a set of 100 random linear models. We can remark that classifiers that do not “cross” the histograms, herein highlighted in orange color, are trivial because they give the same label to all pixels. In particular, no normal pixel will be correctly identified by the detector and consequently, the true negative rate of this detector will be zero. Therefore, we decide to eliminate these models and restrict the optimization space to the set of random linear classifiers that go through the interior of the histogram. Additionally, if a line goes through the interior, it must cross the boundary of the set. We can avoid sampling redundant linear classifiers by focusing on the contour of the histogram instead of its interior. To sample the set of lines, we will thus draw two points in the contour of the RG and CrY histograms and consider the associated linear classifiers.




3.2.4. Proposed Performance Metric of the Detectors


In textbook statistics, the specificity    ∑ TN   ∑ TN + ∑ FP    or true negative (TN) rate measures the proportion of normal pixels correctly identified as such, and sensitivity    ∑ TP   ∑ TP + ∑ FN    or true positive (TP) rate measures the correctness of abnormal pixels detection. However, evaluating specificity and sensitivity hinges on reliable pixel annotations by gastroenterologists. Unfortunately, as previously discussed, the gastroenterologists’ annotations in our dataset contain many errors because the regions of interest are provided as bounding boxes, whereas bleeding and ulcers have more complex shapes (see Figure 3). Direct observation also suggests that many dark red pixels were not labeled as bleeding, and white pixels were not labeled as ulcers. Consequently, we expect over-inflated levels of FP and FN based on the dataset annotations. This will hide the correct classifier, and decrease the confidence in our results.



To overcome these problems, we modify the definition of sensitivity to take the labeling problems into account. The pixels inside an annotation and not detected as such should not count as false negatives when assessing the algorithm’s performance. Consequently, we count all pixels belonging to an annotation as TP, as soon as one pixel is detected inside. As pixels inside an annotation are either true positives or false negatives, this corresponds to counting “detected annotations” instead of “detected pixels”. More precisely, we count in terms of “area”, and define the sensitivity criteria as follows:


   Sensitivity A  =   Area  of  detected  annotations   Total  area  of  annotations    .  



(1)







In comparison with the standard sensitivity criteria,   Sensitivity A   may provide a compromise between bounding box annotations and the detector’s ability to correctly identify them. Specificity is not modified, as we expect missing annotations to represent a small number of pixels relative to nonannotated pixels   ∑ TN + ∑ FP  .



Finally, the detector performance is measured in a sensitivity vs. (1-specificity) plot or Receiver Operating Characteristic (ROC) space. As we are only interested in single detectors, each detector’s performance is represented by a point. The ideal classifier corresponds to the upper left corner. Other good models are a compromise between sensitivity and specificity and are close to (0,1). We select the classifier that maximizes the Youden index [35]:


     m ^    =     argmax m    d ROC   (  { y = x }  , m )  ,     



(2)






     =     argmax m     Sensitivity A  + Specificity  ( m )  − 1  .     



(3)










4. Results


4.1. Computation of the Proportion of Trivial Models


To study the amount of these trivial models, we ran a series of 100 trials, each involving 100 randomly generated lines. In Figure 5, we show the total amount of "trivial” models across 100 random tests. The results show that when sampling linear models in (R,G), also denoted by RG, color space, an average of 9% of these models is “trivial” with a standard deviation (std) of around 3%. In contrast, for the (Cr,Y), also denoted by CrY, space this amount increases significantly to achieve an average of 25% with a std of about 4%. When sampling the RG space using 10,000 random models, among them 9.41% are trivial whereas this number increases to 25.62% in the case of sampling CrY space. Since the number of trivial models remains almost the same when testing more than one hundred models, we decided to restrict the search for lesion detectors by testing only one hundred random linear models.




