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Abstract: Ulcerative colitis is a chronic disease characterized by bleeding and ulcers in the colon.
Disease severity assessment via colonoscopy videos is time-consuming and only focuses on the
most severe lesions. Automated detection methods enable fine-grained assessment but depend on
the training set quality. To suit the local clinical setup, an internal training dataset containing only
rough bounding box annotations around lesions was utilized. Following previous works, we propose
to use linear models in suitable color spaces to detect lesions. We introduce an efficient sampling
scheme for exploring the set of linear classifiers and removing trivial models i.e., those showing zero
false negative or positive ratios. Bounding boxes lead to exaggerated false detection ratios due to
mislabeled pixels, especially in the corners, resulting in decreased model accuracy. Therefore, we
propose to evaluate the model sensitivity on the annotation level instead of the pixel level. Our
sampling strategy can eliminate up to 25% of trivial models. Despite the limited quality of annotations,
the detectors achieved better performance in comparison with the state-of-the-art methods. When
tested on a small subset of endoscopic images, the best models exhibit low variability. However, the
inter-patient model performance was variable suggesting that appearance normalization is critical in
this context.

Keywords: bleeding; bounding box annotation; lesion detection; model selection; sensitivity; ulcer;
ulcerative colitis

1. Introduction

Inflammatory bowel diseases (IBDs) are chronic inflammatory illnesses associated
with considerable healthcare costs [1]. Patients experience serious discomfort and long-
term complications. The two main subtypes are Crohn’s disease (CD) and Ulcerative colitis
(UC) distinguished by disease location and histology findings [2,3]. Diagnosis of IBDs
is challenging [4] and involves a multifaceted approach, including clinical examination
and specialized tests such as histology and radiology [5]. Advanced imaging techniques,
blood tests and biopsies play an important role in confirming IBD and distinguishing CD
from UC. The need for repeated testing and ongoing monitoring highlights the ongoing
challenges of managing these diseases.

Gastroenterologists often use endoscopic procedures such as endoscopy to visually ex-
amine the gastrointestinal tract for signs of inflammation, bleeding, ulcers, or any mucosal
damage. In medical practice, colonoscopy [6] and Wireless Capsule Endoscopy (WCE) [7]
are the methods of reference for evaluating and monitoring IBD severity in order to make
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treatment decisions and assess treatment response. Colonoscopy, performed by an experi-
enced clinician for UC, uses a flexible thin hose equipped with a mini-video camera, while
WCE, suited for CD, uses an embedded, pill-sized, camera that can be swallowed.

Bleeding and ulcers are common lesions associated with both diseases, UC and CD [8].
Color information is the primary indicator used by specialists to distinguish between
mucosal lesions and the surrounding normal or healthy mucosa. Bleeding shows up as
dark red areas whereas ulcers appear as white spots on the gut wall, both distributed with
diverse shapes and sizes. Currently, experts review manually colonoscopy or WCE videos
consisting of 50 k to 120 k frames [9]. This process is a difficult and time-consuming task
leading to only considering the characteristics of the most severe lesions.

Automated lesion detection offers significant benefits by improving the severity as-
sessment reproducibility and decreasing the physicians’ burden. Various methods have
been proposed to automatically detect bleeding and ulcer lesions, primarily tackling
binary classification and segmentation challenges. Some of these methods use color
features [10–14], while others combine them with texture information to enhance detection
performance [15–17]. Recent studies have shown a growing interest in artificial intelligence
(AI) offering a universally applicable approach to clinical diagnosis. Specifically, deep
learning methods show promise in detecting and localizing endoscopic lesions [9,18].

The presented work focuses on detecting bleeding and ulcers from colonoscopy videos
obtained in the context of UC disease during an ongoing collaboration with Bichat-Beaujon
Hospital in Paris, France. Although the lesions’ appearance is similar between UC and
CD, existing methods are biased to their training set, i.e., to well-delineated video-capsule
images ([19–23]) rather than complete colonoscopy videos obtained on the local instruments.
Consequently, we built a custom dataset of colonoscopy videos of real patients, called Vatic
specific to this collaboration. To streamline the annotation process, we propose a user
interface inspired by Vatic software (https://github.com/cvondrick/vatic, accessed on
15 November 2023) [24] allowing the doctors to delineate lesions by bounding boxes instead
of precise boundaries.

