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Abstract: This paper derives an analytical model of a circular beam with a T-shaped cross section
for use in the high-frequency range, defined here as approximately 1 to 50 kHz. The T-shaped cross
section is composed of an outer web and an inner flange. The web in-plane motion is modeled
with two-dimensional elasticity equations of motion, and the left portion and right portion of the
flange are modeled separately with Timoshenko shell equations. The differential equations are solved
with unknown wave propagation coefficients multiplied by Bessel and exponential spatial domain
functions. These are inserted into constraint and equilibrium equations at the intersection of the
web and flange and into boundary conditions at the edges of the system. Two separate cases are
formulated: structural axisymmetric motion and structural non-axisymmetric motion and these
results are added together for the total solution. The axisymmetric case produces 14 linear algebraic
equations and the non-axisymmetric case produces 24 linear algebraic equations. These are solved to
yield the wave propagation coefficients, and this gives a corresponding solution to the displacement
field in the radial and tangential directions. The dynamics of the longitudinal direction are discussed
but are not solved in this paper. An example problem is formulated and compared to solutions from
fully elastic finite element modeling. It is shown that the accurate frequency range of this new model
compares very favorably to finite element analysis up to 47 kHz. This new analytical model is about
four magnitudes faster in computation time than the corresponding finite element models.

Keywords: curved beam; T section; ring vibrations; high frequency response

1. Introduction

The work derived herein is a direct extension of a previous effort [1,2], that modeled the dynamics
of a circular T-beam. These models accurately captured the physics of the beam up to about 8 kilohertz
(kHz) for the example problem studied. The previous beam model became inaccurate above 8 kHz
because of the limitations of the model’s flange component, which was a three-dimensional Donnell [3]
shell formulation. The assumptions of the Donnell shell formulation typically produce model results
that are too stiff, especially as frequency increases. In the new model derived here, the Donnell
shell formulation is replaced with a Timoshenko-type shell formulation [4], which includes shear
deformation and rotary inertia terms, resulting in a higher-frequency range of analysis. This work
develops an analytical model of a circular T-shaped beam and extends the frequency range of this
system compared to previous modeling efforts. It is primarily intended for use in models that have
reinforced cylindrical shells that need improved accuracy at higher frequencies. These typically consist
of: (1) target strength models of reinforced cylindrical structures which are applicable to active sonar
target discrimination, and/or (2) hull dynamic response models which are applicable to flank array
self-noise performance.

Beams are structural elements that are designed to reinforce objects against external forces.
In general, they are designed to resist loads that are normal to their neutral axis. Most T-shaped beams
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consist of two parts, namely, the web which has one end attached to the object and the flange which is
attached to the other end of the web. Bernoulli and Euler [5] derived the first accurate beam model
in Cartesian coordinates and this model was extended to cylindrical coordinates. This theory uses
the assumption that all sections rotate orthogonal to the neutral axis of the beam. Timoshenko [6]
revised this work so that the rotation angle of the neutral axis of the beam was a function of the polar
inertia and shear force. Higher order displacement functions have been added to beam theory, notably
by Bickford [7] who used a third-order polynomial through the thickness of the beam to model the
in-plane displacement field and Karama, Afaq and Mistou [8] who used an exponential function to
model the shear distribution in the beam. These higher order models, while accurate at somewhat
higher frequencies than the Timoshenko beam model, are still lumped parameter models.

Ambati [9] analyzed and discussed the in-plane response of annular rings using elasticity theory.
Kirkhope [10] derived the stiffness and inertia matrices for thick circular rings using an energy method.
Hawkings [11] developed a theory of inextensional vibrations of a circular ring where the principal
axes of inertia of the cross section did not lie in the ring plane. Kirkhope, Bell and Olmstead [12]
analyzed the vibration of closed uniform rings with unsymmetrical cross sections. Bhimaraddi [13]
developed a shear deformable theory for curved beams of constant curvature by assuming a parabolic
variation for the shear strains. Lin and Lee [14] studied curved Timoshenko beams with generalized
boundary conditions. The preceding references are either elastic response for a rectangular beam or
lumped inertial and stiffness response for a beam of varying cross section.

A large number of papers have been written on the scattered pressure field of ribbed cylinders
when subjected to plane wave excitation. Konovalyuk [15] investigated the reflection of sound from a
plate with arbitrarily situated ribs. Graff, Klein and Kouyoumjian [16] analyzed mass loading on a
stiffened rib. Woolley also investigated mass loading of a single rib [17] and a finite number of ribs [18]
with an emphasis on the back-scattered field. Marcus and Sarkissian [19] reported on the rib resonances
features in the back-scattered field of a finite length shell. Tran-Van-Nhieu [20] researched the problem
with an emphasis on Bloch-Floquet wave scattering. These papers [16-20] have generally modeled
the ribs as having lumped parameter behavior. None of them incorporate the spatial dimensions of a
flange attached to a web.

In this new model, the web and flange of the T-beam are modeled independently with
two-dimensional elasticity equations accounting for the in-plane web motion and Timoshenko shell
equations that model the three-dimensional response of the flange. For the axisymmetric model, the
connection of the web and flange are modeled using three equilibrium equations and four constraint
equations and the free and forced edges of the system are modeled with seven additional force and
moment equations. For the non-axisymmetric model, the connection of the web and flange are modeled
using five equilibrium equations and seven constraint equations and the free and forced edges of the
system are modeled with twelve additional force and moment equations. Modeling the beam in this
manner allows the web and flange equations of motion to incorporate higher-order dynamic effects
and this makes the overall model much more accurate at higher frequencies.

2. Methods

The system under consideration is a circular closed beam, commonly called a ring, with a T-shaped
cross section. The outer narrow component is called the web and the inner wide component is called
the flange. The structure is excited with continuous spatial and time harmonic excitation applied
to the outer edge of the web. A schematic of this system showing the dimensions and the web
coordinate system is shown in Figure 1. The web coordinate system is a function of the independent
variables radial direction, angular direction and time. The model of the web has no spatial extent in the
longitudinal direction. The flange coordinate system has the same orientation as the web coordinate
system; however, it is a function of the independent variables angular direction, longitudinal direction,
and time. The model of the flange has no spatial extent in the radial direction. The beam is symmetric
about the mid plane of the web.
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Figure 1. Circular beam with a T-shaped cross section showing dimensions and web coordinate system.

The problem is analytically modeled using the two-dimensional plane stress elastic equations for
in-plane motions of the web and Timoshenko type shell equations for three-dimensional motion of
the flange. The model can calculate motion in the radial and tangential dimensions when the beam is
subjected to forcing in the radial and tangential directions. The model uses the following assumptions:
(1) the excitation is at a fixed frequency and fixed circumferential node number, (2) the angle at the
intersection of the web and the flange is always a right angle, (3) the material properties of the web
and flange are identical, and (4) the particle motion is linear. The model is developed by analyzing
the system as three separate components: the web, the left part of the flange, and the right part of the
flange. These model components are then combined using equilibrium and continuity equations at the
intersection of the web and flange and boundary conditions at the edges. The longitudinal motion of
the web is not calculated, and this is discussed in detail later in the paper.

The equations modeling the radial and tangential (in-plane) motion of the web begin with the
Navier—Cauchy [21] fully elastic equations of motion. These are reduced to two plane stress equations
of motion, the first one is in the radial direction and is written as

E azww(r, 0,t)  10wy(r,6,t) 1 E 1 azww(r, 9, 1)

e v R A UAA2) I YC wraers = ST o
E(3—v) 1 9vy(r,6,t) N E  10%4(r,0,t)  0*wy(r,6,t)
2(1—v2)r2 90 2(1—v)r 0ro0 Y

and the second one is in the tangential direction and is written as
E 1 d%vy(r,6,t) E 0%0,(r,0,t)  10vy(r,60,t) 1
— - - t
1—v2r2 962 2(1+v) or? *y or r2 vu(r,6,) | + )

E(3—v) 1 dwy(r,0,t) n E lazww(r, 0,t)  9%vy(r,6,t)
2(1—v2)r2 9 2(1—v)r 9ro0 o

where wy(r,0,t) is the web radial displacement, v,(r,6,t) is the web tangential displacement, E is
Young’s modulus, v is Poisson’s ratio, p is density, r is radius, 0 is angle, ¢ is time and the subscript w
denotes the web.

The equations modeling the three-dimensional motion of the flange are Timoshenko-type shell
equations [4] that have five degrees of freedom, namely longitudinal displacement at the shell middle
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surface, longitudinal rotation, tangential displacement at the shell middle surface, tangential rotation,
and radial displacement. The equation of motion in the longitudinal direction at the middle surface of

the shell is 2 ( ) 2 ( ) 2 ( )
0“ur(0,z,t Gh 0“ur(0,z,t 0“ur(0,z,t
hller GO AN il hller RGO AN Reles A id
B (112 ) (1 " a 2) 262 ph—p—
D\ .(0,zt) (GI\*p.(0,zt) [pl 32¢Z(9,Z,t)+ 3)
a 072 a3 062 a ot2
[E,,(l +v)} ?vs(6,2,1) N (1@) dwp(6,z,t)

2a 9206 a 0z o

the equation of motion of the angle of rotation of a normal to the middle surface in the r-z cylinder
plane is

(D> 82uf(9,z,t) B (G1> a2uf(9,z,t) B (PI) a2uf(9,z,t)+

a 0z2 ad 002 a ot2
a ¥2(0,2,1) GI\ 0%9.(0,z,t) 0%y, (0,z,t)
9 ¥\ =1t kel Bl ¢ AATA N S AN 4
0 +| 22 o0 kGhip,(0,z,t) — pI T R 4)
D(1+0)]%¢e(0,2,t) . ows(6,zt) ,
2a dzdf 0z

the equation of motion in the tangential direction at the middle surface of the shell is

Ey(1+v) azuf(Q,z,t) N Ghazvf((),z,t) N E, + azvf(G z, t)
2a 0200 022 a2 gt 062
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the equation of motion of the angle of rotation of a normal to the middle surface in the -0 cylinder
plane is
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In Equations (3) to (7), ug(6,z,t) is the mid-plane shell displacement in the longitudinal direction,
1,(0,z,t) is the shell rotation in the longitudinal direction, vf(e,z,t) is the mid-plane shell displacement in
the tangential direction, 4(6,z,t) is the shell rotation in the circumferential direction, wr(0,z,1) is the shell
displacement in the radial direction, the subscript f denotes the flange, z is the longitudinal coordinate
of the shell, G is the shear modulus, / is the shell thickness, 4 is the shell radius at the mid-plane, x is
the shear correction factor, and Ej, is the plate compressional modulus and is expressed as

