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Abstract: This study extends the second-order attenuation (SOA) model for elastic waves in
texture-free inhomogeneous cubic polycrystalline materials with equiaxed grains to textured
polycrystals with ellipsoidal grains of arbitrary crystal symmetry. In term of this work, one can
predict both the scattering-induced attenuation and phase velocity from Rayleigh region (wavelength
>> scatter size) to geometric region (wavelength << scatter size) for an arbitrary incident wave mode
(quasi-longitudinal, quasi-transverse fast or quasi-transverse slow mode) in a textured polycrystal
and examine the impact of crystallographic texture on attenuation and phase velocity dispersion
in the whole frequency range. The predicted attenuation results of this work also agree well with
the literature on a textured stainless steel polycrystal. Furthermore, an analytical expression for
quasi-static phase velocity at an arbitrary wave propagation direction in a textured polycrystal
is derived from the SOA model, which can provide an alternative homogenization method for
textured polycrystals based on scattering theory. Computational results using triclinic titanium
polycrystals with Gaussian orientation distribution function (ODF) are also presented to demonstrate
the texture effect on attenuation and phase velocity behaviors and evaluate the applicability and
limitation of an existing analytical model based on the Born approximation for textured polycrystals.
Finally, quasi-static phase velocities predicted by this work for a textured polycrystalline copper
with generalized spherical harmonics form ODF are compared to available velocity bounds in the
literature including Hashin–Shtrikman bounds, and a reasonable agreement is found between this
work and the literature.

Keywords: elastic wave; crystallographic texture; attenuation; phase velocity; polycrystalline
materials

1. Introduction

Polycrystals or polycrystalline materials are solid aggregates of numerous individual crystallites
(or grains) of varying morphology, size and crystallographic orientation, where the grains are bonded
together by grain boundaries. Polycrystals thus are heterogeneous materials in grain scale. The
majority of inorganic solids such as common metals, ceramics and rocks are polycrystals. Due to their
significance in various industries, polycrystals are one of the major objects of study in non-destructive
evaluation (NDE) and seismology. One significant but challenging topic related to polycrystals in
NDE and seismology is the elastic wave scattering and the resulting attenuation in polycrystals. It
has been studied for decades [1–8] but elastic wave scattering in complex polycrystals is still not
well understood.

Elastic waves propagating in heterogeneous polycrystals are subject to scattering at the grain
boundaries due to the misorientation between adjacent grains [9–12], and this further induces beam
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attenuation due to energy dissipation from the main ultrasonic beam. Although there are various
wave attenuation mechanisms in polycrystalline materials such as viscosity [13] and relaxation [14], in
many cases the main source of attenuation is wave scattering [5,11] and it has been experimentally
proved by a study [15]. The scattering-induced attenuation in polycrystalline materials has an
important implication of microstructure information [10,16,17] and thus has been extensively applied
to the nondestructive characterization of grain microstructures [18,19]. It is worthy to mention that
many studies [20–23] recently emerge on finite element modeling (FEM) of elastic wave attenuation
in polycrystals. However, FEM is a numerical method and it has limited practical application to
the ultrasonic characterization of grain microstructures. Due to the industrial needs of ultrasonic
characterization of microstructure characteristics from ultrasound measurements, many studies [1–23]
have strived to develop analytical attenuation models for polycrystalline materials with a variety of
complexities such as the low symmetry constituents [7,24–27], the duplex microstructure [10] and the
columnar grains [28].

Numerous attenuation models have been reported for statistically isotropic polycrystals and they
fall into four different catalogues: the Karal and Keller model [29], perturbation theory [3,4,30], Weaver
type model [5], and the spectral function method [31,32]. The Karal and Keller model [29] is limited to
scalar wave attenuation while the Stanke and Kino model [3], a unified model based on perturbation
theory and suitable for the whole frequency range, was constrained to macroscopically isotropic
polycrystals with equiaxed cubic grains. It is worth mentioning that the Stanke and Kino model [3]
has been extended to cubic polycrystals with ellipsoidal shape grains [28]. Weaver [5] systematically
derived another attenuation model for elastic waves in texture-free polycrystals by Dyson equation.
The Dyson equation in Ref. [5] is general for all polycrystals but the successive derivations were based
on the Born approximation (applicable frequency is below the geometric region where wavelength <<

scatter size) and its explicit expressions were limited to cubic polycrystals without crystallographic
texture. A recent study [33] also targeted on texture-free polycrystals has shown that Weaver’s
model [5] can be converged to the Stanke and Kino model [3] using numerical iteration. Cavlet and
Margerin [32] proposed a spectral function method to model the wave attenuation and phase velocity
in texture-free polycrystalline materials at all frequency regions; their development [32] is limited
to orthotropic symmetry crystallites [32]. Cavlet and Margerin [32] also drew a comparison to the
Stanke and Kino model for cubic iron polycrystals, and it indicates that their model [32] is comparable
to the Stanke and Kino model [3]. An intriguing finding in Ref. [32] is that two branches exist for
attenuation and phase velocity while Stanke and Kino [3] only calculated one branch. Recently, Cavlet
and Margerin [34] further investigated the grain shape effect on attenuation and phase velocity using
the spectral function method for texture-free cubic polycrystals. All these studies [3,5,32–34] have
developed second-order attenuation models, since they consider some multiple scattering events
in the mean Green function [35]. Another second-order attenuation model, a far-field attenuation
model [36], following Weaver’s approach [5], has been developed for macroscopically isotropic triclinic
polycrystals of ellipsoidal grains [36] and it is reasonably close to the Stanke and Kino model [3] and
spectral function method [32]. A recent study [23] has reported a full-wave second-order attenuation
(SOA) model for texture-free cubic polycrystals by extending Weaver’s approach [5], and the SOA
model has a reasonable agreement with Stanke and Kino model [3] and finite element modeling [23].
All these analytical models [3,5,23,29,32,34,36] above are only applicable for macroscopically isotropic
polycrystalline materials; however, crystallographic texture generally exists in natural and man-made
materials such as rocks and metals causing macroscopically anisotropic properties [37]. Thus, more
general attenuation models are desired to take account of crystallographic texture.

Modeling of elastic wave attenuation in textured polycrystals has also attracted the attention
of some researchers. For polycrystals with preferred crystallographic orientation, the Weaver
model [5], Hireskorn model [4,30], and the Stanke and Kino model [3] have been extended to
textured polycrystalline materials with crystallites of different symmetry classes and shapes by
Refs. [6,38–41]. However, the models in Refs. [6,39–41] that presented explicit attenuation coefficients
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by the Born approximation break at high frequency, and the accuracy of the Born approximation has
never been investigated for textured polycrystals. These models in Refs. [6,39,40] also fail to provide any
information about the phase velocity in textured polycrystalline media that is of practical importance
in ultrasonic nondestructive testing and seismology (analytical expressions for velocities in Ref. [41]
are not applicable to high-frequency regions, e.g., stochastic regime). Note that the model developed
in Ref. [38] based on the Stanke and Kino model [3] adopted the Green function for isotropic reference
media instead of that for anisotropic reference media, making it an unrigorous model although it was
a significant development in the 1990s. The latest development of attenuation modeling in Ref. [40]
accounted for aggregates of triclinic grains in ellipsoidal shape with arbitrary texture symmetry and
obtained explicit equations for attenuation coefficients; however, it was implemented under the frame
of the Born approximation [40] and had no attempt to predict phase velocity behavior in textured
polycrystal due to the complexity of mass operator (self-energy operator) [5] in anisotropic media.
Therefore, the attenuation and phase velocity behaviors of elastic waves in the textured polycrystals
have not been well understood.