Classical machine learning or Convolutional Neural Network (CNN) [9,18] approaches
heavily depend on the quality of the training dataset affecting the accuracy of the detector.
To address potential shortcomings, we opted for linear models due to their simplicity and
ability to provide interpretable results. Following [13,14,19,25,26], we used linear models
in convenient color spaces for bleeding and ulcer detection. We also proposed an efficient
sampling scheme to explore the set of linear models and reject trivial classifiers, i.e., models
that classify all the pixels into the same class. Given the imprecise delimitation of bleeding
and ulcer lesions by bounding boxes, we take into account the annotation errors in comput-
ing detector sensitivity. Specifically, mislabeled pixels within the bounding box annotations
were considered correctly identified abnormal pixels rather than false negatives.

In this paper, we have three main contributions:

- We first propose a sampling strategy to effectively explore the set of linear models by
only considering nontrivial models. This will be done in Section 3.2.3.

- Then, we introduce performance criteria that can deal with bounding box annotation
problems. In Section 3.2.4, we show its effectiveness with the help of some examples.

- Finally, we study the variability of the detectors across the patients using small subsets
of endoscopic images. Our study shows that the models used are not universal and
personalized models should be developed for each patient. We illustrate the results
in Section 5.

The rest of the paper is organized as follows: in Section 2, we present an overview of
the current state-of-the-art methods proposed for UC lesions detection. Then, in Section 3,
we describe our proposed sampling scheme to explore the set of linear models. Next, we
introduce performance criteria that can deal with bounding box annotation problems. In
Section 4, we discuss the results of our proposed approach. Finally, in Section 5 we study
the variability of the models among the patients. Some limitations of the study will be
provided in Section 6.

https://github.com/cvondrick/vatic
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2. Related Work
2.1. Automatic Detection of Bleeding

Most of the current methods perform classification in a color space with maximum
contrast between bleeding and nonbleeding regions. As bleeding pixels are red, it is natural
to consider detection and classification in the RGB colorspace, or direct transformations of
RGB [12,13,25,27–29].

In 2011, Fu et al. [27] trained a 3-layer perceptron on the ratios (R/G, R/B, R/G + B + R)
for each pixel and applied morphological erosion. Later in 2014, the authors extended
their approach by working with superpixel regions, and a Support-Vector Machine (SVM)
classifier trained on 60,000 pixels [12]. In the same year, Ghosh et al. [25] applied a K-Nearest
Neighbors (KNN) classifier to statistical parameters extracted from the R/G histogram. The
authors reported that the combination of only three parameters, namely {median, variance,
kurtosis} was sufficient to identify bleeding frames with an accuracy of 98.5%. This work
was later extended by working on 7 pixels × 7 pixels blocks [13].

Some bleeding detection algorithms work on the histogram bin levels instead of the
pixel values [25,28]. Kundu et al. [28] computed Regions of Interest (ROIs) defined by
the color ratios r/b ≥ m and r/g ≥ n computed in the normalized RGB color space,
denoted by rgb and applied a KNN classifier to 64 histogram bins in the green channel.
The parameters m = 2.8 and n = 2 are chosen according to the maximal accuracy of pixel
detection compared to the ground truth provided for 65 endoscopic images. In [29], the
authors combined the RGB values into a single number with bit concatenation and applied
an SVM classifier on the bins of the resulting histogram. In [19], the authors used a similar
technique before PCA dimension reduction and classification with KNN.

Other color spaces were also considered in [11,30,31]. In [30], the authors used an SVM
classifier with statistical features computed in Luma In-phase Quadrature (YIQ) color space.
Deeba et al. [11] merged two SVM classifiers built from statistical features extracted from
RGB and Hue-Saturation-Value (HSV) color histograms, respectively. In [31], the authors
trained a three-layer probabilistic neural network on statistical features from RGB and
Hue-Saturation-Intensity (HSI) pixel intensities. Recently, Pogorelov et al. [15] proposed to
consider image texture combined with color information. They used RGB color features
and 22 texture parameters extracted from the grey-level co-occurrence matrix. The authors
tested many classification methods and found that the SVM classifier performed best.