4.2.   Sensitivity A   Is Better Than Standard Sensitivity in the Context of Bounding Box Annotations


In Figure 6, we illustrate the results of bleeding detection (in red) using a chosen random linear model,   G ≤ 0.3 R + 1   and ulcer detection (in orange) using the linear model   Y ≥ 0.5 C r + 8  . We report the performance metrics of the models in terms of TP, TN, FP, and FN computed on the pixel level in Table 2. It can be seen that the model can correctly identify most of the annotated pixels (see the last row). However, as gastroenterologist annotations are usually wider than the actual lesion, some annotated pixels are not detected by our algorithm and therefore the false negative ratio is very high resulting in decreased sensitivity values (cf. Table 2).




4.3. Best Lesions Detectors


As explained previously in Section 4.1, we take a random sample of size 100 from the set of linear models that cross the contour of the histogram of normal pixels. Figure 7 shows the sampled models in histogram space and in ROC space. Table 3 shows the performance of the three best linear models in terms of specificity,   Sensitivity A   and standard sensitivity.



As shown in Figure 7, the models achieve good performance results in ROC space, i.e., specificity and   Sensitivity A  . Figure 8 (in the 2nd and 4th row) shows that there is a good visual agreement between the colors of detected lesions and the expert annotations. The best linear models can focus on the relevant areas rather than the entire annotation, and select candidate ROIs that were not annotated. As expected, the detected areas do not overlap “fully” with the annotations, which is the reason for the low standard sensitivity levels. Based on the 3 best models, we estimate that around 90% of bleeding annotations are incorrect, and 80% of ulcer annotations (see Table 3). As a result, training with the standard sensitivity would provide nonsensical models, whereas we can achieve good performance with   Sensitivity A  .



In Table 4, we summarize the results of our models compared to two methods found in the literature. As we are interested in detecting annotations, we apply two simultaneous color ratios as done in [28] and find the optimal parameters    m ^  = 5.95   and    n ^  = 3.75   to detect bleeding ROIs. We don’t further apply the KNN algorithm as the authors have done. On the other hand, for ulcer detection, an SVM model with a Radial basis function (RBF) kernel [36] and 10-fold cross-validation was trained on our dataset using two color bands   C r   and Y as done in [14]. Using a grid search within the values range   ( − 8 , 7 , 6 , … , 6 , 7 , 8 )  , we find that the optimal parameters are   C = 0.79   in terms of regularization constant and   γ = 3.03   in terms of kernel hyper-parameter. We then computed the detection performance for both resulted models on our training dataset (cf. Table 1) using the standard specificity and the proposed   Sensitivity A   (cf. Section 3.2.4). Reported results show that linear models exhibit better compromise between specificity and   Sensitivity A   compared with [14,28]. The SVM model fails on abnormality detection, here the ulcers found in Vatic dataset. We thus tried to make data augmentation on the ulcer pixels to maintain a balance in the training dataset, but   Sensitivity A   remained low.



In Figure 8, we present some annotated frames with the corresponding detection using our models as well as the models computed based on [14,28]. We find that our best linear models show better compromise between the detection of healthy pixels and lesions pixels than the other methods using similar color features.





5. Discussion


As discussed in Section 2.1, the RGB color space, and especially the Red and Green channels, have previously been used successfully for bleeding detection, whereas the YCbCr color space was used for ulcer detection. The information present in the pixel color is not altered by a change of color space, but a suitable color space presents this information more straightforwardly, and dimension reduction methods such as PCA can automatically perform this. In this manuscript, choosing the right colorspace based on the previous literature (see [11,15,20,29] for bleeding and [14,17,26] for ulcers) enables us to work with 2D linear models instead of 3D models.



The use of bounding box annotations in our dataset (see Figure 3) entails a considerable quantity of ground truth errors because annotations do not match the arbitrary and complicated shapes of the lesions. This is a major difficulty in our context, regardless of the type of model or machine-learning approach. To ease the annotation burden, semi-automatic region selection algorithms have been proposed. In the work of Sainju et al. [37], the authors use the growing region algorithm [38] to create homogeneous bleeding regions from consecutive capsule endoscopy frames. A seed is manually selected by the user and then enlarged by adding 8-connected neighbors, and the new centroid is taken as the seed for the following frame. This method extracts only one region per lesion, which can unbalance the normal and bleeding regions in the training dataset. In addition, it does not perform well in the absence of lesions due to forward and backward camera movements or in patients with mild forms of UC. In [11], the authors use a similar method to extract the bleeding regions but keep only a single frame rather than the complete sequence.