This work aims to develop a second-order attenuation model for a textured polycrystalline
aggregate of triclinic crystallites in ellipsoidal shape by extending an existing study [23] for texture-free
polycrystals. It also investigates the accuracy and applicability of the Born approximation, which will
define the boundary between single-scattering theory [12] and diffusion theory [12], and the behaviors
of phase velocity in different frequency regimes. The work will degenerate to previous analytical
models [5,23] when the crystallographic texture of a polycrystal is extremely weak. Although a recent
paper has studied grain number impact on attenuation [42] by synthetic grain microstructures, this
work still focuses on polycrystals composed of infinite grains or a sufficiently large number of grains
(so that grain number impact is negligible), just as most of the previous studies. Several novelties exist
in this work compared to previous studies [23,40]: it is the first time integrating the Green function
for anisotropic reference media into an attenuation model, implementing numerical calculation of
the full mass operator (including Cauchy Principal value in the real part) and solving the dispersion
equation for a textured polycrystal of triclinic grains; the SOA model for textured polycrystals is further
validated by comparing to available FEM results and experimental data on a textured stainless steel
sample; to our best knowledge, it is also the first time to investigate the accuracy and limitation of the
Born approximation on textured polycrystals and examine the texture impact both on attenuation and
phase velocity at whole frequency range; as another original development of this work, an explicit
expression for quasi-static velocities at an arbitrary wave propagation direction in textured polycrystals
of triclinic elongated grains is derived in this paper and obtained quasi-static velocities from this work
are compared to available bounds in the literature on a polycrystalline copper.

This paper is structured as follows. The relevant theoretical background is first reviewed in
Section 2. It is followed by the SOA model for textured polycrystals and its asymptotes for attenuation
and phase velocity at the Rayleigh region. In Section 4, comparisons are drawn between the SOA model
developed in this work and other studies on textured polycrystals to justify the SOA model and examine
the limitation of the Born approximation. The texture impacts on attenuation and phase velocity are
also studied. The quasi-static velocities from the SOA model are further compared on a polycrystalline
copper with available velocity bounds in the literature. Finally, conclusions are provided.

2. Theoretical Background about Attenuation Modelling in Textured Polycrystals

This section will introduce the theoretical background of attenuation modeling for textured
polycrystalline materials. Firstly, a quantitative texture description, namely orientation distribution
function (ODF), is introduced. Furthermore, based on the Weaver type model [5] some fundamentals of
attenuation modeling for polycrystalline materials are reviewed. Finally, one key element of attenuation
modeling, the two-point correlation function, is addressed.
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2.1. Orientation Distribution Function (ODF)

Statistical isotropy is the ideal status of polycrystalline materials and crystallographic texture
widely exists in man-made and natural polycrystalline materials such as metals and minerals [7,43,44].
In other words, the crystallographic orientations of crystallites in an actual polycrystals aggregate are
not perfectly randomized; instead, grain orientations are aligned in certain directions and the whole
aggregate thus presents anisotropic properties.

2.1.1. Generalized Spherical Harmonics ODF

To bridge the gap between the property of individual crystallites and that of the assembly, one
needs to know the crystallographic orientation distribution of crystallites that presents the probability
density of a given orientation direction in 3D space. Intensive studies were reported to quantify the
orientation distribution of crystallites in the past [43,45–47]. Well-known terminologies of orientation
distribution functions (ODF) for quantitative texture analysis are from Bunge [43] and Roe [46]. Both
are in terms of generalized spherical harmonics, although different rotation angles are used.

Here we follow the ODF in Bunge’s terminology [43]. To describe the three-dimensional ODF by
generalized spherical harmonics, the representation of rotation from crystallite coordinate to global
coordinate should be well defined. In Bunge’s notation [43], the three Eulerian angles describing 3D
rotation are ϕ1, Φ, ϕ2, which are shown in Figure 1. To rotate the global texture coordinate to the
crystallite coordinate, one has to follow such a procedure [43]: first, rotate about the TZ axis through
the angle ϕ1; then rotate about x’ axis by the angle Φ and finally rotate about z-axis by the angel ϕ2.
Therefore, the rotation matrix in Bunge’s Euler rotation angles is:

R(ϕ1, Φ,ϕ2) =


cosϕ1 cos Φ cosϕ2 − sinϕ1 sinϕ2 sinϕ1 cos Φ cosϕ2 + cosϕ1 sinϕ2 − sin Φ cosϕ2

− cosϕ1 cos Φ sinϕ2 − sinϕ1 cosϕ2 − sinϕ1 cos Φ sinϕ2 + cosϕ1 cosϕ2 sin Φ sinϕ2

cosϕ1 sinϕ2 sinϕ1 sin Φ cos Φ

 (1)
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Figure 1. The orientation of the crystallite coordinate (x, y, z) in the texture coordinate system (Tx, Ty, 
Tz). 

2.1.2. Gaussian form ODF 

Although the generalized spherical harmonics form ODFs [43,46] are widely used in material 
science and engineering, one should note that there are other forms of ODF existing in the literature 
[47–52]. For example, Gaussian-shape ODF as reported by references [47–50] has been utilized as a 
simple tool to investigate the texture effect on piezoelectricity and elasticity. As described in Ref. [50], 
the 3D Gaussian shape ODF is: 
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where σφ1, σΦ, σφ2 are texture parameters and the factor F0=S1csch(S1)/[I(0,S2)I[0,S3]] satisfies this 
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I(0,S2), I(0,S3) are modified Bessel functions of the first kind [50], and φ1, Φ, φ2 are three Euler angles 
defined by Bunge notation as shown in Figure 1. In this representation, the texture parameters σφ1, 

σΦ, σφ2 in the Gaussian ODF can be directly related to the full width at half maxima (FWHMs) of 
texture angles φ1, Φ, φ2 from experimental orientation imaging microscopy [39,47]. When all three 
parameters σφ1, σΦ, σφ2 approach infinity the ODF degenerates to the case of statistically isotropic 
polycrystals. When two of them go to infinity, the ODF would be equivalent to fiber (axisymmetric) 
texture like Refs. [39,53]. Note that ODFs in different notations are related to each other, for example, 
the relation between Bunge's ODF and Roe's ODF has been investigated in Ref. [54] and the 
conversion from 1D Gaussian ODF to Roe’s ODF has been proposed in Refs. [49,53]. 

 
 2.2 Theoretical Background of Attenuation Modelling 

Although there are three types of theories available for modeling elastic wave attenuation 
(perturbation method [3,4,30], spectral function method [32], and Dyson equation [5]), here we only 
focus on the theoretical background of Dyson equation method [5]. 
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where 𝛿𝑐 (𝑿), a fourth-order tensor, is the variation of normalized elastic constants from the 
reference medium, δjα means Kronecker delta (a second-order tensor) and 𝐶  stands for the 
homogenized elastic constants. ω is the angular frequency. The elastic constant at a given location X 
is equal to the elastic constants of its reference medium plus a spatial fluctuation term, namely: 

Figure 1. The orientation of the crystallite coordinate (x, y, z) in the texture coordinate system (Tx,
Ty, Tz).

The ODF in Bunge’s notation expressed by generalized spherical harmonics from Ref. [43] is:

f (ϕ1, Φ,ϕ2) =
∞∑

l=0

l∑
m=−l

l∑
n=−l

Cmn
l exp(imϕ2)Pmn

l (Φ) exp(inϕ1), (2)
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where Cmn
l , Pmn

l (Φ) are texture coefficients and polynomial function [43], and l, m, n are integers (0 ≤ l
≤ ∞; however, l ≤ 32 in practical texture measurements). The polynomial function Pmn

l (Φ) is defined
in Ref. [43] as:

Pmn
l (Φ) = Pmn

l (cos Φ) = Pmn
l (x) =

(−1)l−min−m

2l(l−m)!

[
(l−m)!(l+n)!
(l+m)!(l−n)!