Eh
E,= ———+, 8
p (1 _ vz) ( )
I is the axial moment of inertia of the cross section and is written as
h3
I=— 9
R )
and D is the plate flexural modulus expressed as
EK3
D= . 1
12(1 — v2) (10)

Later in the paper, the subscript f will be further delineated to fI to denote the left flange and fr to
denote the right flange, as these are modeled independently.
The complete solution to the web in-plane displacement field in the frequency domain is [22]

vy(r,0,t) = ZZZH” U-E;l)(i’, 6,t) = ZZ:WO Vi (r) sin(n0) exp(—iwt) (11)
and
Weo(r,0,8) = YWl (r,0,8) = Y IT Wa(r) cos(nf) exp(—iwt) (12)

where w is frequency, n is the circumferential node number and i is the square root of —1. Equations (11)
and (12) contain all of the terms of the web solution set, i.e., the solution is complete. (Similarly, the
flange solutions could also be written out as complete expansions). However, to numerically solve
the problem, the component field has to be broken down into the individual axisymmetric (n = 0)
and non-axisymmetric (1 > 0) parts. This is accomplished below. Figure 2 is a plot of the first four
circumferential n-indexed node shapes. In this figure, the undeformed shape is shown in light gray
and the deformed mode shape is depicted in dark gray.

Figure 2. Magnitude of the first four circumferential mode shapes.

The axisymmetric solution component is now formulated. This is typically called the n = 0
solution. Because the tangential displacement components and their slopes are identically zero for
this case, they need to be eliminated from the equations of motion before a problem solution is
generated. Additionally, any other component differentiated with respect to the angular coordinate ¢
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is zero and these terms are also condensed from the original equations of motion, Equations (1) to (7).
Equation (1) becomes

E [wy(r,t) 10wy(rt) 1 _ Pwy(r,t)
1—12 or2 PR e R A e To (13)
and the solution in the frequency domain is
wz(f,))(r, t) = Wo(r) exp(—iwt) (14)
where
Wo(r) = =Ci"kpa (kpr) — 57y Ya (ky1) (15)
with the plate wavenumber k, equal to
w
ky =— (16)
p cp
and the plate wave speed c, equal to
: (17)

PN\ (-2

where C;(© and C,(©) are wave propagation constants determined below, ] is a first-kind, first-order
Bessel function, and Y7 is a second-kind, first-order Bessel function.
The flange or shell equations are reformulated for the n = 0 response, Equation (3) becomes

azuf(z,t)_ hazuf(z,if)+ D\ ¢ (z,t)
= T2 a) a2

(18)
pl 0% (z,1) n vE, dwy(z,t) 0
a ot2 a oz
and Equation (4) becomes
D\ Pus(z,t)  (pl\ Pus(zt) +D32¢Z(Z,t)
a 022 a ot2 0z2 (19)
0%, (z, t) dw(z,t)
—xGhip(z,t) — pIT - KGhT =0.
Equations (5) and (6) are identically zero, and Equation (7) becomes
—E,v\ dus(z, ¢t we(z,t
—t 7uf(z ) +1<Ghal'bz(z't) +KGh7wf(Z )+
a 0z 0z 022 20)
E, D 9wy (z,t)
p f _
The solution set to Equations (18) to (20) on the left flange is written as [23]
ug(z,t) Z ]+2 . exp (A](.O)z> exp(—iwt) , (21)
0 0 .
Vr2(z,t) = ] 1 C](+)2N( )exp (/\]( )z) exp(—iwt) (22)

and
wr(z,t) = ; lC](Jr)2 exp( A0 )exp(—iwt). (23)
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Similarly, the solution set to Equations (18) to (20) on the right flange is written as

us(zt) Z] 1 /+8 ‘ exp(/\](.o)z> exp(—iwt) , (24)
Vrz(z,t) = ;j C](%N]@) exp (/\](.O)z) exp(—iwt) (25)

and
Wer(z,t) Z] +8 exp( A0 )exp(—ia)t) . (26)

where A; are the spatial eigenvalues, C; (0’5 are wave propagation constants determined below, and the

terms M; and N; are constants that properly scale the displacement and slope variables to one another.
The solutions to the spatial eigenvalues are now determined. This begins by inserting

Equations (21) to (23)—or (24) to (26)—into Equations (18) to (20), which results in the matrix

EN2+hop DA 1o Epo
a a a
By = DTAZ + % DA? — kGh + Iw?p —kGhA ) (27)
e KGhA KGhA2 + he?p — (B + )

The eigenvalues are found by setting the determinant of By to zero which yields the
characteristic equation
agA® 4 agAt + 1A% 409 = 0 (28)

and solving this equation produces the six eigenvalues for the n = 0 case. The formulas for the constants
ag, a4, Ay and ag are listed in Appendix A. Once the individual i-indexed eigenvalues are known, the
two constants M; and N; each have six i-indexed values and are solved individually by using the first
two rows of Equation (27), which results in

1
2 (0)42
{ e }_ EyA) +hatp Pl { 5 } (29)
© (0,2 2 '
N; DD It A0y _ kGh+ Iw?p

a

For the axisymmetric case, three flange stress resultants are needed for the continuum balance
with the web. The first is the normal force in the z direction and is written as [4]

du(z) | Day.(z)  vEy

(0) 1 (0)
vE DN:7A;
Nao(z) = Yot € exp(A”)z) (ﬂ” +E,MO2 0 4 Zal> , (31)
the second is the bending moment with respect to the z direction and is written as [4]
_ Ddus(z) | dy:(2)
M::(z) = 4 dz dz (32)
(0),(0)
DM;"A;
Mz(z) = Yt C%) exp(AV2) <Zal + DN,.<°>A§°>) (33)
and the third is the shear force with respect to the z direction and is written as [4]
dwy(z)
Q:(z) = xGh [wz(z) +— } , (34)
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Q:(2) = i Chexp (V)G (A1 + NV) . (35)

Note that in Equations (30) to (35), and all equations hereafter, the frequency harmonic terms
and corresponding time dependence are implicit. The constants in Equations (31), (33), and (35) are
written for the left flange. If the constants on the right flange are desired, then the term i + 2 should be
replaced with i + 8. The normal radial force in the web is [16]

E dw, Ev (1
T (r) = wdr(r) A <r)ww(r), (36)
(w) Eky K 0
Ty (r) = mh (kpr) - (1— Uz)jo(kl’r) G+
37
Ek, Ek (0) 7
it o) ) = gy Yolker) |G

where [ is a first-kind, zero-order Bessel function and Y is a second-kind, zero-order Bessel function.
The solution to the constants C;©-C14,© are found using equilibrium and continuity expressions
from the system. Figure 3 is a free body diagram that shows the 14 individual generalized forces that
are present on the boundaries of the system. Note that although these are called generalized forces,
they all have units other than force. The boundary condition at the outer edge of the web (r = b) is

) = m o9

where Py is the magnitude of the radial external pressure for the n = 0 axisymmetric load applied to
the outer edge of the web. The three boundary conditions at the free edge of the left flange (z = z; ) are

NI (z) = M3 (z1) = QP (z1) = 0 (39)

where it is noted that z; < 0. Similarly, the three boundary conditions at the free edge of the right
flange (z = zg) are
NI (zr) = MU (zx) = Q7 (z) = 0. (40)
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Figure 3. Free body diagram illustrating the generalized force components for the
axisymmetric problem.

There are two force balances at the intersection of the web and flange (r = a and z = 0). The force
balance in the radial direction is

boTi (2) - Q(0) + QY7 (0) = 0 (@)
and the force balance in the longitudinal direction is
-NL ) + N () =0. 42)
Additionally, there is a bending moment balance at this location and this equation is
- ML)+ ML (0)=0. 43)

There are three displacement continuity equations at the intersection of the web and the flange
and these are written as

uﬂ(O) = uf,(O) ’ (44)

wy(a) = wg(0) (45)
and

wy(a) = wf,(O) , (46)

and one slope continuity equation written as

lpfl,z(()) = wfr,z(o) : (47)

Equations (21) to (26), (30), (32), and (34) are inserted into Equations (38) to (47), and this results
in an algebraic matrix equation given by

Aoxg = by, (48)
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where the entries of Ag are in Appendix B as Equations (A5) to (A120), the vector xq is

T
xo={c? ¢ ... c ¥}, (49)

and the vector by is
T
boz{Po 0 -~ 0 o}. (50)

The solution to the wave propagation coefficients C;?)’s in Equation (48) is found using
xo = Ay by, (51)

and once these are known, they can be inserted back into Equation (15) to calculate the displacement
of the web, Equations (21) and (23) to calculate the displacements of the left flange, or Equations (24)
and (26) to calculate the displacements of the right flange. For this analysis, the pertinent displacement
field is the web outer surface. To integrate this beam model into a reinforced structural model, the
dynamic stiffness components of the beam are typically calculated and used as parameters in the
structural model. For a symmetric T beam where 1 = 0, there is one nonzero term and this is written as

Ky =

(52)

where the units of Equation (52) are stiffness per unit length.
The non-axisymmetric solution component is now formulated. This solution is valid for any value
of n > 0. The solutions to Equations (1) and (2) in the frequency domain are

v;’f)(r,e) = Vu(7) sin(nf) (53)
and

wz(u)(r 8) = Wy (r) cos(nf) (54)
where

V) = ~C (2 ullr) — ) (%) ¥ )+

55
9 ot = (2)ithon] + € fivaton - (uten]
Walr) = =C1" [kpJus (kor) + (5 ) i (kpr) | = € [k Yo (kpr) + (5 ) Y (kor) |+
(m)[(n (n)[ (1 (6)
& [ mtn] +c7[(5)vaten]
with the shear wavenumber k; equal to
ks = Cﬂ (57)

and the shear wave speed ¢; equal to

G | E
Cs:\ﬁ: 02(1+v) ©8)

where C;, C,™, C3": and C4 are wave propagation constants determined below, |, is a first kind,
nth order Bessel function, and Y/, is a second kind, nth order Bessel function.
The solution set to Equations (3) to (7) on the left flange is written as [23]

us(z,0) Z {ZJ 10 J+4M(n> exp( A )] cos(nf), (59)
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= =10
¥r,2(2,0) = Zn 1 {2;-:1 ]1)4N exp()\](”)z)] cos(nf),
0(5.0) = S0 xp (472) s
¢fl,9(2/9) = ;jo C;LQ(” exp( (n)z) sin(nf)

and
wy(z,0) Z] e ]+4 exp( AL )z) cos(nf) .