2.2. Automatic Detection of Ulcers

Ulcers show as pinkish white, which explains why most methods focus on detecting
bright pixels [14,32]. In [32], the authors trained an SVM classifier on statistical features
in RGB and CIElab (Lab) spaces and concluded that (L, a, G) channels give the best
detection performance. The authors later extended their work in [14] with more col-
orspaces (RGB, HSV, YCbCr, CMYK, YUV, CIElab, XYZ) and found that (Cr,Y,B) is the best
features combination.

Ulcers also appear as rough surfaces which can be detected based on texture fea-
tures [16,17,26]. In [17], the authors proposed to combine color (S from HSV and M from
CMYK) and Leung-Malik filters [33] with an SVM classifier. In [26], the authors applied an
SVM classifier to statistical moments of the Contourlet transform and Log Gabor filter in
HSV and YCbCr color spaces. In Yeh et al. [16], the textural features were obtained from the
Grey Level Co-occurrence Matrix. Different combinations of the number of features, feature
selection algorithm, and classification algorithm were compared, and the best combination
was obtained with decision trees, with 40 features selected by the ReliefF method.

3. Materials and Method
3.1. Colonoscopy Videos Dataset

From Vatic dataset [34], we used 5 videos (768 pixels × 576 pixels) containing both
bleeding (1629 frames) and ulcer (1760 frames) annotations for training, for a total of
4349 frames (see Table 1). Each video was annotated by gastroenterologists with the help
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of the Vatic software [24]. For further information on the annotation process, please refer
to [34].

Table 1. Number of frames used for training: number of frames with bleeding annotations, number
of frames with ulcer annotations, and total number in the video.

Bleeding Frames Ulcer Frames Total Number of Frames

Video 1 671 554 812
Video 2 224 378 378
Video 3 254 86 1116
Video 4 140 204 910
Video 5 340 538 1133

Total 1629 1760 4349

3.2. Proposed Method

Our proposed method involves several steps outlined in Figure 1. First of all, we
remove all black pixels surrounding the informative pixels. Next, we compute the color
histograms of healthy pixels. We thus propose an effective sampling method to explore
the linear models. We also adjust the computation of the sensitivity criteria to encounter
mislabeled pixels occurring during the annotation process using bounding boxes. Finally,
we optimize the performance of the detectors utilizing the Youden index [35]. In what
follows, we detail the process by showing some examples.
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Figure 1. Flowchart of the proposed method.

3.2.1. Image Preprocessing

Due to the camera’s field of view, only an octagonal portion of the image is actually
recorded in the endoscopic video, and the outer portions are set to black (see Figure 2).
Additionally, some embedded textual information should be removed prior to bleeding or
ulcer detection. Therefore, we detect pixels with small grey-level variance and grow the
detected region with morphological dilation (5 × 5 square structuring element). Addition-
ally, some unannotated areas are bright because of light shining on wet spots (specular
reflection), so we remove the pixels 1{Y>c}, with c = 150 chosen by visual inspection.

Figure 2. Example of an endoscopic frame (on the left) and corresponding binary mask (on the right)
used later to remove pixels that do not correspond to the colon wall during the training stage of
the detectors.
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recorded in the endoscopic video, and the outer portions are set to black (see Figure 2).
Additionally, some embedded textual information should be removed prior to bleeding or
ulcer detection. Therefore, we detect pixels with small grey-level variance and grow the
detected region with morphological dilation (5 × 5 square structuring element). Addition-
ally, some unannotated areas are bright because of light shining on wet spots (specular
reflection), so we remove the pixels 1{Y>c}, with c = 150 chosen by visual inspection.

Figure 2. Example of an endoscopic frame (on the left) and corresponding binary mask (on the right)
used later to remove pixels that do not correspond to the colon wall during the training stage of
the detectors.