In this paper, we propose to adjust the performance criterion of lesion detection rather than automatically annotate the dataset. We chose to work with linear models instead of more sophisticated approaches in order to provide results that are easy to interpret and use in clinical practice. In addition, the good performance obtained in this and previous studies [11,13,14,17,25,26] suggests that clinical validation of the approach is the critical step, as opposed to more sophisticated approaches such as SVM or neural networks.



To evaluate the validity of our results, we did not perform cross-validation, but show the results of computing specificity and   Sensitivity A   on a random subset of frames in each video in Figure 9. Cross-validation selects random subsets and finds the best model for each subset. Consequently, it selects different models at each run and evaluates the performance of the optimization algorithm. For clinical practice, we are interested in the performance of specific models, their reliability, and their generalization to new patients. Figure 9 shows the performance of the 3 best models for the patients in the training dataset (left) and 5 new patients (right). For each patient, we estimated specificity and   Sensitivity A   on 20 random subsets of a video, each containing 10% of the frames. Only three points are drawn, but the size of the ellipses is computed from the standard deviations of the 20 subsets.



Figure 9 shows that specificity and   Sensitivity A   are estimated precisely, even on a fraction of the frames. This suggests that computational time can be reduced by using only a small subset of the video. However, the performance varies a lot between patients, even inside the training set. This means that the selected models are not universal and that specific models should be trained for each patient. This observation was not reported in previous works because the datasets used contain frames that are not organized “by patient”. Consequently, methodological advances are necessary to make colonoscopy videos comparable, in order to apply trained models to new patients.



The application of AI in the detection of endoscopic lesions from colonoscopy videos marks a significant advancement in medical technology. With the capability to analyze vast amounts of visual data swiftly and accurately, AI algorithms contribute to the early identification of lesions, such as polyps or abnormalities, during colonoscopy procedures [9,18]. By leveraging machine learning and computer vision techniques, these AI systems can discern subtle changes in tissue patterns, helping clinicians in the timely diagnosis and intervention for patients. The integration of AI in endoscopic lesion detection not only enhances the efficiency of medical practitioners but also holds promise in improving overall patient outcomes by facilitating early detection and treatment of potentially concerning conditions. This technological synergy between AI and endoscopy stands poised to revolutionize the landscape of gastrointestinal healthcare.




6. Limitations of the Study


This study has several limitations. The first is the imprecision of lesion delineation using bounding boxes. Although the annotation process [24,34] employed in this study allowed an easy and fast ground truth construction, it does not permit accurate identification of all the pixels within the lesion contours. Several solutions could be further investigated on the bounding boxes: application of an automatic pixel-level annotation algorithm to encounter more precisely the lesion areas [11,37], use of semantic segmentation process [39,40] or application of a partial differential equation, i.e., non-linear diffusion types such as Malik and Perona equation to enhance contour identification and subsequently the abnormal pixels [41,42]. Another solution would be to use only an internal part of the available annotations. These areas of the image contain almost all the pixels of the lesion which may lead to better ground truth identification and consequently a performance enhancement of the detectors. The second limitation is the lack of a video processing stage. Given that the same lesions can be seen several times in a sequence of the colonoscopy video images [34], a processing step aimed at excluding redundancy in these images could contribute to more accurate identification of normal and abnormal pixels. The third limitation is the hand-crafted features employed in this study to identify the lesions in the colonoscopy videos. Investigation of more parameters and complex models of type deep learning could bring a potential improvement to the study. The visual interpretation of gastroenterologists during a colonoscopy examination is often affected by several artifacts such as motion, specularities, low contrast, and bubbles [43]. An appropriate video processing is desirable to eliminate such artifacts. Finally, although a large pool of videos was reviewed for Vatic dataset, the number of colonoscopy videos included in the study was small which may have restricted the performance of the proposed method. This could be overcome by considering a larger dataset.