]1/2
(1− x)−

n−m
2 (1 + x)−

n+m
2 dl−n

dxl−n

[
(1− x)l−m(1 + x)l+m

]
,

(3)

where x is defined as x=cosΦ for simplicity. It represents a series of mutually orthogonal bases since
this relation holds [43]: ∫ π

0
Pmn

l (Φ)
(
Pmn

l′ (Φ)
)∗

sin ΦdΦ =
2δll′

2l + 1
. (4)

2.1.2. Gaussian form ODF

Although the generalized spherical harmonics form ODFs [43,46] are widely used in material
science and engineering, one should note that there are other forms of ODF existing in the
literature [47–52]. For example, Gaussian-shape ODF as reported by references [47–50] has been
utilized as a simple tool to investigate the texture effect on piezoelectricity and elasticity. As described
in Ref. [50], the 3D Gaussian shape ODF is:

F(Φ,ϕ1,ϕ2) = F0 exp
(

cos Φ
2σΦ

+
cosϕ1

2σϕ1
+

cosϕ2

2σϕ2

)
, (5)

where σϕ1, σΦ, σϕ2 are texture parameters and the factor F0=S1csch(S1)/[I(0,S2)I[0,S3]] satisfies this

equality 1
8π2

∫ π
0

∫ 2π
0

∫ 2π
0 F(Φ,ϕ1,ϕ2)sinΦdΦdϕ1dϕ2 = 1. Here, S1=1/(2σΦ), S2= 1/(2σϕ1), S3=1/(2σϕ2)

and I(0,S2), I(0,S3) are modified Bessel functions of the first kind [50], and ϕ1, Φ, ϕ2 are three Euler
angles defined by Bunge notation as shown in Figure 1. In this representation, the texture parameters
σϕ1, σΦ, σϕ2 in the Gaussian ODF can be directly related to the full width at half maxima (FWHMs) of
texture angles ϕ1, Φ, ϕ2 from experimental orientation imaging microscopy [39,47]. When all three
parameters σϕ1, σΦ, σϕ2 approach infinity the ODF degenerates to the case of statistically isotropic
polycrystals. When two of them go to infinity, the ODF would be equivalent to fiber (axisymmetric)
texture like Refs. [39,53]. Note that ODFs in different notations are related to each other, for example,
the relation between Bunge’s ODF and Roe’s ODF has been investigated in Ref. [54] and the conversion
from 1D Gaussian ODF to Roe’s ODF has been proposed in Refs. [49,53].

2.2. Theoretical Background of Attenuation Modelling

Although there are three types of theories available for modeling elastic wave attenuation
(perturbation method [3,4,30], spectral function method [32], and Dyson equation [5]), here we only
focus on the theoretical background of Dyson equation method [5].

As stated in Refs. [5,6,40], the elastodynamic response at a location X to a point load in
inhomogeneous media at X′ is (all the equations below in the paper are in tensor nation and
follow the Einstein summation):{

∂
∂xi

δci jkl(X)
∂
∂xl

+ C0
i jkl

∂
∂xi

∂
∂xl

+ω2δ jk

}
Gkα

(
X, X

′

;ω
)
= δ jαδ

3
(
X−X

′
)
, (6)

where δci jkl(X), a fourth-order tensor, is the variation of normalized elastic constants from the reference
medium, δjα means Kronecker delta (a second-order tensor) and C0

i jkl stands for the homogenized
elastic constants. ω is the angular frequency. The elastic constant at a given location X is equal to the
elastic constants of its reference medium plus a spatial fluctuation term, namely:

ci jkl(X) = C0
i jkl + δci jkl(X), (7)
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where the ensemble average of elastic constants is C0
jkli = 〈ci jkl(X)〉 and the symbol < > denotes

ensemble average over all grains. Note that the reference media is anisotropic for textured polycrystals.
It implies that the statistical average of the spatial fluctuation term is zero 〈δci jkl(X)〉 = 0 from Equation
(7), as explained in Refs. [5,40].

As stated in Refs. [5,6], the solution of the elastodynamic equation at a certain location is unsolvable,
but the mean Green function response

〈
Gkα(X, X′)〉 in the heterogeneous polycrystals can be obtained

by the Dyson equation:〈
Gkα

(
X, X

′
)〉

= G0
kα

(
X, X

′
)
+

x
G0

kβ(X, Y)Mβ j(Y, Z)
〈
G jα

(
Z, X

′
)〉

d3yd3z, (8)

where G0
kα(X, X′) is the Green function of a homogenized medium or reference medium. Mβ j(Y, Z) is

the mass operator or self-energy accounting for all possible scattering events [55] between location
Y and location Z. The mass operator may be expressed in a diagrammatic form including infinite
series [56]. However, the exact equation for the mass operator is difficult to obtain but finite order
approximation is employed instead in references [35,56]. Under the weak scattering assumption∣∣∣δci jkl

∣∣∣/C0
i jkl << 1, the mass operator after first order smoothing approximation (FOSA) is [6]:

Mβ j(Y, Z) ≈
〈
∂
∂Yα

δcαβγδ(Y)
∂
∂Yδ

G0
γq(Y, Z)

∂
∂Zi

δci jql(Z)
∂
∂Zl

〉
, (9)

where G0
γq is the Green function for the homogenized medium and δcijql is the spatial variation of

elastic constants. The mass operator in Equation (9) includes some second-order scattering events
according to Refs. [35,56]. From Equation (9), the mass operator is relevant to the covariance of elastic
constants fluctuation at two different points, namely the two-point correlation [5].

After spatial Fourier transform of the double convolution, the Dyson equation can be simplified
as [5]: 〈

G(k)
〉
= G0(k) + G0(k)M(k)

〈
G(k)

〉
. (10)

Since the Green function G0
kα(X, X′) in anisotropic reference media satisfies this equation [6,40]:{

C0
i jkl

∂
∂xi

∂
∂xl

+ω2δ jk

}
G0

kα

(
X, X

′
)
= δ jαδ

3
(
X−X

′
)

(11)

after spatial Fourier transform on both side of the equation above one obtains:(
−C0

i jqlkikl +ω2δ jq

)
G0

qα(k) = δ jα. (12)

The tonsorial form (dyadic) Green function in Equation (12) of an anisotropic homogenized
medium can be decomposed into three components according to the spectral method (matrix
decomposition) [40,57]:

G0(k) =
3∑

M=1

uM
⊗ uM

(Ω −ΩM)
=

3∑
M=1

uM
⊗ uM

ω2 − k2V2
M

=
3∑

M=1

go
MuM

⊗ uM, (13)

where ΩM = k2V2
M are eigenvalues (M is a wave mode in anisotropic media, quasi-longitudinal,

quasi-transverse fast or quasi-transverse slow mode), p is the unit wave normal vector, and ⊗ denotes
dyadic product. The phase velocity VM and polarization vector uM at a certain wave propagation
direction are determined through Christoffel’s Equation [40]:

[C0
i jmlp jpl − ρV2

Mδim]um = 0, (14)
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where pj is a component of wave normal vector p and ρ denotes the mass density of the medium. The

phase velocity VM is the square root of the eigenvalue of the matrix
C0

i jmln jnl

ρ for wave mode M and
polarization vector u is the corresponding eigenvector. In a textured polycrystal, there are three wave
modes: quasi-longitudinal (L) mode, quasi-transverse fast (T1) mode and quasi-transverse slow (T2)
mode. Unlike the isotropic media, the polarization direction of a quasi-longitudinal wave generally
deviates from its wave propagation direction while the polarization directions of a quasi-transverse
wave are not perpendicular to its wave propagation direction. However, three polarization vectors are
still mutually perpendicular to each other.

From Equation (10), the mean Green function
〈
G(k)

〉
in the spatial Fourier domain solved from

the Dyson equation is [6,40]: 〈
G(k)

〉
=

[
G0(k)−1

−M(k)
]−1

, (15)

where M(k) is the spatial Fourier transforms of the mass operator. Before we proceed to the expression
for the mass operator, two-point correlation function should be introduced first.