3.2.2. Definition of Bleeding and Ulcer Detectors

We previously pointed out that in colonoscopy videos, bleeding shows up as red
patches and ulcers as pinkish-white patches on the gut wall (Figure 3). As previous
authors [13,19,25] have shown that the R/G ratio is relevant (it leads to 11%
overlap in [13]) to detect bleeding, we consider linear classifiers in the (R,G) subspace,
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i.e., {aR + b ≥ G for (a, b) ∈ R2}. Similarly, following [14,26], we consider linear classifiers
in the (Cr,Y) subspace obtained using Cr and Y channels from YCbCr and CMYK color
spaces respectively, i.e., {aCr + b ≤ Y for (a, b) ∈ R2} to detect ulcer lesions. This corre-
sponds to finding a straight separation line between the histograms of normal and lesion
pixels. Let’s take the example of endoscopic figures in Figure 3. The best bleeding detector
should lead to a minimum overlap ratio between normal (Figure 3c) and bleeding pixels
(Figure 3e) in the (R, G) color space. On the other hand, the best ulcer detector should lead
to a minimum overlap ratio between normal (Figure 3d) and ulcer pixels (Figure 3f) within
the (Cr, Y) color space.

(a) Annotated frame (b) Annotated frame
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Figure 3. (a,b) Annotated frames with bleeding (red bounding box) and ulcers (orange bounding
box). Corresponding histograms of the normal pixels i.e., all pixels out of the bounding boxes (c,d),
bleeding pixels (e), and ulcer pixels (f).

3.2.3. Proposed Sampling Strategy

The model search process consists in exploring all the linear models of the color spaces
(R, G) and (Cr, Y) for bleeding and ulcer detection respectively. In Figure 4, we give the
histograms of normal pixels of the training dataset (Table 1). For each histogram, we plot
a set of 100 random linear models. We can remark that classifiers that do not “cross” the
histograms, herein highlighted in orange color, are trivial because they give the same label
to all pixels. In particular, no normal pixel will be correctly identified by the detector and
consequently, the true negative rate of this detector will be zero. Therefore, we decide
to eliminate these models and restrict the optimization space to the set of random linear
classifiers that go through the interior of the histogram. Additionally, if a line goes through
the interior, it must cross the boundary of the set. We can avoid sampling redundant linear
classifiers by focusing on the contour of the histogram instead of its interior. To sample the
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set of lines, we will thus draw two points in the contour of the RG and CrY histograms and
consider the associated linear classifiers.
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Figure 4. Histograms of normal pixels for the training dataset (cf. Table 1) in the RG space (on the
left) and CrY space (on the right). Trivial models are represented in orange color.

3.2.4. Proposed Performance Metric of the Detectors

In textbook statistics, the specificity ∑ TN
∑ TN+∑ FP or true negative (TN) rate measures

the proportion of normal pixels correctly identified as such, and sensitivity ∑ TP
∑ TP+∑ FN or

true positive (TP) rate measures the correctness of abnormal pixels detection. However,
evaluating specificity and sensitivity hinges on reliable pixel annotations by gastroenterolo-
gists. Unfortunately, as previously discussed, the gastroenterologists’ annotations in our
dataset contain many errors because the regions of interest are provided as bounding boxes,
whereas bleeding and ulcers have more complex shapes (see Figure 3). Direct observation
also suggests that many dark red pixels were not labeled as bleeding, and white pixels were
not labeled as ulcers. Consequently, we expect over-inflated levels of FP and FN based on
the dataset annotations. This will hide the correct classifier, and decrease the confidence in
our results.

To overcome these problems, we modify the definition of sensitivity to take the labeling
problems into account. The pixels inside an annotation and not detected as such should
not count as false negatives when assessing the algorithm’s performance. Consequently,
we count all pixels belonging to an annotation as TP, as soon as one pixel is detected inside.
As pixels inside an annotation are either true positives or false negatives, this corresponds
to counting “detected annotations” instead of “detected pixels”. More precisely, we count
in terms of “area”, and define the sensitivity criteria as follows:

SensitivityA =
Area of detected annotations

Total area of annotations
. (1)

In comparison with the standard sensitivity criteria, SensitivityA may provide a com-
promise between bounding box annotations and the detector’s ability to correctly identify
them. Specificity is not modified, as we expect missing annotations to represent a small
number of pixels relative to nonannotated pixels ∑ TN + ∑ FP.