Similarly, the solution set to Equations (3) to (7) on the right flange is written as
g (2,0) Z] e ]+14 . )exp(/\](")z) cos(nb) ,

i=10
ley,Z(Z,B) = Zj»zl C](+)14N(n) exp( ( ) )COS(TIG) ,

=10 .
vpr(z,0) = Z;’:l C](+)14P(n) exp( A, )sm(n@) ,

i=10 .
lpfr,@(zr 0) = ;‘:1 j+14Q(n) eXp( ](n)Z) Sll’l(l’l@)

and
wr(z,0) Z] e ]+14 exp( Al )z> cos(nd)

305

(60)
(61)

(62)

(63)

(64)

(65)
(66)

(67)

(68)

where /\j(") are the spatial eigenvalues, C;)’s are wave propagation constants determined below, and
the terms Mj(”), Nj(”), Pj(”) and Q]-(”) are constants that properly scale the displacement and slope

variables to one another.

The solutions to the spatial eigenvalues are now determined. This begins by inserting
Equations (59) to (63)—or (64)-(68)—into Equations (3) to (7), performing an orthogonalization in the

tangential (6) direction, which results in the matrix

bip bip bz 0 bys
brp by 0 boy bys
By=|bs1 0 b33 bzg D35 |,
0 byp byz by bys
bsy bsp bss bsy bss

where

a2h

DA% GIn*>  Iw?p
+ L+ e
a a
b :Epn(1+v)/\
3= "5

hn? (1
biy = EpA? + hw?p — Gaz"<+1) ,

b1,2 =

E, vA
bis = pa ,

DA?  GIn®>  Iw?p
+—+ ,
a a a

2
byo = DA? — kGh + [w?p — GI; ,
a

by1 =

Dn(1+v)A
A=

b2,5 = —kGhA ’

(69)

(70)

(71)

(72)

(73)

(74)

(75)

(76)

(77)
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b31 = — o, (78)
D E xG I
_ 2 2 P 2
GIAN>  Dn?  Iw?o  «G I
b3y = + e + P + — (h+ az> , (80)
e — D E, G 1 I
3,5——1’1 a*4+a72+a72 +a7 ’ (81)
—Dn(l1+v)A
by = 200 )
GIN?  Dn? 1w’  « I
bys = — | h+ =
43 2 + pe + p + p ( + a2> , (83)
Dn? I
_ 2 2
D «xG I
—nl=+ = h+ =
b45 Tl[ 3+ 7 ( +a2>:|, (85)
—E,vA
bsy = —-—, (86)
a
bso = kGhA, (87)
D Ep KG 1
D «xG I
b5'4_n|:613+11<h+ LIZ):| (89)
and £ )
D xGn I
_ 2 2 4
b5[5 = xkGhA —l—hw P — <ﬂ4 + 612> - a2 (h+ L12> . (90)

The eigenvalues are found by setting the determinant of B, to zero, which yields the
characteristic equation
a1oM0 4+ agA® + agA® + agAt + apA% +ag = 0 (91)

and solving this equation produces the 10 eigenvalues for the n > 0 case. The formulas for the constants
a19, ag, g, A4, 4z, and ag are listed in Appendix C. Once the individual i-indexed eigenvalues are known,
the four constant terms M;™, N, P, and Q,™ each have 10 i-indexed values and are solved
individually by

Mi( " bip bip bz 0 ! —bys

N _ | D21 by O by —bas5 ©92)
Pi(") bss 0 b33 b3y —b3s [’

Qi”) 0 byp by3z byy —bys

where it is noted that A is replaced with 10 individual A;( in Equation (92).
For the non-axisymmetric case, five flange stress resultants [4] are needed for the continuum
balance with the web. The first is the normal force in the z direction and is written as

due(68,z) D dy,(6,z vE 0v¢(0,z)
f D dy(6,z2) 4 f
dz + a dz + a (wf(O,z) + a0 > ! (93)

) (n) 4 (n)
Nix(6,2) = E2F |0 Cl exp(h2) (52 + (V2 + PNAL ) | cos(u), (04)

a

sz(G,Z) == Ep
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the second is the bending moment in the z direction with respect to the z axis and is written as

i) dug(0,z) N Ddgbz(e,z) n vD dye(6,z)

Mz(6,2) = — dz dz a a9 7 ®5)

Me:(0,2) =Y =7 {2 ¢t exp(A (”)z)@) (Mf”)/\g”)+aNi(”)/\§”)+an§”))]cos(ne), (96)

the third is the shear force in the z direction with respect to the circumferential direction and is written

as
dvf(G,z) Gl dyy(0,z) | Ghdus(6,z)
N,(0,z) = Gh F p e + 7 TR (97)
Nug(6,2) = T [ D0 Uy exp(A"2) (=S M + Gr A + SLQMAM ) sin(no),  (98)

the fourth is the twisting moment in the axial direction with respect to the circumferential direction
and is written as

M.o(6,2) = % dvféz’z) + GId%;ZG'Z) + % d"’Z;g’z) , (99)
M.o(60,2) = D=t [ZE1 € exp(A"z) (Z2GIN™ + SLPMAM 4 GIQMAL™ ) | sin(n6) (100)
and the fifth is the shear force in the axial direction and is written as
Q:(0,z) = kGh [1[12(9,2) + dw{i(j,z)} , (101)
Q.(0,z) = ZZ:;O {Zz 10 1&1 exp()\( ") )KGh( N 4 )\( ))} cos(n0) . (102)

The constants in Equations (94), (96), (98), (100) and (102) are written for the left flange. If the
constants on the right flange are desired, then the term i + 4 should be replaced with i + 10. The normal
radial force in the web is [22]

(w) 1Y 0vy(r,0) E aww(r,Q) Ev 1
T 0 =4 v2 (r) B S PR ( )ww<r 6), (103)
E (” - ”2) (1-v) + k2r2
( )(TG { 1+U ]n+1 k 1’) [ 72(1_1}2) ! }]n(kpr)}+
w) Ek E[(n—n?)(1-v)+kpr? 104
g { %Lﬁrl(kﬂ’) + %h(kﬂ)} +cy { r(_lEiktf) Y41 (kst) + %mm)}) cos(nb)

and the shear force in the web is

w d w\l, 0 (ANES
T (r,0) = G2 a(: o) _ <f)vw(”r9) + <f)wa(9r9) (105)
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. [ 2Gnk
1450,0) = Loy ({22 () = 2202 ) b+

2Gnk 2G -1
ngn){r 2Yi1 (kpr) — 771(; )Yn (kpr)}JF

A= . G2 —2(n2 — (106)
c ){ 20k lhor) + S22 fn<ksr>}+
2,2 2 _
Ci”){ 2y )+ T2 )] Yn(ksr>}> sin(n6)

The solutions to the constants C;-C,4™ are found using equilibrium and continuity expressions
from the system. Figure 4 is a free body diagram that shows the 24 individual generalized forces that
are present on the boundaries of the system. The boundary conditions at the outer edge of the web
(r =) are

T4 (b,0) = Y~ P, cos(n6) (107)

and
T (b,6) = Y7 Fy sin(nf) (108)

where P, is the magnitude of the radial external pressure and F, is the magnitude of the circumferential
external pressure for the n-indexed, non-axisymmetric load applied to the outer edge of the web.
The five boundary conditions at the free edge of the left flange (z = z; ) are

NI(60,21) = MED (6,2,) = NYD(0,21) = MYD (6,2) = QU1 (6,21) = 0. (109)

Figure 4. Free body diagram illustrating the generalized force components for the

non-axisymmetric problem.

Similarly, the five boundary conditions at the free edge of the right flange (z = zg) are

NE(0,2r) = MY (6,2z) = NU(6,2z) = MY (6,27) = QU7 (6,2r) = 0. (110)
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There are three force balances at the intersection of the web and flange (7 = @ and z = 0). The force
balance in the radial direction is
b TS (a,6) - Q" (6,0) + QY (6,0) = 0, (111)
the force balance in the circumferential direction is
b T4 (a,6) — N (6,0) + NY(6,0) = 0 (112)
and the force balance in the longitudinal direction is
—NY"(0,0)+ N7 (0,0) =0. (113)

Additionally, there are two moment balances at this location. The first is the bending moment in
the longitudinal direction with respect to the longitudinal direction written as

~ MY (6,00 + MY (6,0) = 0 (114)

and the second is the twisting moment in the longitudinal direction with respect to the circumferential
direction written as
1
— MY 0,00+ MY (6,00 =0. (115)

There are five displacement continuity equations at the intersection of the web and the flange,
and these are written as

us(6,0) = ug(6,0), (116)
vy(a,0) = vﬂ(Q,O) , (117)
vw(a,0) =vg(6,0), (118)
ww(a,0) = we (6,0) (119)
and
wy(a,0) = wg(6,0) (120)
and two slope continuity equations written as
¥1,2(0,0) = r,.(6,0) (121)
and
¥r1,0(0,0) = ¢7,6(6,0) . (122)

Equations (53), (54) and (59) to (68) are equilibrium and continuity equations, they are
orthogonalized in the circumferential direction, and this results in a decoupled n-indexed algebraic
matrix equation given by

Auxy = by, (123)

where the entries of A, are in Appendix D as Equations (A147) to (A478), the vector x;, is
T
w={c" o e}, (124)

and the vector by, is
T
bn:{Pn F, -~ 0 0} . (125)
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The solution to the wave propagation coefficients C;("’s in Equation (123) is found using
X, = A, b, , (126)

and once these are known, they can be inserted back into Equations (53) and (54) to calculate the
displacement of the web, Equations (59), (61), and (63) to calculate the displacements of the left flange
or Equations (64), (66), and (68) to calculate the displacements of the right flange. The four dynamic
stiffness components of the beam calculated from the model are

—by Py,

(n) _
KTV - Wn(b) 7 (127)
() _ ) _ —bwFn _ —bwPy
KrG *Ker - Wn(b) o Vn(b) (128)
and b E
(n)  —Owln
KGG - Vn(b) : (129)

The longitudinal stiffness term Kgl) is not calculated in this model. The previous curved beam
model [1,2] utilized the Love—Kirchhoff plate equation for the out of plane motion of the web and
the stiffness term ngl) could be calculated. For the geometry modeled here, this previous equation
is accurate to about 5 kHz and then becomes too stiff. It is possible to include a higher-order plate
model [24,25] to make this stiffness term more accurate. This plate model, however, includes terms
that are extremely unstable when evaluated numerically, and even using extended precision analysis
with a 256-bit word length only allowed numerical convergence up to about 6 kHz. Furthermore,
most shell designs are very stiff in the longitudinal direction and an additional stiffness term in this
direction does not affect the dynamic response. Thus, this term is not calculated and is set equal to
zero in the reinforced shell model.