2.3. Two-point Statistics for Textured Polycrystals

The mass operator aforementioned is related to the two-point correlation function that is expressed
as δcijkl(X)δcαβγδ(X’), a covariance of elastic constants fluctuation from two points X and X’ (see the
schematic of a polycrystal in Figure 2). Since we are solely interested in the mean wave response
in heterogeneous polycrystals, the ensemble average of this covariance is critical. From statistics of
numerous grains, the ensemble average of elastic covariance can be further decomposed into two parts:
the volumetric average of elastic constants variation covariance and geometric two-point correlation
(GTPC) function [6,40]. The mathematical expression is:〈

δci jkl(X)δcαβγδ(X
′

)
〉
=

〈
δci jklδcαβγδ

〉
w
(
X−X

′
)
, (16)

where <δcijkδcαβγδ> is the ensemble average of elastic constants variation covariance for textured
polycrystals by Voigt averaging [58]. It can be numerically calculated through single-crystal elastic
constants and ODF by the following equation [40,50,59]:〈

δci jklδcαβγδ
〉
=

〈
ci jklcαβγδ

〉
−

〈
ci jkl

〉〈
cαβγδ

〉
, (17)

where the effective elastic constants by Voigt averaging and the elastic constants covariance for a
polycrystals aggregate are [40,50,59]:

C0
i jkl =

〈
ci jkl

〉
= 1

8π2

π∫
0

2π∫
0

2π∫
0

ci jkl(ϕ1, Φ,ϕ2) f (ϕ1, Φ,ϕ2) sin(Φ)dϕ1dϕ2dΦ;〈
ci jklcαβγδ

〉
= 1

8π2

∫ π
0

∫ 2π
0

∫ 2π
0 ci jkl(ϕ1, Φ,ϕ2)cαβγδ(ϕ1, Φ,ϕ2) f (ϕ1, Φ,ϕ2) sin Φdϕ1dϕ2dΦ.

(18)

Here cijkl(ϕ1, Φ, ϕ2) and f(ϕ1, Φ, ϕ2) are the rotated single-crystal elastic tensor and ODF (either
Gaussian ODF or generalized spherical harmonics ODF), respectively. The elastic constants rotation
matrix and details about elastic constants covariance calculation can be found in Refs. [39,40,50,53,59].
It is worthy to mention that Voigt effective elastic constants (or called Voigt reference media) are used
in this whole paper because it is more suitable for wave scattering modeling [23,60], although different
homogenization methods like self-consistent reference medium are available for polycrystalline
media [58,61]. Ref. [23] has compared the SOA models (for texture-free polycrystals) with Voigt
reference medium and self-consistent reference medium to finite element modeling and found that the
SOA model with Voigt reference medium agrees much better with FEM results.
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Figure 2. Schematic of the two-point correlation function in polycrystals. 

The spatial two-point correlation function 𝑤 𝑿 − 𝑿′  from Equation (16) only depends on the 
geometric characteristics of grain microstructure. Physically, it addresses the probability that two 
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Considering an incident wave propagating in direction 𝒑 and a scattered wave in direction 𝒔 
(shown in Figure 3), according to Refs. [9,24,40,50,59,64], the two-point correlation function in spatial 
Fourier domain W (q) is: 
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where 𝒒 = 𝒌 − 𝒌 , related to the incident wavenumber k and the scattered wavenumber 𝒌 , . Here 
N stands for a scattering wave mode in an anisotropic medium, namely a quasi-longitudinal mode, 
a quasi-transverse fast mode or a quasi-transverse slow mode.  
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Figure 2. Schematic of the two-point correlation function in polycrystals.

The spatial two-point correlation function w(X−X′) from Equation (16) only depends on the
geometric characteristics of grain microstructure. Physically, it addresses the probability that two
points X and X

′

fall into the same grain. In a polycrystal aggregate shown in Figure 2, the probability
of two points with a shorter distance falling into the same grain is always higher than that of two
points departing by a larger distance. For a realistic polycrystalline material, its spatial two-point
correlation function can be determined by the line intercept method from numerous microstructure
cross-sections [62]. Under the assumption that line intercepts on a cross-section follow a Poisson
distribution, an exponential form GTPC function was initially proposed by Stanke [62] and it has
been adopted by many other publications [6,7,9,24,40,48,50,59,63]. The mere parameter governing the
exponential GTPC is the mean line intercept (or called cord length) [62].

In this paper, it is still assumed that the geometric two-point correlation function is in exponential
form but the polycrystals contain ellipsoidal shape grains with three (statistically mean) semi-principal
axes aX, aY and aZ (see Figure 3). According to Refs. [9,24,40,50,59,64,65], the spatial two-point
correlation function W(r) for general ellipsoidal grains is:

W(r) = exp(−

√
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a2
X

+
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a2
Y

+
z2

a2
Z

). (19)
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where 𝑚  means the eigenvalue of 𝑴 (𝒌) at a wave mode M and the mean response of an incident 
wave mode M is [6,40]: 
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Since the denominator of the mean Green function should equal to zero, the dispersion equation 
is expressed as [6,40]: 
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where k=Re(k)+iα is a complex wavenumber in the perturbed medium. The real part provides 
frequency-dependent velocity while the imaginary part corresponds to the beam attenuation. One 
should note that 𝑘(𝒑), 𝑉 (𝒑), 𝑚 (𝒌) are direction-dependent. 

After substituting Equation (22) into Equation (21) and rewriting the tonsorial mass operator via 
Equation (22), one can obtain the expression for 𝑚 (𝒌). For a certain incidence wave M, the mass 
operator is the sum of three scattering terms ( L-L scattering, L-T1 scattering and L-T2 scattering [40]): 
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where the inner product is expressed as [40,50]: 
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Figure 3. The geometry of an ellipsoidal grain with three main axes aX, aY and aZ, wave propagation
p(τ,φτ) and scattering direction s(θ,φ). Angle θps is the angle between p(τ,φτ) and s(θ,φ).
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Considering an incident wave propagating in direction p and a scattered wave in direction s
(shown in Figure 3), according to Refs. [9,24,40,50,59,64], the two-point correlation function in spatial
Fourier domain W (q) is:

W(q) =
aXaYaZ

π2
[
1 +

(
q2

Xa2
X + q2

Ya2
Y + q2

Za2
Z

)]2 , (20)

where q = k− kS,N related to the incident wavenumber k and the scattered wavenumber kS,N. Here N
stands for a scattering wave mode in an anisotropic medium, namely a quasi-longitudinal mode, a
quasi-transverse fast mode or a quasi-transverse slow mode.

3. Second-order Scattering Model for Textured Polycrystals with Ellipsoidal Triclinic Grains

This section will develop the SOA model for textured polycrystals with triclinic grains of ellipsoidal
shape. The asymptotes at Rayleigh limit for attenuation and phase velocity will also be derived.

3.1. Dispersion Equation

As stated in Ref. [40], the mass operator after spatial Fourier transform is:

Mβ j(k) = kαkl

∫
G0
γq

(
kS

)
kS
δkS

i

〈
δci jqlδcαβγδ

〉
W

(
k− kS

)
d3kS, (21)

where k = kp means incident wavenumber and kS = kSs denotes scattered wavenumber.〈
δci jql(σ)δcαβγδ(σ)

〉
is the ensemble average of elastic constant covariance and W

(
k− kS

)
stands

for the GTPC function in the spatial Fourier domain. Similar to the Green function in a homogenized
medium, the mass operator and the mean Green function can be rewritten into dyadic form via spectral
method [36,40]:

M(k,ω) =
3∑

M=1

mMuM
⊗ uM,

〈
G(k,ω)

〉
=

3∑
M=1

gMuM
⊗ uM, (22)

where mM means the eigenvalue of Mβ j(k) at a wave mode M and the mean response of an incident
wave mode M is [6,40]:

gM(k) =
[
go

M(k)−1
−mM(k)

]−1
=

[
ω2
− k2V2

M −mM(k)
]−1

. (23)

Since the denominator of the mean Green function should equal to zero, the dispersion equation
is expressed as [6,40]:

ω2
− k2(p)V2

M(p) −mM(k) = 0, (24)

where k=Re(k)+iα is a complex wavenumber in the perturbed medium. The real part provides
frequency-dependent velocity while the imaginary part corresponds to the beam attenuation. One
should note that k(p), VM(p), mM(k) are direction-dependent.