Finally, the detector performance is measured in a sensitivity vs. (1-specificity) plot
or Receiver Operating Characteristic (ROC) space. As we are only interested in single
detectors, each detector’s performance is represented by a point. The ideal classifier
corresponds to the upper left corner. Other good models are a compromise between
sensitivity and specificity and are close to (0,1). We select the classifier that maximizes the
Youden index [35]:

m̂ = argmax
m

dROC({y = x}, m), (2)

= argmax
m

(
SensitivityA + Specificity(m)− 1

)
. (3)
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4. Results
4.1. Computation of the Proportion of Trivial Models

To study the amount of these trivial models, we ran a series of 100 trials, each involving
100 randomly generated lines. In Figure 5, we show the total amount of "trivial” models
across 100 random tests. The results show that when sampling linear models in (R,G), also
denoted by RG, color space, an average of 9% of these models is “trivial” with a standard
deviation (std) of around 3%. In contrast, for the (Cr,Y), also denoted by CrY, space this
amount increases significantly to achieve an average of 25% with a std of about 4%. When
sampling the RG space using 10,000 random models, among them 9.41% are trivial whereas
this number increases to 25.62% in the case of sampling CrY space. Since the number of
trivial models remains almost the same when testing more than one hundred models, we
decided to restrict the search for lesion detectors by testing only one hundred random
linear models.
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Figure 5. We compute the percentage of trivial models, i.e. those non-crossing the histogram and
consequently having a zero true positive or a zero true negative ratio for 100 random trials each
of 100 lines for every histogram given in Figure 4. In black dots, we denote the mean values: for
RG space, we find that around 9% of tested models fall outside the histogram and consequently are
considered trivial while for CrY space, we find the average proportion of tested models identified as
trivial is 25%.
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consequently having a zero true positive or a zero true negative ratio for 100 random trials each
of 100 lines for every histogram given in Figure 4. In black dots, we denote the mean values: for
RG space, we find that around 9% of tested models fall outside the histogram and consequently are
considered trivial while for CrY space, we find the average proportion of tested models identified as
trivial is 25%.

4.2. SensitivityA Is Better Than Standard Sensitivity in the Context of Bounding Box Annotations

In Figure 6, we illustrate the results of bleeding detection (in red) using a chosen
random linear model, G ≤ 0.3R + 1 and ulcer detection (in orange) using the linear model
Y ≥ 0.5Cr + 8. We report the performance metrics of the models in terms of TP, TN, FP,
and FN computed on the pixel level in Table 2. It can be seen that the model can correctly
identify most of the annotated pixels (see the last row). However, as gastroenterologist
annotations are usually wider than the actual lesion, some annotated pixels are not detected
by our algorithm and therefore the false negative ratio is very high resulting in decreased
sensitivity values (cf. Table 2).
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Image A Image B Image C Image D

Figure 6. Images (A–D) are endoscopic images extracted from Vatic dataset. The first row shows
corresponding annotations for bleeding (red boxes) and ulcers (orange boxes). The second row
represents the mask highlighting the ground truth obtained by bounding box annotations (in gray).
The third row shows the results of bleeding detection (in red) using the linear model G ≤ 0.3R+ 1 and
ulcer detection (in orange) using the linear model Y ≥ 0.5Cr + 8. The last row shows the intersection
between the models’ detection and the ground truth.

Table 2. Performance results for endoscopic images given in Figure 6. TPA represents the number of
pixels within the detected annotations and PA denotes the total number of pixels of all the annotations
presented in the frame.

Image Identity TP TN FP FN TPA PA Spec. 1 Sens. 2 Sens.A

Image A 23,229 234,006 2161 6942 93,936 93,936 99.08% 25.76% 100%
Image B 11,181 263,133 16,183 35,841 47,022 47,022 94.81% 23.78% 100%
Image C 36,692 238,390 18,724 10,619 46,318 50,616 92.72% 77.55% 91.51%
Image D 8556 192,292 54,952 30,270 36,041 38,982 77.77% 22.04% 92.46%

1 Spec. is an abbreviation of specificity, 2 Sens. is an abbreviation of sensitivity.

4.3. Best Lesions Detectors

As explained previously in Section 4.1, we take a random sample of size 100 from the
set of linear models that cross the contour of the histogram of normal pixels. Figure 7 shows
the sampled models in histogram space and in ROC space. Table 3 shows the performance
of the three best linear models in terms of specificity, SensitivityA and standard sensitivity.