3. Results

The model was analyzed using an example problem where the beam had material and geometric
properties that were consistent with an application to underwater structures. The model of the curved
T beam had the following physical dimensions: height of the web h;, = 0.244 m (9.60 in), width of
the web by, = 0.0140 m (0.550 in), height of the flange h = hy = 0.0333 m (1.30 in), and width of the
flange by = 0.198 m (7.80 in), which results in the left flange free end at z; = — by /2 = —0.0991 m and
the right flange free end at zg = by/2 = 0.0991 m. The outer radius of the beam is b = 3.00 m and the
intersection of the flange and beam is at a = 2.76 m. The beam was made of steel, which had the
following mechanical properties: Young’s modulus E = 200 x 10° N m~?2, shear modulus G = 76.9 x
10 N m~2, Poisson’s ratio v = 0.30 and density p = 7800 kg m 3. The value for the shear correction
factor was « = 0.8333. Although any location of the beam can be chosen for displacement output, the
web’s outer surface was investigated here because this location is pertinent to the analysis of reinforced
cylindrical shells. This allowed the dynamic stiffness of the beam to be calculated and subsequently
used in analysis of beams attached to shells or curved elastic bodies. To ensure the analytical model is
accurate, the displacements were compared to results from a finite element model. The finite element
displacements were produced using the COMSOL finite element program and the model consisted of
3400 quadratic serendipity axisymmetric solid elements which resulted in 32,523 degrees of freedom.

For the axisymmetric model, the beam was loaded on its outer surface with a radial (normal)
pressure, commonly called a ring load. The output of this model is radial displacement divided by
normal pressure at the web’s outer surface. Figure 5 is a comparison of normal displacement divided
by normal pressure versus frequency for the n = 0 mode in the decibel scale referenced to m/Pa (or
m/(N/m?)). The top plot is the analytical model compared to a fully elastic finite element solution, the
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middle plot is the analytical model compared to the previous analytical model [1,2] and the bottom
plot is the analytical model compared to Bernoulli-Euler curved beam theory [22]. For this particular
beam geometry, there was broad based agreement between the analytical model derived here and
the finite element results up to approximately 47 kHz, while the previous analytical model is valid to
about 8 kHz and the Bernoulli-Euler theory is valid to about 1.5 kHz.

Higher order circumferential mode shapes (1 > 0) were also investigated. For the
non-axisymmetric model, the beam was loaded on its outer surface with a radial (normal) pressure and
a tangential pressure, both corresponding to the circumferential mode number under investigation.
The output of this model is radial displacement divided by normal pressure, radial displacement
divided by tangential pressure (equal to tangential displacement divided by radial pressure) and
tangential displacement divided by tangential pressure at the web’s outer surface. Figure 6 is a
comparison of normal displacement divided by normal pressure versus frequency for the n = 3 mode,
Figure 7 is a comparison of tangential displacement divided by tangential pressure versus frequency
for the n = 3 mode, and Figure 8 is a comparison of tangential displacement divided by radial pressure
versus frequency for the n = 3 mode. The dropout of the analytical model in Figure 7 around 40 kHz is
most likely a frequency bin where the tangential displacement did not converge. This was the only
location where this behavior was observed. The normal displacement divided by normal pressure was
in agreement with the finite element results to about 47 kHz, the tangential displacement divided by
radial pressure was in agreement with the finite element results to about 34 kHz, and the tangential
displacement divided by tangential pressure was in agreement with the finite element results to about
47 kHz. Other values of n compared similarly. It is noted that by far the most important output of
the model is normal displacement divided by normal pressure because this corresponds to the most
compliant direction of a shell reinforced with a circular beam. The run time of the COMSOL finite
element model was 1320 s versus 0.22 s for the analytical model, which makes the analytical model
about four orders of magnitude faster than this finite element model.
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W, (0)/ P (dB ref m/Pa)
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Frequency (kHz)

Figure 5. Comparison of analytical model (solid line) to (a) finite element model (square markers),
(b) previous analytical model [1,2] (circular markers) and (c) Bernoulli-Euler model [22] (diamond
markers) for radial displacement divided by radial pressure versus frequency for the n = 0 mode.
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Figure 6. Comparison of analytical model (solid line) to finite element model (square markers) for

radial displacement divided by radial pressure versus frequency for the n = 3 mode.
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Figure 7. Comparison of analytical model (solid line) to finite element model (square markers) for
tangential displacement divided by tangential pressure versus frequency for the n = 3 mode.
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Figure 8. Comparison of analytical model (solid line) to finite element model (square markers) for
tangential displacement divided by radial pressure (or equivalently radial displacement divided by
tangential pressure) versus frequency for the n = 3 mode.

4. Conclusions

A high frequency analytical model for a circular T-shaped beam was derived and compared
to results obtained from a fully elastic finite element model, a previous analytical model and
Bernoulli-Euler curved beam theory. This new model was constructed with two-dimensional elastic
equations for the web motion and Timoshenko shell equations for the flange motion. Adding the
Timoshenko shell equations to this model resulted in additional degrees of freedom which produced
much more accurate results at higher frequencies. The outputs of this new model are normal
displacement divided by normal pressure, normal displacement divided by tangential pressure,
tangential displacement divided by normal pressure and tangential displacement divided by tangential
pressure. It is noted that by far the most important output is normal displacement divided by normal
pressure, as this corresponds to the design objective of almost all beams. The resultant normal and
tangential circular beam stiffness terms were also derived. The longitudinal stiffness term of the beam
was briefly discussed. This new model allows for an almost total elastic response of the entire system
for the frequency ranges studied, and for the beam example problem presented here, the analytical
model and the finite element models compared favorably up to 47 kHz for normal displacement
divided by normal pressure. The valid frequency ranges of the Bernoulli-Euler and pervious analytical
model are depicted in a comparison of mode n = 0 response and were 1.5 kHz and 8 kHz respectively.
The application of this model to a reinforced structure for target strength and hull response modeling
is discussed. This new analytical model was approximately four orders of magnitude faster than the
finite element model for the example problem presented in this paper, and thus can be used in the
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design phase of structures where rapid analysis is needed. Typically, finite element analysis is too slow
for analyzing numerous designs.
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Appendix

The constants from Equation (28) are listed in this appendix.

ag = (;21) DxGh (praZ n D) ) (A1)
_ (D’ 1 2 2.2 2 2
= (Z5 ) = (55 ) DB} — E3v? + Dhw?p — 2E,xGhv + 2xGlhp) | + "
(A2)
hw?o(DE, + EpxGI 4+ DxGh) ,
ap = (ﬁ) (Eplcu2p — Dhap + EpKGh) - (;) (—Ef,lvzw2p+
E21w?p + kGhE%v? — kGhE? — 2kGhE,Tvw?p + DhE,w?p+
prp P P prvwp pep (A3)
kGhI*w*p? + 2DhIw*p?) + hw?p(EpIw?p + Dhw?p — kGhEp+
kGhlw?p) + (;)ZDzlwzp
and
ay = (;) w?p (wzplz — w?pla®h + KGazhz) (—wzpha4 + Epa* + D) . (A4)
Appendix
The non-zero entries to the Ay matrix in Equation (48) are listed in this appendix.
q PP
Ek, Ek
a1 = m]l (kpb) - m]o (kpb> ’ (A5)
Ek, Ek;

a12 = myl (ka) - myo (kpb) ’ (A6)

bwEky boEK;
a1 = mh (kpﬂ) - m]o (kpa) ’ (A7)

bwEky bo EK

= Y- — Y A

a22 (1 + U) 1( pﬂ) (1 _ 02) O(kpﬂ) 7 ( 8)
423 = —kGh ()qo) + N{O)) , (A9)
! (Agm + NZ(O)) ) (A10)
425 = —kGh (Ag” + Néo)) ) (A11)
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a1 = kGh

ay13 = kGh

apa = xGh (AL + N

(0),(0)
—vE DN;7A
as3 = e Engo)/\go) - 1 ™M
a a
(0),(0)
E D
a34 = °p —E,,M§°>A§0> Ny "As
a a
(0),(0)
DN, A
a35 = P _ EpMéo)Aéo) — 3a 3
(0),(0)
—vE DN, A
36 = O —E,MU\0) 2
a a
(0),(0)
—vE DN:"7A
a3y = —2 — E,MOAY — 5a 5
(0),(0)
—vE DN;"A
asg = p — E,MOAD _ 2 Te

39 = vaﬂ + E,MOA
as10 = vaﬂ +E,MP00
a3 = UTEP +E,MP00
az12 = Uﬂﬂ + EPMA(IO))\L(L
as;3 = vaﬂ +E,MO00

vE 0) 4 (0
a314 = TP -I—EpMé ))\é ) +
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0 0
o, DNOAY
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a
0 0
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7
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(A12)
(A13)
(A14)
(A15)
(A16)
(A17)
(A18)
(A19)

(A20)

(A21)

(A22)

(A23)

(A24)

(A25)

(A26)

(A27)

(A28)

(A29)

(A30)

(A31)

(A32)

(A33)
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Agq = DMEO)AEO) _ DN2(0))\£0) )
da5 = —DMEO)AS)) - DNéO)Ago) ,
a6 = DMEO)A‘&O) DNAEO))\EO) ,
asy = —DML%O)/\éO) DNEEO))\éO) /
Ayg = _DMEO)AéO) ~DNOAO,
ag9 = b i)/\gm + DNl(O))\go) ,
a4,10 = DMEZ)Aéo) + DN,
as11 = M + DN§0)A§0) ,