7. Conclusions


This paper studies the automatic detection of bleeding and ulcers in colonoscopy videos for UC severity assessment based on a training dataset containing many annotation errors. Using bounding boxes, the annotation of bleeding and ulcers erroneously includes many healthy pixels. Thus, the ground truth accounts for many errors. We decided to deal with the annotation problem rather than proposing a sophisticated machine learning algorithm to improve detection performance as done by current studies. As in previous studies, we explore the set of linear classifiers and propose an efficient optimization method based on sampling the contour of the color histogram. The proposed strategy allows us to eliminate up to 25% trivial models which leads to focusing only on interesting models i.e., those giving nonzero true negative and true positive ratios. By adjusting the definition of sensitivity from pixel-level to annotation level, we can circumvent the effect of the annotation errors using bounding boxes, and select good pixel-level lesion detectors. The best linear models obtain 92.29 ± 0.443% specificity/88.59 ± 2.984% sensitivity for bleeding detection and 58.22 ± 0.393% specificity/81.68 ± 4.173% sensitivity for ulcer detection. Our results show better compromise between performance assessment in comparison with studies using similar models features. We also demonstrate that our models show reliable performance estimates from random subsets of the dataset. Our analysis shows that the best detectors achieve good performance, however, we notice that the performance results vary significantly from patient to patient, highlighting the need for a sort of normalization of the images from different patients for any method to work properly.
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The following abbreviations are used in this manuscript:



	IBD
	Inflammatory bowel disease



	CD
	Crohn’s disease



	UC
	Ulcerative Colitis



	WCE
	Wireless Capsule Endoscopy



	ROI
	Region Of Interest



	CNN
	Convolutional Neural Network



	ROC
	Receiver Operating Characteristic space



	RGB
	(Red, Green, Blue) color space



	SVM
	Directory of open access journals



	KNN
	K-Nearest Neighbors



	YIQ
	Luma In-phase Quadrature color space



	HSV
	Hue-Saturation-Value color space



	HSI
	Hue-Saturation-Intensity



	CIElab, CMYK, YUV, CIElab, XYZ
	diverse color spaces



	TN
	True Negative



	TP
	True Positive



	FN
	False Negative



	FP
	False Positive



	TPA
	Total number of pixels within the detected annotations



	PA
	Total number of pixels of all the annotations



	RBF
	Radial Basis Function



	CrY
	(Cr,Y) color space



	RG
	(R,G) color space



	AI
	Artificial Intelligence
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Figure 1. Flowchart of the proposed method. 
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Figure 2. Example of an endoscopic frame (on the left) and corresponding binary mask (on the right) used later to remove pixels that do not correspond to the colon wall during the training stage of the detectors. 
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Figure 3. (a,b) Annotated frames with bleeding (red bounding box) and ulcers (orange bounding box). Corresponding histograms of the normal pixels i.e., all pixels out of the bounding boxes (c,d), bleeding pixels (e), and ulcer pixels (f). 
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Figure 4. Histograms of normal pixels for the training dataset (cf. Table 1) in the RG space (on the left) and CrY space (on the right). Trivial models are represented in orange color. 
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Figure 5. We compute the percentage of trivial models, i.e. those non-crossing the histogram and consequently having a zero true positive or a zero true negative ratio for 100 random trials each of 100 lines for every histogram given in Figure 4. In black dots, we denote the mean values: for RG space, we find that around 9% of tested models fall outside the histogram and consequently are considered trivial while for CrY space, we find the average proportion of tested models identified as trivial is 25%. 
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Figure 6. Images (A–D) are endoscopic images extracted from Vatic dataset. The first row shows corresponding annotations for bleeding (red boxes) and ulcers (orange boxes). The second row represents the mask highlighting the ground truth obtained by bounding box annotations (in gray). The third row shows the results of bleeding detection (in red) using the linear model   G ≤ 0.3 R + 1   and ulcer detection (in orange) using the linear model   Y ≥ 0.5 C r + 8  . The last row shows the intersection between the models’ detection and the ground truth. 
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Figure 7. Blue lines represent the 100 linear classifiers that are sampled by drawing two points from the contour of the (R,G) histogram of normal pixels (a) and (Cr,Y) histogram (b). The performance of the models for bleeding (c) and ulcer (d) is shown in ROC space by blue dots. The three best models are denoted by black cross markers. 
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Figure 8. Annotated frames from Vatic dataset (first column), bleeding detection with our best linear model (second column), bleeding detection by two simultaneous linear models [28] (third column), ulcer detection with our best linear model (fourth column), ulcer detection using SVM [14] (last column). 
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Figure 9. Performance of the 3 best linear models depending on the patient, 5 training videos (left), and 5 test patients (right). 
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Table 1. Number of frames used for training: number of frames with bleeding annotations, number of frames with ulcer annotations, and total number in the video.
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	Bleeding Frames
	Ulcer Frames
	Total Number of Frames