As shown in Figure 7, the models achieve good performance results in ROC space,
i.e., specificity and SensitivityA. Figure 8 (in the 2nd and 4th row) shows that there is a
good visual agreement between the colors of detected lesions and the expert annotations.
The best linear models can focus on the relevant areas rather than the entire annotation,
and select candidate ROIs that were not annotated. As expected, the detected areas do not



Gastrointest. Disord. 2024, 6 300

overlap “fully” with the annotations, which is the reason for the low standard sensitivity
levels. Based on the 3 best models, we estimate that around 90% of bleeding annotations
are incorrect, and 80% of ulcer annotations (see Table 3). As a result, training with the
standard sensitivity would provide nonsensical models, whereas we can achieve good
performance with SensitivityA.
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Figure 7. Blue lines represent the 100 linear classifiers that are sampled by drawing two points from
the contour of the (R,G) histogram of normal pixels (a) and (Cr,Y) histogram (b). The performance of
the models for bleeding (c) and ulcer (d) is shown in ROC space by blue dots. The three best models
are denoted by black cross markers.

Table 3. Performance of the best linear models for bleeding and ulcer detection. Good performance is
obtained based on SensitivityA, but standard sensitivity is low due to annotation errors.

Best Models for Bleeding Specificity (%) SensitivityA (%) Sensitivity (%)

G ≤ 0.30R − 1.03 92.29 ± 0.44 88.59 ± 2.98 10.01 ± 0.61
G ≤ 0.26R − 4.84 97.75 ± 0.13 69.95 ± 1.50 4.12 ± 0.21

G ≤ −0.07R + 31.59 86.44 ± 0.39 75.59 ± 1.13 13.56 ± 0.63

Best Models for Ulcers Specificity (%) SensitivityA (%) Sensitivity (%)

Y ≥ 0.70Cr − 42.80 58.22 ± 0.39 81.68 ± 4.17 38.59 ± 0.98
Y ≥ 0.51Cr + 8.82 81.72 ± 0.46 56.06 ± 0.67 13.93 ± 0.40
Y ≥ 0.50Cr + 6.32 78.26 ± 0.50 59.24 ± 1.13 17.58 ± 0.33

In Table 4, we summarize the results of our models compared to two methods found
in the literature. As we are interested in detecting annotations, we apply two simultaneous
color ratios as done in [28] and find the optimal parameters m̂ = 5.95 and n̂ = 3.75 to
detect bleeding ROIs. We don’t further apply the KNN algorithm as the authors have done.
On the other hand, for ulcer detection, an SVM model with a Radial basis function (RBF)
kernel [36] and 10-fold cross-validation was trained on our dataset using two color bands
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Cr and Y as done in [14]. Using a grid search within the values range (−8, 7, 6, . . . , 6, 7, 8),
we find that the optimal parameters are C = 0.79 in terms of regularization constant and
γ = 3.03 in terms of kernel hyper-parameter. We then computed the detection performance
for both resulted models on our training dataset (cf. Table 1) using the standard specificity
and the proposed SensitivityA (cf. Section 3.2.4). Reported results show that linear models
exhibit better compromise between specificity and SensitivityA compared with [14,28]. The
SVM model fails on abnormality detection, here the ulcers found in Vatic dataset. We thus
tried to make data augmentation on the ulcer pixels to maintain a balance in the training
dataset, but SensitivityA remained low.

Table 4. Performance of the best lesions detectors compared to the literature. Significant results are
highlighted in bold.

Models Specificity (%) SensitivityA (%)

Proposed bleeding detector 92.29 ± 0.44 88.59 ± 2.98
Linear model-Kundu [28] 94.82 ± 0.01 85.23 ± 0.02
Proposed ulcer detector 58.22 ± 0.39 81.68 ± 4.17

SVM algorithm-Suman [14] 99.84 ± 0.00 21.25 ± 2.27

In Figure 8, we present some annotated frames with the corresponding detection using
our models as well as the models computed based on [14,28]. We find that our best linear
models show better compromise between the detection of healthy pixels and lesions pixels
than the other methods using similar color features.