M
412 = 4 4 4 DNiO)Aio)

a4,13 = DMéZ)AéO) +DNYAY
a414 = DM{))A?) + DNéO)AéO)
as3 = M§O) ,
54 = Méo) ,
asps = Méo) ,
as6 = Mio) ,
asy = Méo) ,
asg = Méo) ,
as9 = —MEO) ,
as10 = —Méo) ,
a5,11 = —Méo) ,
as,12 = _M£0) ,
5,13 = —Méo) ,
as,14 = —Méo) ,

ag1 = —kpi (kpa) ,
agp = —kpYi(kpa) ,

4
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(A34)

(A35)

(A36)

(A37)
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(A44)

(A45)
(A46)
(A47)
(A48)
(A49)
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(A51)
(A52)
(A53)
(A54)
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(A56)
(A57)
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a93 = exp ()tgo)zL) -

(0)

ag4 = exp ()\2 ZL) -

ags5 = exp ()\go)ZL) _

ag3 = —1,
ags = —1,
aes5 = —1,
ag6 = —1,
a7 = —1,
agg = —1,

azg = —1,

azi0 = —1,

a7y =—1,

a7 =—1,

azi3 = —1,

az4 = —1,

ags = Nl(o) ,

ag4 = NZ(O) ,

ags = N3(0) p

age = Nio) ,

agy = Néo) ,

agg = Néo) ,
ag9 = — 1(0) ’
ag10 = —Nz(o) ’
agi11 = —Ng(o) ,
ag12 = *Nio) ,
ag13 = *Néo) p
ag14 = *Néo) ,
Uaﬂ +E,MOA 0
Uaﬂ +E,MOAD 4
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(A76)
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(A88)

(A89)

(A90)

(A91)
(A92)
(A93)
(A94)
(A95)

(A96)

(A97)

(A98)

(A99)

(A100)

(A101)

(A102)

(A103)

(A104)

(A105)

(A106)
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a1310 = exp )téo)zR kGh Ago) + NZ(O) ,
a1311 = exp )téo)zR kGh )téo) +N3(O) ,

114,10 = €xp (Aéo)ZR)

(M3 ©

DM, A
a14,11:exp(Aé0)zR) 3a 3+ DNAD |,

(DM 30

DM, A
a14,12:exp()tio)zR) 4a 4+ 1 pNOAO,

(0),(0)
DM:"A
a1 = exp (Azx ) [5615 + DN Aém}
" (0),(0)
DM; A
114,14 = eXp (AéO)ZR) lzé + DNéO)AéO)] .
Appendix

The constants from Equation (91) are listed in this appendix.
a19 = bao (—553 + 501b09> <_b%6 + bl4b22) /

ag = (b}b1abao — bT,bTe + bT1b1aboo — boobTbso — biobisboo — 2boobrsbizbao+
boob1abaobsg + boob1abasbog + bobisbazbag + biobiabaobog ) bor + bizbisbso—
b3eboobls + 2bosbosb12bTs + bisboob1abar + 2bosboabicbag — boaboobigbao+
2b3b16b17b20 + bisboobaabag — bizb1abaobsg — bizbrabasbog — bizbisbaabao—
2bo3boeb12b14b22 + 2bo3bo5b11016b29 — 2b03boab14b22b2g + bopbogb14b2abag ,
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(A114)
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(A116)

(A117)

(A118)

(A119)

(A120)

(A121)
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a6 = (b3yb14ba3 — boobrab, — boobigbor — 2b3,b16b17 + biyb1sbay — boobisbao+
b3, biabso + b3 bisbog — bigbTgbsg + 2b11b1obisbis — 2b11b12b14bos+
2bogb16b18b2a — 2bogb16b17b30 — 2b10b16b17b29 + bogb1abasbso + boobisbazban+
boob1sbasbao + brobraboobsg + biobiabasbao + biobisbaobag)bor + bigbty bra—
boabiobis — Bogbiobis + bsbiaban + bisbrabay + bisbighas + bty bag+
bi3bT,b20 + b4bisboo + 2bosbosb12blg — 2bGsboobisbiz + boobizbiaboo+
bisboob1abas + bsboobisbn + bigbiobiabas + 2bosbosbisbso + boobiybiabog—
boaboobigbso — boob1obighao — 2b53b16b18bos + 2633b16b17b30 + bisboobrobao+
bisboobasbao + bisb10b22b20 — bub1abaobag — bisbiabasbso — bizbisbaobso—
bisbisbasbao + 2bosbosbiibiobie — 2bosbosbi1b16bis + 4bosbosbiobisbiz+
2bo3boeb11b14b24 — 2b03bo6b12014b23 — 2b03bosb12b15b22 — 2bo4bocb12b14b22 —
2bo3bosb12b16b24 + 2boabosbiabigban + 2bosbosboobisbas — 2bosboebogbigba+
2bo3bosb11b16b30 + 2b03bosb11b17b29 + 2boabosbi1b16bag + 4bozboabisbi7bog—
2bo2boob16b17b29 — 2b03boab14b22b30 — 2bo3boab1abaszbag — 2bo3bosbi5b22b29+
bo2boob1ab2abso + boabogb1abaszbag + boaboob15b2abag + bo2brobi4bazbog ,

ag = (b3yb1sbas — bi,b3; — boobisba, — biob1aby, — boobighas — bigbigho—
b1, blg — boobizbso — biobT;bao + b bisbso + 2b11b12b17b1g — 2b11 biobisbos+
2bggb17b18b2g + 2b19b16b18b24 — 2b10b16b17b30 + boob15b2sbzo + biobiabasbao+

biobisbazbso + brobisbazbag)bor + bibiy bis — bigboobT; — bisboobss+
Bsbiabas + Biabisbiy + biabisbas + bsbiy bao + bisbizbso + bisbigbso+
2bosbosb12b3; — 2bosboebty big + 2b03boabiably — 2boabi,bisbiy + 2bosboabigban —
—booboob1ab3, — 2636b1obib1y — boaboobighn + boabiabiabas + boobiybisban—
2bG5b11b12bos + 2bo3boabizbog + bigboobisbas + bsbrobrabas + bigbiobisbar —
boaboobizb2g + boobiy biabsg + boabiibisbag — boabiobighso — 2bgzbrzbisboat
2b33b16b17b29 + Bisboobasbao + bisbiobaobso + bisbiobasbag — biybrabrobso—
bisb1abasbao — b3yb15b20b29 — bi3bisbasbag + 2bosbosbir biobiz —

2bo3boeb11b17b18 — 2boabosb11b16b18 + 4bosbosbr2bisbr7 + 2bo2br1b12b16b18+
2b3bosb11b15024 — 2b03bosb12b15b23 + 2boabosbi1b14bos — 2boabosbi2b1aboz—
2bosboeb12b15b22 — 2bg3bosb11b18b24 — 2b03bosb12b17b24 + 2bo3bosb12b18b23 —
2bo4bosb12D16b24 + 2boabosb12b18b22 + 2bosbosboobi7b2a — 2bosbosbogbigbaz+
2bosbosb10b16b24 — 2bosboeb10b1sbaz — 2b0ab11b12b14b24 — 4bo3bosbrebisbas+
2bo3bosb11b17b30 + 2bosbosbi1biebso + 2bosbosbi1bi7bag + 2bgaboobigbigbag+
4bo3boab16b17b30 — 2b02b09b16b17b30 — 2b02b10b16b17b29 — 2b03b04b14b23b30—

2b03boab15b22b30 — 2b03boab15b23b29 + bo2boob14bazbso + boaboobisbaabso+

bo2boob15b23b29 + boab10b14b22b30 + bo2b10b14b23b29 + bo2b10b15b22b29
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(A123)

(A124)
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ay = (—biobsobf; + 2b10bi7b18bos — biobasbig — bigbisbas+biobisbasbso)bo1+
Boab1ab, — boaby b, — bgbiobly — bsbiobay — boabibs + bybisbo+
b34b37b20 + 2bgabosb12b7; + 2bosboabisbl, + 2bosboabighas — boaboobisba, —
boabrobrabs, — booboobighas — boabiobighas + boabTybisbas + 2bosbosbisbao+
bisbrobisbas — boaboobizbao — boab1obT;bao + boabii bisbso — 2bgsbiebisboat
2b34b16b17b30 + bisb1obasbao — bsbrabasbso — bi4b15baobso — bibisbasbao— (A125)
2bo4boeb11b17b18 + 2b02b11b12017b18 + 2b04bosb11b15b24 — 2b04bob12b15023 —
2bo4bosb11b18b24 — 2boabosb12b17b24 + 2babosbrobigbaz + 2bosbosbiobi7boa—
2bosboeb1ob18b2s — 2boab11b12b15b24 — 4bo3boabr7b18b24 + 2b04bosb11b17b30+
2bo2boob17b18b24 + 2bo2b10b16b18b24 — 2b02b10b16b17030 — 2b03b04b15b23b30+
bo2boob15b23b30 + boab1ob1abasbso + boabiob15b22b30 + bozbiobisbazbag

and
ag = — (—b(z)4 + boab1o) (b3ob%7 — 2by7b18bos + bng%g + b15b§4 — b15b23b30) , (A126)
where
bor = Ep, (A127)
2 1 2 I
bos = % , (A129)
GIn®> Iw?p
L (A130)
B Epn(1+v)
bos = ——_— (A131)
E
bos = %U : (A132)
boo = D, (A133)
2
blO = —«xGh + Iwzp — G:;/Z , (A134)
_ Dn(1+4v)
by = —5—, (A135)
by, = —«Gh, (A136)
by = Gh, (A137)
D E xG I
bis = _n2<a4+€l§> +hw2p_az<h—0—az> , (A138)
bis = % , (A139)
Dn? 1?0 G I
by=—5+————(h+3), (A140)
D E kG I
b18__n|:114+115+a2(h+a2>:|’ (A141)
bp = GI, (A142)

Dn? I
7.2
by = lw P_az_KG<h+2> , (A143)
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b2421’l|: 3

D G I
+<h+2>:| 7
a a a

b29 = xGh

D E kGn? I
_ 2 4
bgo—l’lw o — <a4+112)_{12<h+a2> .

and

Appendix

The non-zero entries to the A, matrix in Equation (123) are listed in this appendix.