After substituting Equation (22) into Equation (21) and rewriting the tonsorial mass operator via
Equation (22), one can obtain the expression for mM(k). For a certain incidence wave M, the mass
operator is the sum of three scattering terms ( L-L scattering, L-T1 scattering and L-T2 scattering [40]):

mM(k) =
3∑

N=1

mM→N =
k2(p)
ρ2

3∑
N=1

∫
gN

0 (k
S,N)IPM→N(p, s)k2

s W(k− kS,N)d3kS,N, (25)

where the inner product is expressed as [40,50]:

IPM→N =
〈
δci jqlδcαβγδ

〉
uβuqpαplsisδvγv j, (26)
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where u and v are the polarization vectors corresponding to the incident wave and scattered
wave, respectively.

To calculate the integration in mass operator, an explicit branch (upper half-space or lower
half-space) of the spectral Green function for anisotropic reference media should be chosen. Here we
introduce an infinite small imaginary value ε in Green function to choose the upper half-space, and
according to the Sokhotskyi–Plemelj theorem [32,36] the Green function is rewritten as:

gN
0 (k

S,N) =
1

(ω+ iε)2
− (kS,NVN)

2 = P.V.

 1

ω2 − (kS,NVN)
2

− iπδ[ω2
− (kS,NVN)

2
], (27)

where P.V. stands for Cauchy principal value.
After substituting Equation (27) into Equation (25), the components of the mass operator can be

rewritten as:

mM→N =
k2(p)
ρ2

{
P.V.

∫
∞

0
k4

S
k2

N(s)−k2
S

dkS
∫ π

0

∫ 2π
0

IPM→N(p,s)W(k−kS)

V2
N(s)

sinθdθdϕ

−
iπ
2

∫ π
0

∫ 2π
0

k3
N(s)IPM→N(p,s)W(k−kS

N)

V2
N(s)

sinθdθdϕ
}

,
(28)

where the GTPC function spatial Fourier domain is [40,50,59]:

W
(
q = k− kS

)
=

R0R1a3
X

π2
[
1 +

(
q2

Xa2
X + q2

Ya2
Y + q2

Za2
Z

)]2 , (29)

where R0 = aZ/aX and R1 = aY/aZ.
Equation (28) is composed of nine scattering components, namely nine M-N scattering scenarios.

For example, three scattering components of the mass operator corresponding to a quasi-longitudinal
incidence wave are:

mL→L =
k2(p)
ρ2

{
P.V.

∫
∞

0
k4

S
k2

L(s)−k2
S

dkS
∫ π

0

∫ 2π
0

IPL→L(p,s)W(k−kS)

V2
L(s)

sinθdθdϕ

−
iπ
2

∫ π
0

∫ 2π
0

k3
L(s)IPM→N(p,s)W(k−kS

L)

V2
L(s)

sinθdθdϕ
} (30)

mL→T1 =
k2(p)
ρ2

{
P.V.

∫
∞

0
k4

S

k2
T1(s)−(kS)

2 dkS
∫ 2π

0

∫ π
0

IPL→T1(p,s)W(k−kS)

V2
T1(s)

sinθdθdφ

−
iπ
2

∫ 2π
0

∫ π
0 IPL→T1(p, s)W(k− kS

T1)
k3

T1(s)

V2
T1(s)

sinθdθdφ
} (31)

mL→T2 =
k2(p)
ρ2

{
P.V.

∫
∞

0
k4

S

k2
T2(s)−(kS)

2 dkS
∫ 2π

0

∫ π
0

IPL→T2(p,s)W(k−kS)

V2
T2(s)

sinθdθdφ

−
iπ
2

∫ 2π
0

∫ π
0 IPL→T2(p, s)W(k− kS

T2)
k3

T2(s)

V2
T2(s)

sinθdθdφ
} (32)

Similarly, one can find the mass operator components for a quasi-transverse fast (T1) or quasi-transverse
slow (T2) incidence wave.

Since analytical solutions to complex wavenumber k are difficult to obtain, the mass operator mM(k)
including the inner product and the dispersion Equation (24) have to be solved numerically. In this
study, all calculations are implemented by FORTRAN code since its IMSL numerical libraries provide
subroutines that can compute the Cauchy principal values in the mass operator elegantly. FORTRAN
also has relatively high computational efficiency. Compared with the SOA model in Ref. [23] for the
texture-free polycrystals, computation of the Cauchy principal value and solving dispersion equation
are much more time-consuming for textured polycrystal cases even on a workstation. Empirically,
obtaining one data point of perturbed wavenumber may take tens of hours.
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3.2. Analytical Equations for Attenuation Coefficient and Phase Velocity

3.2.1. Attenuation Coefficient and Phase Velocity by the Born Approximation

In practical applications such as nondestructive evaluation and seismology, the Born approximation
is widely used since it simplifies the interpretation of the acoustic signals [9,10]. Physically, the Born
approximation assumes very weak scattering, with a result that the perturbed wavenumber in grains
is equal to the unperturbed wavenumber. After applying the Born approximation to the dispersion
equation (24), the perturbed complex wavenumber can be explicitly expressed as:

k(p) = kM(p) −
mM(kM(p))

2kM(p)V2
M(p)

, (33)

where the mass operator after applying the Born approximation is:

mM(kM(p)) =
3∑

N=1

k2
M(p)
ρ2

{
P.V.

∫
∞

0
k4

S
k2

N(s)−k2
S

dkS
∫ π

0

∫ 2π
0

IPM→N(p,s)W(kM−kS)

V2
N(s)

sinθdθdϕ

−
iπ
2

∫ π
0

∫ 2π
0

k3
N(s)IPM→N(p,s)W(kM−kS

N)

V2
N(s)

sinθdθdϕ
}

.
(34)

Note that the difference between Equation (34) and Equation (28) is that the complex wavenumber
k(p) in Equation (28) is replaced by the unperturbed wavenumber kM(p).

Based on the Born approximation, one can retrieve the attenuation coefficient from the imaginary
part of the perturbed wavenumber by Equations (33) and (34), and the result is:

αM(p) = −Im
[

mM(kM)

2kM(p)V2
M(p)

]
=

3∑
N=1

πω4

4ρ2V3
M(p)

∫ π
0

∫ 2π
0

IPM→N(p,s)W(kM−kS
N)

V5
N(s)

sinθdθdϕ,
(35)

which has been reported in Ref. [40].
Now we examine the real part of the perturbed wavenumber that governs the phase velocity in

textured polycrystalline materials, and it has never been studied in previous studies [6,39,40,59]. From
Equations (33) and (34), the real part of the complex wavenumber k(p) is explicitly rewritten as:

Re[k(p)] = kM(p) −Re
[

mM(kM)

2kM(p)V2
M(p)

]
= kM(p)−

3∑
N=1

kM(p)
2ρ2V2

M(p)
P.V.

∫
∞

0
k4

S
k2

N(s)−k2
S

dkS
∫ π

0

∫ 2π
0

IPM→N(p,s)W(kM−kS)

V2
N(s)

sinθdθdϕ.
(36)

From Equation (36), the frequency-dependent phase velocity V(p) can be finally obtained as:

V(p) = VM(p)
{

1−
3∑

N=1

1
2ρ2V2

M(p)
P.V.

∫
∞

0
k4

S
k2

N(s)−k2
S

dkS
∫ π

0

∫ 2π
0

IPM→N(p,s)W(kM−kS)

V2
N(s)

sinθdθdϕ
}−1

. (37)

Explicit expressions for the attenuation and phase velocity thus have been obtained in this section.
However, due to the intrinsic limitation of the Born approximation [66], the explicit expressions,
Equations (35) and (37) for attenuation and phase velocity solely validate for the frequency below the
geometric region.