Figure 8. Annotated frames from Vatic dataset (first column), bleeding detection with our best
linear model (second column), bleeding detection by two simultaneous linear models [28] (third
column), ulcer detection with our best linear model (fourth column), ulcer detection using SVM [14]
(last column).

5. Discussion

As discussed in Section 2.1, the RGB color space, and especially the Red and Green
channels, have previously been used successfully for bleeding detection, whereas the
YCbCr color space was used for ulcer detection. The information present in the pixel color
is not altered by a change of color space, but a suitable color space presents this information
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more straightforwardly, and dimension reduction methods such as PCA can automatically
perform this. In this manuscript, choosing the right colorspace based on the previous
literature (see [11,15,20,29] for bleeding and [14,17,26] for ulcers) enables us to work with
2D linear models instead of 3D models.

The use of bounding box annotations in our dataset (see Figure 3) entails a consider-
able quantity of ground truth errors because annotations do not match the arbitrary and
complicated shapes of the lesions. This is a major difficulty in our context, regardless of
the type of model or machine-learning approach. To ease the annotation burden, semi-
automatic region selection algorithms have been proposed. In the work of Sainju et al. [37],
the authors use the growing region algorithm [38] to create homogeneous bleeding regions
from consecutive capsule endoscopy frames. A seed is manually selected by the user
and then enlarged by adding 8-connected neighbors, and the new centroid is taken as the
seed for the following frame. This method extracts only one region per lesion, which can
unbalance the normal and bleeding regions in the training dataset. In addition, it does not
perform well in the absence of lesions due to forward and backward camera movements or
in patients with mild forms of UC. In [11], the authors use a similar method to extract the
bleeding regions but keep only a single frame rather than the complete sequence.

In this paper, we propose to adjust the performance criterion of lesion detection rather
than automatically annotate the dataset. We chose to work with linear models instead of
more sophisticated approaches in order to provide results that are easy to interpret and
use in clinical practice. In addition, the good performance obtained in this and previous
studies [11,13,14,17,25,26] suggests that clinical validation of the approach is the critical
step, as opposed to more sophisticated approaches such as SVM or neural networks.

To evaluate the validity of our results, we did not perform cross-validation, but show
the results of computing specificity and SensitivityA on a random subset of frames in each
video in Figure 9. Cross-validation selects random subsets and finds the best model for each
subset. Consequently, it selects different models at each run and evaluates the performance
of the optimization algorithm. For clinical practice, we are interested in the performance of
specific models, their reliability, and their generalization to new patients. Figure 9 shows
the performance of the 3 best models for the patients in the training dataset (left) and 5 new
patients (right). For each patient, we estimated specificity and SensitivityA on 20 random
subsets of a video, each containing 10% of the frames. Only three points are drawn, but the
size of the ellipses is computed from the standard deviations of the 20 subsets.

Figure 9 shows that specificity and SensitivityA are estimated precisely, even on a
fraction of the frames. This suggests that computational time can be reduced by using
only a small subset of the video. However, the performance varies a lot between patients,
even inside the training set. This means that the selected models are not universal and
that specific models should be trained for each patient. This observation was not reported
in previous works because the datasets used contain frames that are not organized “by
patient”. Consequently, methodological advances are necessary to make colonoscopy
videos comparable, in order to apply trained models to new patients.

The application of AI in the detection of endoscopic lesions from colonoscopy videos
marks a significant advancement in medical technology. With the capability to analyze vast
amounts of visual data swiftly and accurately, AI algorithms contribute to the early identifi-
cation of lesions, such as polyps or abnormalities, during colonoscopy procedures [9,18]. By
leveraging machine learning and computer vision techniques, these AI systems can discern
subtle changes in tissue patterns, helping clinicians in the timely diagnosis and intervention
for patients. The integration of AI in endoscopic lesion detection not only enhances the
efficiency of medical practitioners but also holds promise in improving overall patient
outcomes by facilitating early detection and treatment of potentially concerning conditions.
This technological synergy between AI and endoscopy stands poised to revolutionize the
landscape of gastrointestinal healthcare.
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Figure 9. Performance of the 3 best linear models depending on the patient, 5 training videos (left),
and 5 test patients (right).