Ek E(n —n?)(1—v) + k3b>
a1 = 17(17—:0)]”“ (kpb) - b2(1 — v2) P Jn (ka) ’
Ek, E(n—n?)(1—v)+k5b?
111,2 = 7b(] T U) Yn+1 (kpb) — b2(1 — Uz) Yn (kpb) ’
_ —Enk; En(n—1)
a3 = m]n+l (ksb) + m]n (ksb) ’
_ —Enk En(n—1)
NAZ P+ o) Yusa (ksb) + P2(1+0) Ya(ksb)
2Gnk —2Gn(n—1
fy1 = Tp]wrl(kpb) + %]n (kpb) ,
2Gnk —
22 = 2, (k) + 2Dy (k)
—2Gk G[K2b* —2(n®> —n
fr3 = TS]nJrl (ksb) + ks bz( ) Ju(ksD) ,
—2Gk G[K2b* —2(n?> —n
az4 = TSYnJrl (ksb) + [ 5 b2( )] Yu (ksb) ’
b Ek by |E(n —n?) (1 —v) — k3a?
g31:M]n+1(k a) — w[ ( ) b :|]n<k a),
~ a(l1+v) P 2(1—1?) p
b Ek by |E(n —n?) (1 —v) — k3a?
a3p =~V i1 (kpa) — w[ ( ) ’ }Yn(k a),
“ a(l1+v) P 2(1—02) P
_ —byEnks bywEn(n—1)
33 = m]n+l<ksa) + a2(1+v) Julhsa)
_ —byEnks byEn(n—1)
34 = a(l+v) Yoy (ksa) + a2(1+v) Ya(ksa)
a35 = —xGh (A1 4 N
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(A144)

(A145)

(A146)

(A147)

(A148)

(A149)

(A150)

(A151)

(A152)

(A153)

(A154)

(A155)

(A156)

(A157)

(A158)

(A159)
(A160)
(A161)
(A162)

(A163)
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ag1 = bwzfnkp Jut1(kpa) + bsz;z(n —1 Jn(kpa) ,
fay = bwzf”k Yoi1 (kpa) + %Yn (kpa) ,
43 = bwaszs Jnga (ksa) + s ;22(142 =] Ju(ksat) ,
g4 = bwaZGks Y1 (ksar) Gl ;22(112 =] Yu(ksa),
s (o< A 4100
ags = — (—nny” +anp{” 200 + 10070
aay === (=M +anp{" 2L +10{728),
aas = — (—nnMy" +anp"2(0 + 107",
aao = == (=M +anp{" 2L +10{728"),
aazo === (=M +anp{" 2" + 102",
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(A164)
(A165)
(A166)
(A167)
(A168)
(A169)
(A170)
(A171)
(A172)
(A173)
(A174)
(A175)
(A176)
(A177)

(A178)

(A179)

(A180)

(A181)

(A182)

(A183)

(A184)

(A185)

(A186)

(A187)

(A188)
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a4 = _TG (=M + anpiVAS 15728
a1 = _76 (—nhM§”> +anp{" A 1AL
0413 = _TG (=nnm§? + anp{MASY + IQg”)A "
G414 = _76 (—nnMy) +anpi) AT + 1015 A%
0415 = % (=M +anp A + 10172} ")) ,
416 = % (—nhMén) + ath(”)Agn) + IQg")A " )
0417 = % (=Ml + anp{P28 + 1057287
a4 = % (=M +anpP A + 10720
0410 = % (=Ml + anpiP2L 1 1087 AL)
G40 = % (=M +anp{PA0 + 100720
Q41 = % (—nhMé”) +ahP AL + 1QUWAL ")) )
Gy = % (—nnmg” +anp{V A + 10{7 28"
0403 = % (=M +anpy S + 1057287
G404 = % (=nhmy) +anp(AL) + 10{/A))
055 = % (—an(") + P 4 an”)Ag")) )
056 = % (=g + PS4 @AM
a5 = % (—nng" + P§”)A§”> +aQl" "),
a58 = % (—nNim + P 4 QA ")> ,
a5 = % (=g + Pé”)/\é”) +aQl"A{")
85,10 = % (—nNg" + pgmg@ +aQt"A" ),
45,11 = % (=g + B 4 aQPA0M)
a5 = % (=g + BMAL +aQf A"
05,13 = % (-G + Pg(”)Ag”) +aQy" "),
5,14 = % ( an(O) +P1(0) Mo Jrano )‘ ))
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(A189)
(A190)
(A191)
(A192)
(A193)
(A194)
(A195)
(A196)
(A197)
(A198)
(A199)
(A200)
(A201)
(A202)
(A203)
(A204)
(A205)
(A206)
(A207)
(A208)
(A209)
(A210)
(A211)

(A212)
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a5 =

Ae6 =

ae;7 =

a8 =

69 =

6,10 =

6,11 =

6,12 =

6,13 =

ae,14 =

ae,15 =

ae,17 =

a6,18 =

< )
ag16 = — (vEp +aEpMy" AL + DN{VAL" + noE, P ),
o e )
ol )

(v +aEpM (n) + DN(H) ( ) 4 nvEpPZ(")

)
)
(v, +aB,M{"AL) + DNVALY + noE, P,
(vEp +aEp M2 + DNVAL + nvE, P )

)

(U +aEp ()+DN( )/\én)+nUEpP5(n) ,
vE, +aE,M ")A(”)+DN(”) ()—i-nvEpP(")

vE —|—aEp n)A(”) +DN(”) (n) +nvEpP(n)

VEp + ”EPM9 ( it DNg(n)/\én) + nvEpP9(”)

'S:\H Q\H m\»—\ QM—\ &\H &M—\ m\»—\ Q\»—\ :::\r—x mm—\

( ).
( ).
(vEp +aEpMy” AL + DNGALY + noE, B ),
( )
( ).

VEp + aEpM{p A + DNUWAW 4 noE, Py

71 UEP + tZE M (n) + DN(n))L(”) + I’ZUE P( n)

>_\

VE, +aEpM§"A ( St DNé”)Ag”) + nvEpPén)

4

. \
r—\ _

vE, +aE, M ALY + DNALY + noE, (M)
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(A213)

(A214)

(A215)

(A216)

(A217)

(A218)

(A219)

(A220)

(A221)

(A222)

(A223)

(A224)

(A225)

(A226)

(A227)

(A228)

(A229)

(A230)

(A231)

(A232)

(A233)

(A234)

(A235)

(A236)
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>—\

ag19 = — (vEp +aEpM{" AL + DNSVALY 4+ nuE, P
2620 = 71 (vEp + aBpM{"AL + DNGVAL + noE, B
dem = = — (vEy +aEMy" 27" + DNYIALY 4 noE,P))
to = — (v +aE, MPIAL + DNIALY 4 noE Ps(
623 = 1<v +aEM ()+DN() +nUE
App4 = al (UEP +aE,M 10 50) + DNl(O)A% + nvE,P. 10
ays = % (Mgn))\gn) + aNl("))\gn) + angn)) ,
a7 = % (Mé"))\( )~|—aN(")A +an2 )
ayy = % (Mé"))\( "4 aN( "4 ané" )
ﬂ7,3_% (Mi )A( )+aN( +an”)
ay9 = % (Mé"))\é") + aN5( "y nvQs (n )
710 = g (Mé”))»é") + aNé( "y nvQy (n )
a711 = g (MPAT 4+ aNS AL + ol
717 = g (Mé"))»é") + aNé " 4 ané" )
a713 = % (M5 + aNgASY + moQf)
a7,14 = % (M%))‘go) + ”Nl(o Ao L ”UQlo )
a715 = _7D (MPIA 4 aNSA 4 n0Q)
0716 = _7D (ML 4 aN{ALY 4 noQl )
o717 = _TD (ML 4 aN{IALY 4 noQl )
4718 = _7D (M2 +aNgAL o0
a719 = _TD (Mén))\é”) + aNé”)Aé”) + ané” ) ,
azo0 = _TD (Mén))\é”) + aNé”)Aé”) + ané”)> ,
a7 = _TD (M2 +aNATY o0l
a7 = _TD (Mén))\é”) + aNén) (n) + angn))
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(A237)

(A238)

(A239)

(A240)

(A241)

(A242)

(A243)

(A244)

(A245)

(A246)

(A247)

(A248)

(A249)

(A250)

(A251)

(A252)

(A253)

(A254)

(A255)

(A256)

(A257)

(A258)

(A259)

(A260)
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a7 = _7D (MIAS 4 aNSIAL 4+ noQf ) (A261)
0724 = _TD (MM +aN AT + noQly)) (A262)
ags = M\, (A263)
age = MY, (A264)
agy = MY, (A265)
agg = M, (A266)
agg = M, (A267)
ag10 = Mén) , (A268)
ag11 = M§n> , (A269)
ag12 = Mé”) , (A270)
ag13 = Mén) , (A271)
ag1s = M), (A272)
ag15 = —MY’) , (A273)
ag1e = — MY, (A274)
ag17 = —Mén) , (A275)
ag18 = —Min) p (A276)
ag 19 = — MY, (A277)
agoo = —Mén) , (A278)
agp1 = —M;n) , (A279)
agop = *Mén) , (A280)
ag23 = *Mén) , (A281)
agos = —M%) , (A282)
ags = Q" (A283)
age = Q8 (A284)
ag7 = QY (A285)
agg = Q" (A286)
age = QL (A287)
a9,10 = Qén) , (A288)
4911 = an) p (A289)

ag12 = QY (A290)
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ag 13 = an) ,

n
a9 14 = ng) ,

(n)

ag1s = —Qp 7,
9,16 = _an) ,
ag17 = *Q_g,") ,
a9, 18 = —Qf;n) ,
a9, 19 = —Qén) ,
a9 0 = —Qén) ,
4921 = —an) ,
a9y = —Qg(;n) ,
a9 3 = —an) ,
a9 24 = —Q%) ,

a1, = (;n)]n (kpa) ,
a0 = (?)Yn (kpa) ,

1103 = ksl (ksa) = (5) Ju(ksa)

n
a4 = ksYy 11 (ksa) - (E)Yn (ksa) ’

a105 = —Pl(n) ,
1106 = —Pz(n) p
a107 = —Pg(,n) ,
a108 = —Pin) p
a109 = —Pén) ,
a10,10 = _Pé(n) p
a1011 = — 7(n) ,
a1012 = — én) ,
110,13 = _Pg(n) ,
110,14 = —Pf{} ),

a1y = (;n)]n (kpa) ,
a1 = <_an)Yn (kpa) ,
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(A291)
(A292)
(A293)
(A294)
(A295)
(A296)
(A297)
(A298)
(A299)
(A300)
(A301)