3.2.2. Attenuation at Rayleigh Limit

The attenuation and phase velocity obtained from the Born approximation also can predict the
asymptotic behavior of the attenuation and phase velocity. At Rayleigh limit, the wavenumber kM
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approaches zero and W
(
k− kS

)
=

R0R1a3
X

π2 , thus the attenuation coefficient at Rayleigh limit αR
M(p) by

Equation (35) becomes:

αR
M(p) =

3∑
N=1

ω4V
32π2ρ2V3

M(p)

∫ π

0

∫ 2π

0

IPM→N(p, s)

V5
N(s)

sinθdθdϕ, (38)

where V = 8πaXaYaZ is the effective grain volume. Thus, the attenuation is proportional to the grain
volume and fourth power of frequency at the Rayleigh region, and Equation (38) is consistent with the
Rayleigh limit derived in Ref. [40].

3.2.3. Quasi-Static Phase Velocity

One remarkable aspect of the asymptotic complex wavenumber at Rayleigh limit is that it can
provide quasi-static velocity for textured polycrystalline materials at an arbitrary wave propagation
direction, from which one can retrieve the effective elastic constants of textured polycrystals (this
inverse problem will not be addressed here). Homogenization of polycrystals is of great importance
for predicting the mechanical properties of polycrystals and has drawn the attention of many
researchers [58,61,67–69]. For statistically isotropic polycrystals, different velocity bounds, including
Voigt–Reuss and Hashin–Shtrikman bounds [67], and a rather accurate prediction named self-consistent
approach [61] have been developed to predict the effective elastic constants of grains ensemble. For
textured polycrystals, Voigt–Reuss bounds [70,71] Hashin–Shtrikman bounds [72–74] and self-consistent
approach [73,75] have also been reported, from which one can calculate the phase velocity of an incident
elastic wave. Although the self-consistent approach in Refs. [73,75] is still limited to high-symmetry
crystallites and certain texture symmetry, a recent study [74] developed Hashin–Shtrikman bounds for
polycrystals with arbitrary crystallographic texture and triclinic crystallites. The quasi-static velocities
also can be obtained in this work for aggregates of triclinic grains with arbitrary texture symmetry and
it counts grain shape impact as well. The detailed derivation is given below.

When kM reaches zero, the Cauchy principal value can be analytically obtained by contour integral.
After much simplification, the real part of the perturbed wavenumber at Rayleigh limit is obtained as:

Re[k(p)] = kM(p)+
3∑

N=1

kM(p)R0R1

8πρ2V2
M(p)

∫ π
0

∫ 2π
0

IPM→N(p,s)

V2
N(s)[1+(R2

0−1) cos2 θ+(R2
1−1) sin2 θ sin2 φ]

3/2 sinθdθdφ.
(39)

From the equation above, the quasi-static velocity at a certain wave propagation direction p also can be
obtained as:

V(p) = VM(p){1+
3∑

N=1

R0R1
8πρ2V2

M(p)

∫ π
0

∫ 2π
0

IPM→N(p,s)

V2
N(s)[1+(R2

0−1) cos2 θ+(R2
1−1) sin2 θ sin2 φ]

3/2 sinθdθdφ
}−1

.
(40)

It indicates that the quasi-static velocity is determined collectively by grain shape (related to R0

and R1), texture (affecting wave velocity and inner product) and wave scattering. For a polycrystal with
known texture coefficient, single-crystal elastic constants, and grain sizes, the quasi-static velocity of an
incident wave (QL, QT1 or QT2) at a certain direction can be predicted by Equation (40) and the elastic
constants of the homogenized polycrystal also can be obtained inversely if sufficient phase velocities at
different angles are available. For textured polycrystals with equiaxed grains, the expression for the
quasi-static velocity can be further simplified as:

V(p) = VM(p)

1 +
3∑

N=1

1
8πρ2V2

M(p)

∫ π

0

∫ 2π

0

IPM→N(p, s)

V2
N(s)

sinθdθdφ


−1

. (41)
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From Equation (41), the effective phase velocity is governed by texture and wave scattering. A
similar homogenization method based on scattering theory for texture-free polycrystalline materials
has been reported in Ref. [76], however, this work not only accounts for crystallographic texture impact
on phase velocity but also provides explicit expressions for phase velocities (limited to second-order
scattering). Therefore, Equation (40) provides a general formula for quasi-static velocities in polycrystals,
from which one can estimate the effective elastic constants of grains ensemble.

4. Computational Results and Discussion

The focus of this section is on the computational results from the SOA model and comparisons to
other models and available experimental results in the literature. First, the SOA model is validated
by comparison to reported experimental attenuation data and finite element modeling results for a
316L stainless steel sample in references [22,77]. Furthermore, the applicability and limitation of the
Born approximation are investigated and the texture impacts on attenuation and velocity are studied.
Finally, the quasi-static phase velocities obtained in this work by Equation (40) are compared with
available bounds on a textured polycrystalline copper.

4.1. Comparison of the SOA Model to Available FEM and Experimental Results

Since two recent studies [22,77] reported experimental attenuation results and FEM results on
textured stainless steel and nickel alloy, it will be interesting to see the comparison between the SOA
model in this work and references [22,77] considering these three are independent approaches. Here a
textured stainless steel polycrystal with perfect transverse isotropy texture, mean grain diameter 0.25
mm and mean grain length 5 mm is chosen because its attenuation was experimental measured in
Ref. [77] and numerically modeled by FEM in Ref. [22]. The single-crystal elastic constants, texture
coefficients, and material density are also given in references [22,77]. Thus, attenuation coefficients
can be calculated using the FORTRAN code by the SOA model for a quantitative comparison with
references [22,77].

The comparison of quasi-longitudinal attenuation coefficients between the SOA model in this
work and Refs. [22,77] for stainless steel is shown in Figure 4, where the data points for experiment and
FEM are directly from Ref. [22,77] by an image digitizer. Unlike Refs. [22,77], where wave propagation
direction is fixed while the grain orientation is treated as a variable, this work assumes that grain
elongation direction is fixed (namely aligned with Z-direction) but the wave propagation direction τ
changes from 0◦ to 90◦. Obviously, these two computation methods are equivalent. From Figure 4,
one can see that attenuation results from this work have a reasonable agreement with FEM [22] since
the attenuation coefficients from this work fall within the error bar ranges of FEM. However, the
SOA model somehow underestimates the attenuation coefficient (the predicted attenuation form the
SOA model is lower than the corresponding mean attenuation of FEM at different angles). Besides,
the SOA model agrees well with experiment measurements [77] except for angles 0◦, 10◦ and 45◦.
Accurate attenuation measurement is difficult when the attenuation is too small (at angles 0 and 10
degrees) because the real attenuation is comparable to the measurement system error [78]. Normally,
the experiment may deviate from the models by a fact of two [79] even when the attenuation is
reasonably high. Therefore, a good agreement between the SOA model and the experiment is justified.
Compared with experimental results, the SOA model also underestimates the attenuation. Such a
systematic discrepancy may be caused by a finite number of grains in the stainless steel samples,
since a recent study [42] reveals that grain number can impose an obvious impact on attenuation
coefficient and attenuation shows more fluctuation on a finite number of grains. In other words, the
FEM modeling [22] and experiment measurements [77] include grain number effect on attenuation
coefficients while the SOA model in this work excludes this effect by assuming infinite grains. Another
reason may be the assumption using perfect ellipsoidal grains in the SOA model to represent columnar
316L grains in Refs. [22,77]. Further investigation would require additional modeling and it is out of
the scope of this work.
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Figure 4. Attenuation comparison of the second-order attenuation (SOA) model (this work) to available
experimental results (from Ref. [77]) and finite element modeling (FEM) results (from Ref. [22]) on a
textured 316L stainless steel polycrystal with mean grain sizes ax = ay = 0.125 mm, az = 2.5 mm. The
error bars of the FEM results are also from Ref. [22].