6. Limitations of the Study

This study has several limitations. The first is the imprecision of lesion delineation
using bounding boxes. Although the annotation process [24,34] employed in this study al-
lowed an easy and fast ground truth construction, it does not permit accurate identification
of all the pixels within the lesion contours. Several solutions could be further investigated
on the bounding boxes: application of an automatic pixel-level annotation algorithm to en-
counter more precisely the lesion areas [11,37], use of semantic segmentation process [39,40]
or application of a partial differential equation, i.e., non-linear diffusion types such as Malik
and Perona equation to enhance contour identification and subsequently the abnormal
pixels [41,42]. Another solution would be to use only an internal part of the available
annotations. These areas of the image contain almost all the pixels of the lesion which may
lead to better ground truth identification and consequently a performance enhancement of
the detectors. The second limitation is the lack of a video processing stage. Given that the
same lesions can be seen several times in a sequence of the colonoscopy video images [34],
a processing step aimed at excluding redundancy in these images could contribute to
more accurate identification of normal and abnormal pixels. The third limitation is the
hand-crafted features employed in this study to identify the lesions in the colonoscopy
videos. Investigation of more parameters and complex models of type deep learning could
bring a potential improvement to the study. The visual interpretation of gastroenterologists
during a colonoscopy examination is often affected by several artifacts such as motion,
specularities, low contrast, and bubbles [43]. An appropriate video processing is desirable
to eliminate such artifacts. Finally, although a large pool of videos was reviewed for Vatic
dataset, the number of colonoscopy videos included in the study was small which may
have restricted the performance of the proposed method. This could be overcome by
considering a larger dataset.

7. Conclusions

This paper studies the automatic detection of bleeding and ulcers in colonoscopy
videos for UC severity assessment based on a training dataset containing many annotation
errors. Using bounding boxes, the annotation of bleeding and ulcers erroneously includes
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many healthy pixels. Thus, the ground truth accounts for many errors. We decided to
deal with the annotation problem rather than proposing a sophisticated machine learning
algorithm to improve detection performance as done by current studies. As in previous
studies, we explore the set of linear classifiers and propose an efficient optimization method
based on sampling the contour of the color histogram. The proposed strategy allows us
to eliminate up to 25% trivial models which leads to focusing only on interesting models
i.e., those giving nonzero true negative and true positive ratios. By adjusting the definition
of sensitivity from pixel-level to annotation level, we can circumvent the effect of the
annotation errors using bounding boxes, and select good pixel-level lesion detectors. The
best linear models obtain 92.29 ± 0.443% specificity/88.59 ± 2.984% sensitivity for bleeding
detection and 58.22 ± 0.393% specificity/81.68 ± 4.173% sensitivity for ulcer detection.
Our results show better compromise between performance assessment in comparison with
studies using similar models features. We also demonstrate that our models show reliable
performance estimates from random subsets of the dataset. Our analysis shows that the
best detectors achieve good performance, however, we notice that the performance results
vary significantly from patient to patient, highlighting the need for a sort of normalization
of the images from different patients for any method to work properly.
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Abbreviations
The following abbreviations are used in this manuscript:

IBD Inflammatory bowel disease
CD Crohn’s disease
UC Ulcerative Colitis
WCE Wireless Capsule Endoscopy
ROI Region Of Interest
CNN Convolutional Neural Network
ROC Receiver Operating Characteristic space
RGB (Red, Green, Blue) color space
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SVM Directory of open access journals
KNN K-Nearest Neighbors
YIQ Luma In-phase Quadrature color space
HSV Hue-Saturation-Value color space
HSI Hue-Saturation-Intensity
CIElab, CMYK, YUV, CIElab, XYZ diverse color spaces
TN True Negative
TP True Positive
FN False Negative
FP False Positive
TPA Total number of pixels within the detected annotations
PA Total number of pixels of all the annotations
RBF Radial Basis Function
CrY (Cr,Y) color space
RG (R,G) color space
AI Artificial Intelligence
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