	Video 1
	671
	554
	812



	Video 2
	224
	378
	378



	Video 3
	254
	86
	1116



	Video 4
	140
	204
	910



	Video 5
	340
	538
	1133



	Total
	1629
	1760
	4349










 





Table 2. Performance results for endoscopic images given in Figure 6. TPA represents the number of pixels within the detected annotations and PA denotes the total number of pixels of all the annotations presented in the frame.
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	Image Identity
	TP
	TN
	FP
	FN
	TPA
	PA
	Spec. 1
	Sens. 2
	Sens   . A   





	Image A
	23,229
	234,006
	2161
	6942
	93,936
	93,936
	99.08%
	25.76%
	100%



	Image B
	11,181
	263,133
	16,183
	35,841
	47,022
	47,022
	94.81%
	23.78%
	100%



	Image C
	36,692
	238,390
	18,724
	10,619
	46,318
	50,616
	92.72%
	77.55%
	91.51%



	Image D
	8556
	192,292
	54,952
	30,270
	36,041
	38,982
	77.77%
	22.04%
	92.46%







1 Spec. is an abbreviation of specificity, 2 Sens. is an abbreviation of sensitivity.













 





Table 3. Performance of the best linear models for bleeding and ulcer detection. Good performance is obtained based on   Sensitivity A  , but standard sensitivity is low due to annotation errors.
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	Best Models for Bleeding
	Specificity (%)
	   Sensitivity A    (%)
	Sensitivity (%)





	   G ≤ 0.30 R − 1.03   
	92.29 ± 0.44
	88.59 ± 2.98
	10.01 ± 0.61



	   G ≤ 0.26 R − 4.84   
	97.75 ± 0.13
	69.95 ± 1.50
	4.12 ± 0.21



	   G ≤ − 0.07 R + 31.59   
	86.44 ± 0.39
	75.59 ± 1.13
	13.56 ± 0.63



	Best Models for Ulcers
	Specificity (%)
	  Sensitivity A   (%)
	Sensitivity (%)



	   Y ≥ 0.70 C r − 42.80   
	58.22 ± 0.39
	81.68 ± 4.17
	38.59 ± 0.98



	   Y ≥ 0.51 C r + 8.82   
	81.72 ± 0.46
	56.06 ± 0.67
	13.93 ± 0.40



	   Y ≥ 0.50 C r + 6.32   
	78.26 ± 0.50
	59.24 ± 1.13
	17.58 ± 0.33










 





Table 4. Performance of the best lesions detectors compared to the literature. Significant results are highlighted in bold.
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	Models
	Specificity (%)
	   Sensitivity A    (%)





	Proposed bleeding detector
	92.29 ± 0.44
	88.59 ± 2.98



	Linear model-Kundu [28]
	94.82 ± 0.01
	85.23 ± 0.02



	Proposed ulcer detector
	58.22 ± 0.39
	81.68 ± 4.17



	SVM algorithm-Suman [14]
	99.84 ± 0.00
	21.25 ± 2.27
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