4.2. Applicability and Limitation of the Born Approximation on Textured Polycrystals

In this section, a triclinic Ti polycrystal from Refs. [40,50] is employed as an example to calculate
attenuation and phase velocity via the SOA model. The single-crystal elastic constants and density of
this triclinic Ti crystal from Refs. [40,50] are listed in Table 1. Assume that the polycrystal is composed
of triclinic Ti crystals of ellipsoidal shape, whose main axes coincide with the global coordinate axes as
shown in Figure 3. The same example in Ref. [40] is used here to facilitate the comparison between the
SOA model in this work and the Born approximation in Ref. [40]: the mean grain radii are aX = 0.1mm,
aY = 0.3 mm and aZ = 0.5 mm and the macrotexture parameters are σθ = 0.03, σφ = σθ and σζ = 3σθ.
In the SOA model, the calculation procedures of effective elastic constants and elastic constants
covariances using 3D Gaussian ODF are the same as references [40,50], thus they will not be repeated
here. The mass operator, Cauchy principal value, and dispersion equation are solved numerically by
FORTRAN code, and only three wave propagation directions (X, Y and Z) are considered in this work.
The computed attenuation results from the SOA model in this work will be compared with those from
Ref. [40] by the Born approximation.

Table 1. The elastic constants ci j (in GPa) and the mass density ρ(g/cm3) of a triclinic Ti crystallite
reported in Ref. [40,50].

c11 c12 c13 c14 c15 c16 c22 c23 c24

Triclinic Ti 161.6 67.8 88.2 1.8 1.1 −0.64 184.4 68.0 −2.5
c25 c26 c33 c34 c35 c36 c44 c45 c46

Triclinic Ti −1.9 −2.6 161.3 −0.18 0.83 2.4 50.9 −5.1 0.20
c55 c56 c66 ρ

Triclinic Ti 39.0 −5.2 50.9 4.54

Figure 5 shows the longitudinal attenuation comparison between the SOA model and the Born
approximation [40] for the Ti polycrystal with ellipsoidal grains (aX = 0.1 mm, aY = 0.3 mm and
aZ = 0.5 mm). The attenuation and wavenumber are normalized by aX so that the horizontal and
vertical axes are dimensionless. It can be seen from Figure 5 that the Born approximation is in reasonable
agreement with our SOA model below the geometric region (also refer to the mean deviation in Table 2)
and the transition frequency to geometric region varies in different directions. The deviation is defined
as (αBorn − αSOA)/αSOA. The signs for all mean deviations at different wave propagation directions in
Table 2 are negative, which indicates that the Born approximation underestimates the wave attenuation
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because it accounts for fewer scattering events than the SOA model. In the geometric region, the
Born approximation [40] breaks due to its intrinsic limitation, and the break frequency kLaX of the
Born approximation for each direction is also listed in Table 2. Since the departure frequency kLaX of
the Born approximation from the SOA model is comparable to the stochastic-to-geometric transition
frequency in the SOA model (sharp corner shown in Figure 5 from our SOA model), this departure
frequency is also governed by the grain elongation and longitudinal wave scattering strength at high
frequency. The attenuation at the geometric region from this work for textured polycrystals is also
inversely proportional to grain size in the wave propagation direction as texture-free polycrystal case
in Ref. [64,80], thus attenuation coefficients in geometric region predicated by the SOA model obey this
relation: αX > αY > αZ. In the geometric region, the attenuation is so high that the penetration depth of
an elastic wave is limited to a couple of grains [81].
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of the Born approximation [40] is also direction-dependent (see Table 3), and according to Table 3 the 
crystallographic texture affects the departure frequency most in the Z direction. In the geometric 
region, attenuation coefficients for X, Y and Z directions are comparable due to equiaxed grains. 

The comparisons between the SOA model and the Born approximation [40] on these two cases 
(shown in Figures 5 and 6, respectively) indicate that the Born approximation may underestimate the 
attenuation coefficient up to 15% below the geometric region. However, this discrepancy is still 
acceptable, considering that experimental attenuation can deviate from the theoretical prediction by 
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approximation [40] for a textured polycrystal of triclinic Ti crystallites with main grain radii
aX = 0.1 mm, aY = 0.3 mm and aZ = 0.5 mm. The macrotexture parameters are σθ = 0.03, σφ = σθ
and σζ = 3σθ. The Rayleigh region, kLaX < 0.2; geometric region, kLaX > departure frequency (given
in Table 2); estimated stochastic region, 7 < kLaX < departure frequency.

Table 2. The mean deviation between the SOA model and the Born approximation below break frequency
(SOA model is treated as the reference) and the break frequency kLaX of the Born approximation for a
textured polycrystal with ellipsoidal Ti grains.

Direction X Y Z

Mean deviation −13% −9.7% −14%
Departure frequency 31.6 12.7 25.1

Figure 6 indicates the longitudinal attenuation comparison between SOA model and the Born
approximation [40] for a Ti polycrystal with equiaxed grains (aX = aY = aZ = 0.1 mm), where the
texture parameters are the same as Figure 5. From Figure 6, it can be seen that the Born approximation
still reasonably agrees with the SOA model except for the geometric region. As shown in Table 3, the
mean deviations (below departure frequency) of the Born approximation from the SOA model are
−10.9% for X direction, −7.5% for Y direction and −14.4% for the Z direction, respectively. The model
in Ref. [40] underestimates the attenuation coefficient on this case as well. The break frequency kLaX

of the Born approximation [40] is also direction-dependent (see Table 3), and according to Table 3
the crystallographic texture affects the departure frequency most in the Z direction. In the geometric
region, attenuation coefficients for X, Y and Z directions are comparable due to equiaxed grains.
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Table 3. The mean deviation between SOA and the Born approximation below break frequency (SOA
model is treated as reference) and the break frequency kLaX of the Born approximation for a textured
polycrystal with equiaxed Ti grains.

Direction X Y Z

Mean deviation −10.9% −7.5% −14.4%
Departure frequency 31.0 34.4 102.7

The comparisons between the SOA model and the Born approximation [40] on these two cases
(shown in Figures 5 and 6, respectively) indicate that the Born approximation may underestimate
the attenuation coefficient up to 15% below the geometric region. However, this discrepancy is still
acceptable, considering that experimental attenuation can deviate from the theoretical prediction by a
factor of two [82]. As for the break frequency of the Born approximation, it is affected collectively by
texture extent, wave scattering extent, and the grain shape.

The phase velocities from the SOA model in this work for these two cases (textured Ti polycrystal
with equiaxed grains and textured Ti polycrystal with elongated grains) are plotted in Figure 7
to demonstrate the dispersion behaviors of phase velocity at different frequency regimes, where
normalized phase velocities (deviation from Voigt velocity) are shown. The phase velocity results in
different directions for the Ti polycrystal with ellipsoidal grains are shown in Figure 7a, while the
phase velocity results for the equiaxed grain case are depicted in Figure 7b. In the Rayleigh region, the
phase velocities (quasi-static velocities) at X, Y and Z directions are non-dispersive for both cases and
velocities in different directions follow this relation: Y > X > Z because of texture impact. Note that
quasi-static phase velocities from these two cases for X, Y and Z directions are slightly different (less
than 0.06%), which manifests the grain shape impact on quasi-static phase velocity. From Figure 7, the
phase velocities for both cases increase from the Rayleigh region to the stochastic region and they reach
a plateau before they become highly dispersive at the beginning of the geometric region. Although
two branches should exist in wave propagation [32], the dominant branch is exclusively shown in
Figure 7 because the subdominant branch is even harder to compute for textured polycrystals (like
Ref. [36], a special approach has to be used for calculating the subdominant branch). In Figure 7a
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the phase velocity from X direction is above its Voigt velocity at geometric region while these for Y
and Z directions in geometric region are below their corresponding Voigt velocities; intriguingly, in
Figure 7b the phase velocity in the Z direction at geometric region is above its Voigt velocity while the
rest are below their corresponding Voigt velocities. This interesting observation was also reported
on texture-free polycrystals [3,34], but the physical meaning has not been well-interpreted. Literally,
the wave chooses to propagate along faster phase velocity direction of grains at some scenarios but
slower velocity direction at other scenarios. A highly dispersive phase velocity at the beginning of
the geometric region also means that the energy propagation direction deviates from the propagation
direction of the wavefront. Further investigation on the phase velocity in the geometric region is
beyond the scope of this work.
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Figure 7. Phase velocity results from the SOA model for two Ti polycrystals with triclinic grains: (a)
the ellipsoidal grain case and (b) the equiaxed grain case. Vl is the phase velocity predicted by the SOA
model while VL is the Voigt phase velocity in the corresponding wave propagation direction.