(A302)

(A303)

(A304)

(A305)
(A306)

(A307)
(A308)
(A309)
(A310)
(A311)
(A312)
(A313)
(A314)
(A315)

(A316)

(A317)

(A318)
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a113 = ks 41 (ksﬂ) - (g)]n (ksﬂ) ’

a1 = kY1 (ksa) = (2 ) Yalksa)

411,15 = —an) ,
a11,16 = —Pz(n) ,
a1117 = —Pgsn) ,
a11,18 = —Pin) p
a11,19 = —P5(n) ,
a11,20 = —Pén) p
a1101 = _P7(n) ,
a11,22 = —Pén) ,
a113 = _Pg(n) ,
a1104 = —Pl(g) ,

a121 = —kpJus1(kpa) + (g)]n (kpa) ,

app = _kPYn-‘rl (kpg> + (1’1

a

(g)]n (ksa) ’
- (2ate,
aps=—1,
a6 = —1,
apy=-1,
apps = —1,
ape =—1,
a0 = —1,
appa1 = —1,
ap12 = —1,
a3 = —1,
ap1e = —1,

a131 = —kpJns1(kpa) + (g)]n (kpa) ,
1113,2 = _kPYVl-H (kpﬂ) + (g)Yn (kp{l) ,
a133 = (g)]n(ksa) ,

34 = (S)Yn (ksa) ,
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(A319)
(A320)

(A321)
(A322)
(A323)
(A324)
(A325)
(A326)
(A327)
(A328)
(A329)
(A330)

(A331)
(A332)
(A333)

(A334)
(A335)
(A336)
(A337)
(A338)
(A339)
(A340)
(A341)
(A342)
(A343)
(A344)

(A345)
(A346)
(A347)

(A348)
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(A349)
am3ys = —1,
(A350)
mszie = —1,
(A351)
a317 = —1,
(A352)
a3 = —1,
(A353)
1319 = —1,
(A354)
a3 = —1,
(A355)
a301 = —1,
(A356)
amz = —1,
(A357)
a3p3 = —1,
(A358)
a1324 = —1,
() (A359)
ag5 = —N; 7,
() (A360)
a4 = —N, 7,
) (A361)
a147 = *Nén ,
") (A362)
a148 = —NAE ,
) (A363)
a149 = *Nén ,
") (A364)
a14,10 = _Né( ,
") (A365)
a1411 = —Né ,
(m) (A366)
a1412 = —Ng ',
) (A367)
41413 = _Ng(n ,
) (A368)
a1414 = —Nfg ,
) (A369)
414,15 = Nl(n ,
) (A370)
a1416 = Nz(n ,
(A371)
a1417 = N3(n) /
(A372)
a14,18 = Nin) p
(A373)
14,19 = Nén) p
(A374)
M40 = Nén) p
(A375)
a1421 = N7(n) ,
) (A376)
a1422 = Nén p
) (A377)
a1423 = Ng(n p
(A378)
A1424 = N}S) /

) (m) A379
aj55 = exp (/\gn)zL) (1) [vEp + aEpM§n)/\§n) + DNl(n))\gn +nvE,P; } , ( )
’ a
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15,6 = exp (A;%L) <i) [UEP +aE, MAM + DNJIALY 4 nvEpPZ(”)] ) (A380)
a7 = exp(11"z1) (i) 0, +aB, MY ALY + DNSYASY 4 o, P (A381)
a5 = exp(1]"21) (i) 0, + B, MY AL + DNYVALY 4 ok P (A382)
f159 = exp (Ag )zL) <le> :uEp +aE, MM £ DNIIAL 4 nvEpPén): ) (A383)
1510 = exp (Ag )zL) (;) :vEp +aE, MAM 4 DNIAL 4 nvEpPG(n): , (A384)
ai5,11 = exp ()\;n)zL> (i) :vEp + aEpM;”)/\;n) + DN;n)Aén) + nvEpP;n): , (A385)
a1512 = exp (AgﬂzL) (i) :UE,, +aE, MM + DNJIALY + nuE,,Pg”): , (A386)
A15,13 = exp (AgﬂzL) (i) :UE,, +aE, MUY + DNSYALY 4 nvEpPén): , (A387)
ai511 = exp(Afp)z1) (i) |0Ep + aEpM{g AT + DNGALY + noE, Py | (A388)
05 = oxp (A2, (D) MPAL +aNPAP 4 ool (A389)

m166 = exp (A2 ) (S) MEALY 4+ aNASY ol (A390)

G167 = exp (Aé”)zL) (S) :Mgnugm +aNSIAM + nvgg”): ) (A391)

a168 = €Xp (Ain)zL) <S) :MZ(L”)/\A(JZ) + aNin)/\in) + ané(Ln): , (A392)

1169 = exp (A1) (D) MEIAL - aNEIAL 4 o] (A393)

a1610 = exp Az, MUAD 4 aNIAW 4 ) (A394)

16,11 = €xp Aé”)zL (A395)

( )l J
( )l J
otz = exp (A, ) [Mgmgm FaN{ AL o] (A396)
( )l J
( )l i

b
a
_ (n) CANTYION o (n) (n)
116,13 = exp|Ag 'zZL " My Ag" +aNg" A " nvQq (A397)
( D 1pg0m 5 () (n)
16,14 = €Xp| Ay " My’ Ay +aNp,’ A 10 +an10 (A398)
1175 = exp(1{")2L) ) =M - anp( A"+ 10(VA ] (A399)
a176 = exp (/\én)zL) ) [—nhMgn) + ahPZ(n)/\gn) + IQén))\gn)} , (A400)
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mrr = o (A2, (G) (M) + anp A + 104 AL (Ad01)
a1z = exp(1{"21) (f) [—nnm{ -+ anpPAL + 10572501, (A402)
a9 = exp(AL"z21) (f) Ml -+ anp{PA + 1007201 (A403)
ai7,10 = exp (A2 ) (f) My -+ anpy A+ 100A (A404)
aj711 = exp (A;n)zL) (i) :—nhM;n) + ahPé”)Agn) + Ian))&gn): , (A405)
a1712 = exp ()\én)zL) (f) :—nhMén) + ahPé”)/\é") + IQén))té”): , (A406)
g = exp (A7z1) (5 ) [l ane 2+ 100" (A407)
ai710 = exp (M) 2L ) (f) —nhMyg) -+ ahPp A+ 1QAT | (A408)
a5 = exp(1)"z1) <il> =N + PMAYY 4 aQMA] (A409)
a6 = exp(15"21) (?) Ny 4 PALY +aQ(UALY ] (A410)
a7 = exp(11"21) (?) Ny 4 PALY +aQfUAL ] (A411)
mss = exp(1z0) (5 ) [-nNg? + 2020+ aQfA] (A4
s = exp(10"z0) (5 ) [-nNg” + POAL + a0l AL (Ad13)
g0 = exp (1) (1) [nNg + B + a2, (Aa14)
f1511 = exp (Aé")zL) (?) :—nN§”) +PIA 4 aQé”)Aé”): ) (A415)
oz = exp(1{"z2) (S) [+ oA+ a0 2], (Ad16
mig13 = exp (1”21 ) (?) NG + PAS 4+ aQfV A" (A417)
ais1s = exp (A1) (il) =Ny + P AL + a0 A (A418)
a195 = exp (Ag")zg kGh ()\gn) + Nl(n)) , (A419)

a196 = exp (/\EH)ZL) kGh ()\gn) + Nz(n)) , (A420)

a197 = exp ()\g")zL) kGh ()\gn) + Nén)) , (A421)

a198 = exp ()\f}")zL) kGh ()\y) + Nin)) , (A422)



Acoustics 2019, 1

a199 = exp(/\én zL> xGh ()\é") + NS(n)) )

a1910 = exp(Ag 'z
19,11 = €Xp
19,12 = €Xp
a19,13 = exp /\é zZL

19,14 = eXp( 10 ZL

Al INT
a0,15 = exp| Ay "ZR -

_ A 1’1
20,16 = €Xp ZR
71

10,17 = exp| Ay 'zr

— A n)
20,18 = €Xp ZR

a2020 = exp|Ag 'ZR
_ n)
ax021 = exp| Ay 'zr
a2 = exp(Ag 'zr
a20,23 = exp(Ag 'ZR

20,24 = €Xp

(A"zr)
(47=) (
(4= (
(A=) (
izos0 = exp (1) (
(47=5) (
(W) (
(4= (
(47=) (
(A5 )(

az1,17 = €xXp

ar119 = exp( A

1,20 = exp| A

(n)
az121 = exXp )L7

("

(%

(s
ervzs = (A

(s

("

(

S

("
("
(%
(

[UEP +aEp MY ALY + DNYUASY + noE, Py

[v +aE,MUAY + DNJIAL 4 noE, P{"
[v +aE,M M >Ag") + DN( M) +nvEp (n
[UEP +aEpMig ALY + DN{YASY + nvE, PG

) MR+ oA+ ]
M( )A(Vl)_'_ N( )A(Tl) +TIUQ2n )
MIALY 4 aNSIALY 4 noQlM]

MIA +aN{IASY + ol ]

MUIAL 4 aNSIAY 4 noQlM]
M o]

ZR [M§ A+ and AL 4ol

VE, +aB M A" + DN{ A" + noE, P{" ]
UEp + ﬂEpM( )Ag”) + DN( ))\( "y nvEpP( ):
[vEp +aEpMEVAL + DNSVAL + nvE, Py |
VE, +aByM{" AL + DN AL + noE, PJ" |
vE, +aB, M AL + DNIALY + noE, P |

vE, +aE, M AL + DNIVAL 4+ nvE, B

"
]
]
o]

333

(A423)
(A424)
(A425)
(A426)
(A427)

(A428)

(A429)

(A430)

(A431)