From the phase velocity results, we can conclude that the texture impact on phase velocity is
obvious in the Rayleigh region (the quasi-static phase velocities are changed) and geometric region
(at some direction the phase velocity is larger than the Voigt velocity while at another direction the
phase velocity becomes lower than its corresponding Voigt velocity). Additionally, the texture impact
on phase velocity decreases with frequency in the transition region (from the Rayleigh region to the
stochastic region) and its influence is minimal at the stochastic region. The texture also affects the
transition frequency to the geometric region significantly. Last but not least, a competing effect between
texture and grain shape is seen on phase velocity for textured polycrystals with elongated grain, but
the grain shape impact is relatively weaker compared with crystallographic texture.

4.3. Comparison of Quasi-Static Velocity from the SOA Model with Other Velocity Bounds

An example is given here to validate the quasi-static velocity in Equation (40). The
Hashin–Shtrikman bounds for anisotropic aggregates of cubic grains with arbitrary texture symmetry
have been derived in Ref. [73] using variational principals while a recent study [74] explicitly represented
the Hashin–Shtrikman bounds by second and fourth-order ODCs for polycrystals with arbitrary texture
symmetry and crystal symmetry. Since the elastic modulus bounds of a textured polycrystalline
copper (orthotropic texture symmetry) with equiaxed grains are available in Refs. [73,74], it makes
possible a quantitative comparison between this work and Refs. [73,74]. Note that the derivation of
Hashin–Shtrikman bounds in Ref. [74] is more rigorous than Ref. [73] because of a more generous
assumption for stress polarization in Ref. [74] and the Hashin–Shtrikman bounds in Ref. [74] apply
to more general texture and crystallite system cases; however, these two methods in Refs. [73,74] are
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comparable as demonstrated by Ref. [74]. For this textured polycrystalline copper, the orientation
distribution coefficients (ODCs) of the Wigner-D function ODF from Ref. [73] are c4

00 = −0.0055154,
c4

20 = 0.006364, c4
40 = −0.0165463 and all other c4

m0 = 0 (m stands for an integer). These ODCs in
Wigner-D function ODF are converted to ODCs in Roe’s notation before they are applied to SOA

model and the conversion formula is Wlmn = (−1)m−n
√

2
2l+1 cl

mn (Wlmn are ODCs in Roe’s notation).
Single-crystal elastic constants of the copper grain are also from Ref. [73]. The Voigt and Reuss bounds
for this textured copper reported in Refs. [73,74] were first repeated using Roe’s ODF as a cross-check
of author’s FORTRAN code before calculating the quasi-static phase velocities.

The quasi-static phase velocities for this textured copper at three different wave propagation
directions (X, Y and Z) are obtained based on Equation (40), and compared with velocities calculated
from corresponding Hashin–Shtrikman (H-S) and self-consistent (SC) effective moduli in Refs. [73,74].
The comparison is shown in Table 4, where the Voigt and Reuss velocities are also listed. A reasonable
homogenization model should follow Hashin–Shtrikman bounds and provide results close to the SC
approach. From Table 4, the quasi-static velocities from this work are much better than Voigt–Reuss
bounds and they obey the H-S upper and lower bounds provided in Refs. [73,74] (H-S upper and lower
bounds from Refs. [73,74] are comparable), and they are also reasonably close to SC velocity given in
Ref. [73]. Therefore, the explicit expression Equation (40) for quasi-static velocities obtained in this
work is justified.

Table 4. Comparison of the longitudinal velocities (in km/s) at different propagation directions for a
macroscopically orthotropic copper with equiaxed grains [73,74]. Hashin–Shtrikman (H-S) bounds and
self-consistent (SC) velocity are directly from Ref. [73,74]. Assume copper density is 8.935g/cm3.

Directions Reuss H-S Lower
[73]

H-S Lower
[74] SC [73] This work,

Equation (40)
H-S Upper

[74]
H-S Upper

[73] Voigt

X 5.038 4.919 4.935 4.969 4.979 4.983 4.987 4.841
Y 4.965 4.834 4.842 4.883 4.892 4.897 4.900 4.743
Z 4.902 4.757 4.759 4.805 4.816 4.820 4.823 4.656

Although sophisticated bounds including Hashin–Shtrikman and self-consistent approaches have
been developed for polycrystalline aggregates with different texture symmetry and grain symmetry
like Refs. [72,74,75], no further attempt is made in this paper to systematically compare with these
studies [72,74,75] because of certain constraints: these models in Refs. [72,74,75] are not straightforward
to apply; no additional computational example is available in Refs. [72,74]; ODCs are not provided in
Ref. [75]. More will be exploited on this aspect in further work.

To inversely determine elastic moduli from phase velocity, one has to collect sufficient phase
velocity data at multiple angles and fit the elastic moduli by resorting to Christoffel’s equation. This
will not be demonstrated here since details about the determination of effective elastic moduli from
ultrasonic phase velocities can be found in Ref. [15].

5. Conclusions

A second-order attenuation model for textured polycrystals, which is applicable to triclinic
crystallites of ellipsoidal shape and valid for the whole frequency range, has been derived in terms of
the Dyson equation in this study. The SOA model can predict both attenuation and phase velocity
including the quasi-static velocity. Moreover, the quasi-longitudinal attenuation coefficient predicted
by the SOA model is compared to available FEM results and experimental attenuation data on a
textured stainless steel polycrystal. The SOA model is further compared with an existing model [40]
based on the Born approximation on two textured polycrystals with triclinic titanium grains but
different grain morphology. The phase velocity results predicted by the SOA model for these two
textured Ti polycrystals are also presented to demonstrate the texture impact on phase velocity. Finally,
quasi-static velocities from this work on a textured polycrystalline copper are compared with other
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velocity bounds reported in the references [73,74] including self-consistent velocity. Several conclusions
can be drawn in this study.

The attenuation comparison of the SOA model to available FEM results [22] and experimental
attenuation data [77] on the textured stainless steel polycrystal indicates the SOA model is in reasonable
agreement with FEM and experimental measurement. This justifies the SOA model developed in
this work.

From comparisons between the SOA model and the existing model [40] based on the Born
approximation on two textured polycrystalline aggregates of triclinic Ti grains (one ellipsoidal grain
case and one equiaxed grain case), the SOA model validates in the whole frequency range and
quantitatively shows the applicable frequency range of the Born approximation [40]. It is also
concluded the accuracy of the existing model in Ref. [40] is still acceptable below the geometric region.

The computational results for these two textured Ti polycrystals show that the phase velocity
predicted by the SOA model in the whole frequency range is dispersive (frequency-dependent), which
is affected both by crystallographic texture and the grain shape. The texture impact on phase velocity
is most phenomenal in the Rayleigh region and geometric region. Therefore, one big advantage of the
SOA model is that it simultaneously provides attenuation and phase velocity.

The quasi-static velocity obtained from the SOA model applies to polycrystals with arbitrary
texture symmetry and triclinic grains and also accounts for different grain shapes, which had never been
achieved before. The quasi-static velocities from the SOA model obey the Hashin–Shtrikman bounds
and agree reasonably with self-consistent velocity. Therefore, it may provide another homogenization
approach to determine effective elastic constants of texture polycrystals.

This work can be further extended to polycrystals with a generalized two-point correlation
function. Recent studies [23,83] have shown that the GTPC function of a Voronoi grain microstructure
may not follow an exponential two-point correlation function. However, the numerically determined
two-point correlation function can be incorporated into this work by following the approach in Ref. [23]
using a summation of multiple exponential terms. Further development will be addressed in the future.
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