(A432)

(A433)

(A434)

(A435)

(A436)

(A437)

(A438)

(A439)

(A440)

(Ad41)

(A442)

(A443)

(Ad44)

(A445)



Acoustics 2019, 1

3120 = exp Aé" ZR) > [Mén))\én) + LZN(

x

; ) [MV25" + aNg™'A

Ll21/23 = exp ()\ " ZR> (
_ D [pp(m 4 (n)

az1,24 = €Xp (A ) ((1) |: )\10 + aNlO
422,15 = exp /\5 ZR > _—nhM§") +ahP( A
22,16 = €XP /\én)ZR > _—nhMén) + ath(")
2,17 = exp /\é ZR ) _—nhMén) + ahPé”)

18 = exp( Ay 'zR > :—nhM[(L") + ahp"

) —nhM"” 4 ahpl"

a0 = exp(A{"zr [—nhMé") +ahp™

(m)

app1 = exp( Ay zr -fnhMgn) + ahp\")

n
617_2,22 = exp /\é )ZR

n
6122’23 = exp /\é )ZR

022 24 = exp /\gn)ZR

(4"=)
(")
(46"2)
(14"2)
10 = exp (A0zx)
(16"=)
(4"2)
(%"=)
(1"=)
(40'=)

/W N 7 N -7 N -7 N 7 N 7 N 7 N 7N 7N /N
20

a
GI\ T Y
ax3 15 = exp()\gn)zR) <a) _—an( ") + P( )/\ + an
n GI\ T n
123,16 = eXP()\g )ZR) (a) _—nNz( W 4 PA 4 aQ{Ma
n GI\T n
ax317 = eXP()Lg )ZR) (a) _—nN3( )—i-P( )/\ —|—aQ3
_ (n) GI (n) | p(n)y(n) (n) 5 (
23,18 = exP(A4 ZR) — [—nN4 + PN +aQ) A
_ (n) GI (n) | p(n)y () (n) 5 (
a23,19 —eXP(/\5 ZR) e {—nN5 + Py Ay +aQ5 A
(n) GI\T (n) | p(n)y(n) (n) 5 (n
23,20 —eXP(/\é ZR) — _—nN6 + PV +aQg A
GI
321 = eXp(/\gn)ZR) (a) _—nN( " 4 ( A +aQ7
NG GI\T (n) | p(n),(n) (n)
23,22 —exp( ZR) e _—nN8 + Py Ay +aQg A

G) —nhM{" + anp{ A

> —nhMS 4 ah P AL

+an”}

"t nvQ}

n

1

10 - ”UQlo }

AT 4 1Q8 ALY
PYCI (o) QP
Ai") + IQA(LH)/\( )

)\é”) 4 IQén)/\( )

A 4 1Al
+ IQg’) A
) 1Qi AL
> Mg+ ahPi ALY + 1QI) ALY

1 B

()]
8 4

)\é”) + IQén)/\( )

)]

334

(A446)

(A447)

(A448)

(A449)

(A450)

(A451)

(A452)

(A453)

(A454)

(A455)

(A456)

(A457)

(A458)

(A459)

(A460)

(A461)

(A462)

(A463)

(A464)

(A465)

(A466)



Acoustics 2019, 1 335

n GI n n n n n
423,23 = eXp(Ag )ZR) (a) {*nNg( ) +P9( )/\é ) +an )/\g )} , (A467)
n GI n n n n n
1301 = exp(A1) 2 (a) [—nNgg) -+ PYALY +aQfPAT) ] (A468)
415 = €xp AY”ZR kGh (A§”) + Nl(n)> , (A469)

AN, (A470)

a24,17 = EXp , (A471)

a24,18 = €Xp , (A472)

2419 = €Xp , (A473)

2421 = exXp )\7 ZR , (A475)

A2420 = €Xp )‘5(; , (A476)

(14"z)

(12"zx) xG ( )
(15"zr) G ( )
(14"zr) G ( )
(15"zr) G ( )

a0 = exp (A" z) kG (A" + N (A474)

(17"2r) G ( )
(18"2r) G ( )
(15"2r) G ( )
(156'zr) G ( )

ar403 = exp (A zp ) kGl (ALY + NV, (A477)
and
ap40s = exp(AWzg) xGh (AW + N (A478)

References

1.  Hull, AJ,; Perez, D.; Cox, D.L. An Analytical Model of a Curved Beam with a T-Shaped Cross Section; NUWC-NPT
Technical Memorandum 17-054; Naval Undersea Warfare Center Division: Newport, RI, USA, 13 June 2017.

2. Hull, AJ,; Perez, D.; Cox, D.L. An analytical model of a curved beam with a T-shaped cross section.
J. Sound Vib. 2018, 416, 29-54. [CrossRef]

3. Donnell, L.H. Stability of Thin-Walled Tubes Under Torsion; National Advisory Committee for Aeronautics
(NACA) Report Number 479; NACA: Washington, DC, USA, 1933.

4. Mirsky, I; Herrmann, G. Nonaxially symmetric motions of cylindrical shells. |. Acoust. Soc. Am. 1957, 29,
1116-1123. [CrossRef]

5. Han, S.M,; Benaroya, H.; Wei, T. Dynamics of transversely vibrating beams using four engineering theories.
J. Sound Vib. 1999, 225, 935-988. [CrossRef]

6.  Timoshenko, S.P. On the transverse vibrations of bars of uniform cross-section. Philos. Mag. 1922, 43, 125-131.
[CrossRef]

7. Bickford, W.B. A Consistent Higher Order Beam Theory. In Proceedings of the 11th Southeastern Conference
on Theoretical and Applied Mechanics, Huntsville, AL, USA, 8-9 April 1982; pp. 137-150.

8. Karama, M.; Afaq, K.S.; Mistou, S. Mechanical behavior of laminated composite beam by new multi-layered
laminated composite structures model with transverse shear stress continuity. Int. J. Solids Struct. 2003, 40,
1525-1546. [CrossRef]

9.  Ambati, G,; Bell, ].EW.,; Sharp, ].C.K. In-plane vibrations of annular rings. J. Sound Vib. 1976, 47, 415-432.
[CrossRef]

10. Kirkhope, J. In-plane vibration of a thick circular ring. J. Sound Vib. 1977, 50, 219-227. [CrossRef]

11. Hawkings, D.L. A generalized analysis of the vibration of circular rings. |. Sound Vib. 1977, 54, 67-74.
[CrossRef]

12.  Kirkhope, J.; Bell, R.; Olmstead, J.L.D. The vibration of rings of unsymmetrical cross-section. J. Sound Vib.

1984, 96, 495-504. [CrossRef]


http://dx.doi.org/10.1016/j.jsv.2017.11.044
http://dx.doi.org/10.1121/1.1908716
http://dx.doi.org/10.1006/jsvi.1999.2257
http://dx.doi.org/10.1080/14786442208633855
http://dx.doi.org/10.1016/S0020-7683(02)00647-9
http://dx.doi.org/10.1016/0022-460X(76)90951-2
http://dx.doi.org/10.1016/0022-460X(77)90356-X
http://dx.doi.org/10.1016/0022-460X(77)90406-0
http://dx.doi.org/10.1016/0022-460X(84)90636-9

Acoustics 2019, 1 336

13.

14.

15.

16.

17.

18.

19.

20.

21.
22.

23.

24.

25.

Bhimaraddi, A. Generalized analysis of shear deformable rings and curved beams. Int. J. Solids Struct. 1988,
24,363-373. [CrossRef]

Lin, S.M,; Lee, S.Y. Closed-form solutions for dynamic analysis of extensional circular Timoshenko beams
with general elastic boundary conditions. Int. J. Solids Struct. 2001, 38, 227-240. [CrossRef]

Konovalyuk, LP. Diffraction of a plane sound wave by a plate reinforced with stiffness members.
Sov. Phys. Acoust. 1969, 14, 465-469.

Graff, K.F,; Klein, C.A.; Kouyoumjian, R.G. On the Effect of Mass Loading on a Stiffening Rib; The Ohio State
University Research Foundation Technical Report, Project 4409-A1, Report Number 1; The Ohio State
University: Columbus, OH, USA, 10 January 1977.

Woolley, B.L. Acoustic scattering from a submerged plate. I. one reinforcing rib. J. Acoust. Soc. Am. 1980, 67,
1642-1653. [CrossRef]

Woolley, B.L. Acoustic scattering from a submerged plate. II. finite number of reinforcing ribs. J. Acoust.
Soc. Am. 1980, 67, 1654-1658. [CrossRef]

Marcus, M.H.; Sarkissian, A. Rib resonances resent in the scattering response of a ribbed cylindrical shell.
J. Acoust. Soc. Am. 1998, 103, 1864-1866. [CrossRef]

Tran-Van-Nhieu, M. Scattering from a ribbed finite cylindrical shell. J. Acoust. Soc. Am. 2001, 110, 2858-2866.
[CrossRef]

Cauchy, A.-L. On the pressure or tension in a solid body. Exerc. Math. 1827, 2, 42-56.

Graf, K.F. Wave Motion in Elastic Solids; Dover Publications, Inc.: Mineola, NY, USA, 1975; pp. 464—480.
ISBN 0-486-66745-6.

Vinson, J.R. The Behavior of Shells Composed of Isotropic and Composite Materials; Kluwer Academic Publishers:
Dordrecht, The Netherlands, 1993; pp. 65-80.

Mindlin, R.D.; Deresiewicz, H. Thickness-shear and flexural vibrations of a circular disk. . Appl. Phys. 1954,
25,1329-1332. [CrossRef]

Rao, S.S.; Prasad, A.S. Vibrations of annular plates including the effects of rotary inertia and transverse shear
deformation. J. Sound Vib. 1975, 21, 305-324. [CrossRef]

@ © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).


http://dx.doi.org/10.1016/0020-7683(88)90067-4
http://dx.doi.org/10.1016/S0020-7683(00)00020-2
http://dx.doi.org/10.1121/1.384287
http://dx.doi.org/10.1121/1.384288
http://dx.doi.org/10.1121/1.421337
http://dx.doi.org/10.1121/1.1413997
http://dx.doi.org/10.1063/1.1721554
http://dx.doi.org/10.1016/0022-460X(75)90247-3
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Methods 
	Results 
	Conclusions 
	
	
	
	
	References

